Publications
DEPARTMENTS
Emperical Interference
Haptic Intelligence
Modern Magnetic Systems
Perceiving Systems
Physical Intelligence
Robotic Materials
Social Foundations of Computation
Research Groups
Autonomous Vision
Autonomous Learning
Bioinspired Autonomous Miniature Robots
Dynamic Locomotion
Embodied Vision
Human Aspects of Machine Learning
Intelligent Control Systems
Learning and Dynamical Systems
Locomotion in Biorobotic and Somatic Systems
Micro, Nano, and Molecular Systems
Movement Generation and Control
Neural Capture and Synthesis
Physics for Inference and Optimization
Organizational Leadership and Diversity
Probabilistic Learning Group
Topics
Robot Learning
Conference Paper
2022
Autonomous Learning
Robotics
AI
Career
Award
Intelligent Control Systems
Movement Generation and Control
Probabilistic Numerics
Empirical Inference
Article
Robot Learning with Crash Constraints
Marco, A., Baumann, D., Khadiv, M., Hennig, P., Righetti, L., Trimpe, S.
IEEE Robotics and Automation Letters, 6(2):1439-1446, IEEE, February 2021 (Published)
DOI
URL
BibTeX
Probabilistic Numerics
Article
Three-dimensional models of core-collapse supernovae from low-mass progenitors with implications for Crab
Stockinger, G., Janka, H., Kresse, D., Melson, T., Ertl, T., Gabler, M., Gessner, A., Wongwathanarat, A., Tolstov, A., Leung, S., et al.
Monthly Notices of the Royal Astronomical Society , 496(2):2039-2084, August 2020 (Published)
DOI
BibTeX
Probabilistic Numerics
Article
Convergence Analysis of Deterministic Kernel-Based Quadrature Rules in Misspecified Settings
Kanagawa, M., Sriperumbudur, B. K., Fukumizu, K.
Foundations of Computational Mathematics, 20:155-1944, February 2020 (Published)
arXiv
DOI
BibTeX
Empirical Inference
Probabilistic Numerics
Article
Analytical probabilistic modeling of dose-volume histograms
Wahl, N., Hennig, P., Wieser, H., Bangert, M.
Medical Physics, 47(10):5260-5273, 2020 (Published)
DOI
BibTeX
Empirical Inference
Probabilistic Numerics
Article
Convergence rates of Gaussian ODE filters
Kersting, H., Sullivan, T. J., Hennig, P.
Statistics and Computing, 30(6):1791-1816, 2020 (Published)
DOI
BibTeX
Empirical Inference
Probabilistic Numerics
Conference Paper
Convergence Guarantees for Adaptive Bayesian Quadrature Methods
Kanagawa, M., Hennig, P.
Advances in Neural Information Processing Systems 32 (NeurIPS 2019), :6234-6245, (Editors: H. Wallach and H. Larochelle and A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett), Curran Associates, Inc., 33rd Annual Conference on Neural Information Processing Systems, December 2019 (Published)
URL
BibTeX
Empirical Inference
Probabilistic Numerics
Conference Paper
Limitations of the empirical Fisher approximation for natural gradient descent
Kunstner, F., Hennig, P., Balles, L.
Advances in Neural Information Processing Systems 32 (NeurIPS 2019), :4158-4169, (Editors: H. Wallach and H. Larochelle and A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett), Curran Associates, Inc., 33rd Annual Conference on Neural Information Processing Systems, December 2019 (Published)
URL
BibTeX
Probabilistic Numerics
Article
Probabilistic Solutions To Ordinary Differential Equations As Non-Linear Bayesian Filtering: A New Perspective
Tronarp, F., Kersting, H., Särkkä, S., Hennig, P.
Statistics and Computing, 29(6):1297-1315, 2019 (Published)
DOI
URL
BibTeX
Probabilistic Numerics
Conference Paper
Active Multi-Information Source Bayesian Quadrature
Gessner, A. G. J. M. M.
Proceedings 35TH UNCERTAINTY IN ARTIFICIAL INTELLIGENCE CONFERENCE (UAI 2019), :712-721, (Editors: Adams, RP; Gogate, V), UAI, July 2019 (Published)
URL
BibTeX
Probabilistic Numerics
Empirical Inference
Conference Paper
DeepOBS: A Deep Learning Optimizer Benchmark Suite
Schneider, F., Balles, L., Hennig, P.
7th International Conference on Learning Representations (ICLR), May 2019 (Published)
URL
BibTeX
Probabilistic Numerics
Empirical Inference
Conference Paper
Active Probabilistic Inference on Matrices for Pre-Conditioning in Stochastic Optimization
de Roos, F., Hennig, P.
Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89:1448-1457, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (Published)
PDF
URL
BibTeX
Probabilistic Numerics
Empirical Inference
Conference Paper
Fast and Robust Shortest Paths on Manifolds Learned from Data
Arvanitidis, G., Hauberg, S., Hennig, P., Schober, M.
Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89:1506-1515, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (Published)
PDF
URL
BibTeX
Empirical Inference
Probabilistic Numerics
Article
Dense connectomic reconstruction in layer 4 of the somatosensory cortex
Motta, A., Berning, M., Boergens, K. M., Staffler, B., Beining, M., Loomba, S., Hennig, P., Wissler, H., Helmstaedter, M.
Science, 366(6469):eaay3134, 2019 (Published)
DOI
BibTeX
Probabilistic Numerics
Article
On the positivity and magnitudes of Bayesian quadrature weights
Karvonen, T., Kanagawa, M., Särkä, S.
Statistics and Computing, 29:1317-1333, 2019 (Published)
DOI
BibTeX
Probabilistic Numerics
Article
Probabilistic Linear Solvers: A Unifying View
Bartels, S., Cockayne, J., Ipsen, I., Hennig, P.
Statistics and Computing, 29(6):1249-1263, 2019 (Published)
DOI
URL
BibTeX
Empirical Inference
Probabilistic Numerics
Article
Probabilistic solutions to ordinary differential equations as nonlinear Bayesian filtering: a new perspective
Tronarp, F., Kersting, H., Särkkä, S. H. P.
Statistics and Computing, 29(6):1297-1315, 2019 (Published)
DOI
BibTeX
Probabilistic Numerics
Conference Paper
Kernel Recursive ABC: Point Estimation with Intractable Likelihood
Kajihara, T., Kanagawa, M., Yamazaki, K., Fukumizu, K.
Proceedings of the 35th International Conference on Machine Learning, :2405-2414, PMLR, July 2018 ()
Paper
BibTeX
Probabilistic Numerics
Article
Convergence Rates of Gaussian ODE Filters
Kersting, H., Sullivan, T. J., Hennig, P.
arXiv preprint 2018, arXiv:1807.09737 [math.NA], July 2018 ()
URL
BibTeX
Empirical Inference
Probabilistic Numerics
Conference Paper
Counterfactual Mean Embedding: A Kernel Method for Nonparametric Causal Inference
Muandet, K., Kanagawa, M., Saengkyongam, S., Marukata, S.
Workshop on Machine Learning for Causal Inference, Counterfactual Prediction, and Autonomous Action (CausalML) at ICML, July 2018 (Published)
BibTeX
Probabilistic Numerics
Conference Paper
Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients
Balles, L., Hennig, P.
Proceedings of the 35th International Conference on Machine Learning (ICML), 80:404-413, Proceedings of Machine Learning Research, (Editors: Jennifer Dy and Andreas Krause), PMLR, ICML, July 2018 (Published)
URL
BibTeX
Probabilistic Numerics
Article
A probabilistic model for the numerical solution of initial value problems
Schober, M., Särkkä, S., Hennig, P.
Statistics and Computing, 29(1):99–122, 2018 (Published)
PDF
Code
DOI
BibTeX
Probabilistic Numerics
Article
Analytical incorporation of fractionation effects in probabilistic treatment planning for intensity-modulated proton therapy
Wahl, N., Hennig, P., Wieser, H., Bangert, M.
Medical Physics, 45(4):1317-1328, 2018 (Published)
DOI
BibTeX
Probabilistic Numerics
Empirical Inference
Article
Counterfactual Mean Embedding: A Kernel Method for Nonparametric Causal Inference
Muandet, K., Kanagawa, M., Saengkyongam, S., Marukata, S.
Arxiv e-prints, arXiv:1805.08845v1 [stat.ML], 2018 ()
arXiv
BibTeX
Probabilistic Numerics
Article
Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences
Kanagawa, M., Hennig, P., Sejdinovic, D., Sriperumbudur, B. K.
Arxiv e-prints, arXiv:1805.08845v1 [stat.ML], 2018 ()
arXiv
BibTeX
Empirical Inference
Probabilistic Numerics
Statistical Learning Theory
Miscellaneous
Large sample analysis of the median heuristic
Garreau, D., Jitkrittum, W., Kanagawa, M.
2018, In preparation (In preparation)
arXiv
BibTeX
Probabilistic Numerics
Article
Model-based Kernel Sum Rule: Kernel Bayesian Inference with Probabilistic Models
Nishiyama, Y., Kanagawa, M., Gretton, A., Fukumizu, K.
Arxiv e-prints, arXiv:1409.5178v2 [stat.ML], 2018 ()
arXiv
BibTeX
Empirical Inference
Probabilistic Numerics
Ph.D. Thesis
Probabilistic Approaches to Stochastic Optimization
Mahsereci, M.
Eberhard Karls Universität Tübingen, Germany, 2018 (Published)
URL
BibTeX
Empirical Inference
Probabilistic Numerics
Ph.D. Thesis
Probabilistic Ordinary Differential Equation Solvers — Theory and Applications
Schober, M.
Eberhard Karls Universität Tübingen, Germany, 2018 (Published)
BibTeX
Autonomous Motion
Probabilistic Numerics
Intelligent Control Systems
Conference Paper
On the Design of LQR Kernels for Efficient Controller Learning
Marco, A., Hennig, P., Schaal, S., Trimpe, S.
Proceedings of the 56th IEEE Annual Conference on Decision and Control (CDC), :5193-5200, IEEE, IEEE Conference on Decision and Control, December 2017 (Published)
arXiv
PDF
On the Design of LQR Kernels for Efficient Controller Learning - CDC presentation
DOI
BibTeX
Probabilistic Numerics
Article
Probabilistic Line Searches for Stochastic Optimization
Mahsereci, M., Hennig, P.
Journal of Machine Learning Research, 18(119):1-59, November 2017 (Published)
URL
BibTeX
Probabilistic Numerics
Perceiving Systems
Conference Paper
Coupling Adaptive Batch Sizes with Learning Rates
Balles, L., Romero, J., Hennig, P.
In Proceedings of the 33rd Conference on Uncertainty in Artificial Intelligence (UAI), :ID 141, (Editors: Gal Elidan, Kristian Kersting, and Alexander T. Ihler), August 2017 (Published)
Code
URL
BibTeX
Empirical Inference
Probabilistic Numerics
Conference Paper
Dynamic Time-of-Flight
Schober, M., Adam, A., Yair, O., Mazor, S., Nowozin, S.
Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, :170-179, IEEE, Piscataway, NJ, USA, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 (Published)
DOI
BibTeX
Autonomous Motion
Probabilistic Numerics
Intelligent Control Systems
Conference Paper
Virtual vs. Real: Trading Off Simulations and Physical Experiments in Reinforcement Learning with Bayesian Optimization
Marco, A., Berkenkamp, F., Hennig, P., Schoellig, A. P., Krause, A., Schaal, S., Trimpe, S.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), :1557-1563, IEEE, Piscataway, NJ, USA, May 2017 (Published)
PDF
arXiv
ICRA 2017 Spotlight presentation
Virtual vs. Real - Video explanation
DOI
BibTeX
Probabilistic Numerics
Conference Paper
Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets
Klein, A., Falkner, S., Bartels, S., Hennig, P., Hutter, F.
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS), 54:528-536, Proceedings of Machine Learning Research, (Editors: Sign, Aarti and Zhu, Jerry), PMLR, April 2017 (Published)
pdf
URL
BibTeX
Probabilistic Numerics
Article
Analytical probabilistic modeling of RBE-weighted dose for ion therapy
Wieser, H., Hennig, P., Wahl, N., Bangert, M.
Physics in Medicine and Biology (PMB), 62(23):8959-8982, 2017 ()
URL
BibTeX
Probabilistic Numerics
Perceiving Systems
Article
Early Stopping Without a Validation Set
Mahsereci, M., Balles, L., Lassner, C., Hennig, P.
arXiv preprint arXiv:1703.09580, 2017 ()
URL
BibTeX
Probabilistic Numerics
Article
Efficiency of analytical and sampling-based uncertainty propagation in intensity-modulated proton therapy
Wahl, N., Hennig, P., Wieser, H. P., Bangert, M.
Physics in Medicine & Biology, 62(14):5790-5807, 2017 ()
URL
BibTeX
Probabilistic Numerics
Article
Krylov Subspace Recycling for Fast Iterative Least-Squares in Machine Learning
Roos, F. D., Hennig, P.
arXiv preprint arXiv:1706.00241, 2017 ()
URL
BibTeX
Empirical Inference
Probabilistic Numerics
Article
New Directions for Learning with Kernels and Gaussian Processes (Dagstuhl Seminar 16481)
Gretton, A., Hennig, P., Rasmussen, C., Schölkopf, B.
Dagstuhl Reports, 6(11):142-167, 2017 (Published)
DOI
BibTeX
Empirical Inference
Probabilistic Numerics
Software Workshop
Ph.D. Thesis
Nonparametric Disturbance Correction and Nonlinear Dual Control
Klenske, E. D.
(24098), ETH Zurich, 2017 ()
DOI
BibTeX
Empirical Inference
Probabilistic Numerics
Miscellaneous
Probabilistic Active Learning of Functions in Structural Causal Models
Rubenstein, P. K., Tolstikhin, I., Hennig, P., Schölkopf, B.
2017 (Published)
Arxiv
BibTeX
Probabilistic Numerics
Conference Paper
Active Uncertainty Calibration in Bayesian ODE Solvers
Kersting, H., Hennig, P.
Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI), :309-318, (Editors: Ihler, Alexander T. and Janzing, Dominik), June 2016 (Published)
URL
BibTeX
Empirical Inference
Probabilistic Numerics
Conference Paper
Approximate dual control maintaining the value of information with an application to building control
Klenske, E. D., Hennig, P., Schölkopf, B., Zeilinger, M. N.
In European Control Conference (ECC), :800-806, June 2016 ()
PDF
DOI
BibTeX
Autonomous Motion
Probabilistic Numerics
Intelligent Control Systems
Conference Paper
Automatic LQR Tuning Based on Gaussian Process Global Optimization
Marco, A., Hennig, P., Bohg, J., Schaal, S., Trimpe, S.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), :270-277, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (Published)
Video - Automatic LQR Tuning Based on Gaussian Process Global Optimization - ICRA 2016
Video - Automatic Controller Tuning on a Two-legged Robot
PDF
DOI
BibTeX
Probabilistic Numerics
Conference Paper
Batch Bayesian Optimization via Local Penalization
González, J., Dai, Z., Hennig, P., Lawrence, N.
Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS), 51:648-657, JMLR Workshop and Conference Proceedings, (Editors: Gretton, A. and Robert, C. C.), May 2016 (Published)
URL
BibTeX
Probabilistic Numerics
Conference Paper
Probabilistic Approximate Least-Squares
Bartels, S., Hennig, P.
Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS), 51:676-684, JMLR Workshop and Conference Proceedings, (Editors: Gretton, A. and Robert, C. C. ), May 2016 (Published)
URL
BibTeX
Empirical Inference
Probabilistic Numerics
Article
Dual Control for Approximate Bayesian Reinforcement Learning
Klenske, E. D., Hennig, P.
Journal of Machine Learning Research, 17(127):1-30, 2016 (Published)
PDF
URL
BibTeX
Empirical Inference
Probabilistic Numerics
Article
Gaussian Process-Based Predictive Control for Periodic Error Correction
Klenske, E. D., Zeilinger, M., Schölkopf, B., Hennig, P.
IEEE Transactions on Control Systems Technology , 24(1):110-121, 2016 (Published)
PDF
DOI
BibTeX
Autonomous Motion
Empirical Inference
Probabilistic Numerics
Intelligent Control Systems
Conference Paper
Automatic LQR Tuning Based on Gaussian Process Optimization: Early Experimental Results
Marco, A., Hennig, P., Bohg, J., Schaal, S., Trimpe, S.
Machine Learning in Planning and Control of Robot Motion Workshop at the IEEE/RSJ International Conference on Intelligent Robots and Systems (iROS), Machine Learning in Planning and Control of Robot Motion Workshop, October 2015 (Published)
PDF
DOI
BibTeX
Empirical Inference
Probabilistic Numerics
Conference Paper
A Random Riemannian Metric for Probabilistic Shortest-Path Tractography
Hauberg, S., Schober, M., Liptrot, M., Hennig, P., Feragen, A.
In 18th International Conference on Medical Image Computing and Computer Assisted Intervention, 9349:597-604, Lecture Notes in Computer Science, MICCAI, 2015 (Published)
PDF
DOI
BibTeX