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Abstract. Shortest-path tractography (SPT) algorithms solve global
optimization problems defined from local distance functions. As diffusion
MRI data is inherently noisy, so are the voxelwise tensors from which lo-
cal distances are derived. We extend Riemannian SPT by modeling the
stochasticity of the diffusion tensor as a “random Riemannian metric”,
where a geodesic is a distribution over tracts. We approximate this dis-
tribution with a Gaussian process and present a probabilistic numerics
algorithm for computing the geodesic distribution. We demonstrate SPT
improvements on data from the Human Connectome Project.

1 Introduction

Diffusion weighted imaging enables inference of structural brain connectivity,
assuming that water diffuses along brain fibers, not across. At any brain location,
a local brain fiber orientation distribution function (ODF) is estimated from
measured diffusion along a fixed set of directions. Integration of the field of local
ODFs yields a heuristic estimate of the most likely path for a brain fiber.

We study the stochasticity of the ODF estimate and its effect on the distribu-
tion of estimated tracts through Riemannian shortest-path tractography (SPT)
in diffusion tensor imaging (DTI), where the ODF is a second order tensor de-
scribing a Gaussian diffusion process at any given location. In Riemannian SPT,
tracts are estimated as geodesics on a Riemannian manifold, where the Rieman-
nian metric is constructed from the diffusion tensor [9, 14, 15]. As the diffusion
tensor is estimated from data, it is subject to noise. The tensor, and the induced
Riemannian metric, should therefore be treated as stochastic variables, not exact
representatives of the true underlying diffusion process. This is not possible in
current Riemannian tractography models, which assume a deterministic metric.

We present a solution to probabilistic SPT for DTI which treats diffusion
tensors as stochastic variables, and returns a distribution over the tracts con-
necting two given points in the brain, approximated by a Gaussian process (GP).
Algorithmically, we extend recent probabilistic solutions for ordinary differen-
tial equations (ODEs) [12, 18] by allowing “noisy” evaluations of the ODE due
to the noisy metric. The resulting ODE solver is extendable to other problems.
The combined model yields both quantitative and qualitative improvements over
standard SPT algorithms.
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2 Shortest-Path Tractography and Random Geometries

In shortest-path tractography (SPT) the ODFs induce a local Riemannian met-
ric [9, 11, 14, 15], where the most probable fiber connecting two points x and y
is re-interpreted as the geodesic, or shortest path, connecting x and y.

Why SPT? Walk-based streamline methods searching for the most likely paths
from a seed point to anywhere in the brain [3,16] suffer from path-length depen-
dency, i.e. long paths are harder to estimate than short ones. When two endpoints
are known, SPT avoids this by looking for the shortest connecting path. This
ensures that long and short tracts are estimated with the same sample size. As
endpoints are not always known, these are complementary methods.

Solving Riemannian SPT. In Riemannian SPT, the diffusion tensor Dp at
p is commonly interpreted as the inverse of a Riemannian metric Mp [14, 15].
Geodesics returned by this ad hoc interpretation are typically “too straight” or
are attracted to high diffusivity cortical spinal fluid (CSF) regions. Hao et al. [11]
suggest a per-voxel scaling Mp = αpD−1

p that avoids this issue, while Fuster et
al. [9] show that the adjugate metric Mp = det(Dp)D−1

p gives a metric under
which free Brownian motion matches the diffusion implied by Dp. This reduces
attraction to CSF regions [9, 19], so we use the adjugate metric.

Given a Riemannian metric Mp, the Riemannian geodesic c : [0, 1] → R3

connecting two points x and y is found by solving the geodesic ODE

c̈d(t) = fd(t, c, ċ) = −Γᵀ
d · (ċ(t)⊗ ċ(t)) , d = 1, . . . , D = 3, (1)

Γd =
1

2

D∑
k=1

[
M−1

c(t)

]
d,k

(
∂ vec Mp

∂pk

)
p=c(t)

∈ RD2×1, (2)

subject to the boundary conditions c(0) = x and c(1) = y. Here ⊗ is the
Kronecker product, c(t) = [c1(t); c2(t); c3(t)] is a point on the shortest path c,
and ċ and c̈ denote the first and second derivative along the path, respectively.

Estimating a Random Geometry. The Riemannian adjugate metric Mp is
estimated from finite noisy data and should be considered a stochastic variable.
This, however, complicates the geometric interpretation as the resulting object
is now a random Riemannian metric [13], and not a deterministic metric. Given
two endpoints x and y, our interest is in finding a connecting geodesic. Since
the metric is stochastic, there is a distribution of geodesics connecting x and y.

We approximately solve the geodesic ODE (1) using a probabilistic descrip-
tion of the uncertainty over f(t, c, ċ), the stochastic variable arising from Eq. 1
with a stochastic metric. We approximate f with a Gaussian distribution (using
the shorthand notation ft,c,ċ ≡ f(t, c, ċ))

p(ft,c,ċ) = N (ft,c,ċ;mt,c,ċ,Ct,c,ċ) . (3)

The mean and covariance that form this approximation are computed from

md = −E(Γd)ᵀ (ċ⊗ ċ) and C2
d = (ċ⊗ ċ)

ᵀ
cov(Γd) (ċ⊗ ċ) , (4)
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Predicted curve

Predicted curve derivative
Fig. 1. Left: A GP regressor
(blue) and its derivative (or-
ange). Right: A numerical solver
seeks the smooth function (blue)
that best fits observed deriva-
tives (black) while meeting the
boundary constraints (red).

where mt,c,ċ = [m1;m2;m3] and Ct,c,ċ = diag
(
C2

1 , C
2
2 , C

2
3

)
.

We estimate the mean and covariance of Γd empirically, subsampling the gra-
dient directions used to generate the local diffusion tensors into S = 20 batches
each containing 80% of the directions. For each subsample we fit a diffusion
tensor field and compute Γd (2). Finally, we estimate the moments E(Γd) ≈
1
S

∑S
s=1 Γ

(s)
d and cov(Γd) ≈ 1

S−1

∑S
s=1

(
Γ
(s)
d − E(Γd)

)(
Γ
(s)
d − E(Γd)

)ᵀ
.

3 Regressing an ODE

In the Riemannian setting, geodesics are found as the solution to the geodesic
ODE (1). This is a smooth curve c(t) : [0, 1] → R3, which must be estimated
numerically. We use probabilistic numerics that solves the ODE using Gaus-
sian process (GP) regression [12,18,20] We extend previous work [19] to handle
uncertainty in the ODE due to a noisy metric.

GP Regression. A GP c(t) ∼ GP(µ(t), k(t, u)) [17] is a probability measure
over real-valued functions c : R→ R such that any finite restriction to function
values {c(tn)}Nn=1 has a Gaussian distribution. GPs are parameterized by a mean
function µ : R → R and a covariance function k : R × R → R that determines
the regularity of the paths. GPs are closed under linear transformations

p(c) = GP(c;µ, k) ⇒ p(Ac) = GP(Ac; Aµ,AkAᵀ), (5)

where Aᵀ denotes application of operator A to the left. Given observations
{t,Y} = {(t1, y1), . . . , (tN , yN )} of likelihood p(yi | ti) = N (yi; Ac(ti), σ

2I), the
posterior over c is a Gaussian process GP(c̃; µ̃, k̃) with

µ̃(t) = µ(t) + k(t, t)Aᵀ(AkttA
ᵀ + σ2I)−1(Y −Aµ(t))

k̃(t, u) = k(t, u)− k(t, t)Aᵀ(AkttA
ᵀ + σ2I)−1Ak(t, u),

(6)

where (ktt)ij = k(ti, tj) is the N × N covariance of input locations [17, §2.2],
and similarly for k(t, t). Differentiation is a linear operation so (by Eq. 5) a GP
belief over c implies a GP belief over ∂c = ċ as well (see left panel of Fig. 1).

Beliefs over multi-output functions c(t) = [c1(t); c2(t); c3(t)] can be con-
structed through vectorization. If the covariance structure is assumed to factorize
between inputs and outputs, cov(ci(t), cj(u)) = [V]ij k(t, u), for covariance V,
then the belief over c can be written as p(c) = GP(c;µc,V ⊗ k).
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GP ODE solvers. Numerical ODE solvers evalute the ODE at finitely many
points and estimate a smooth curve that fits these observations along with either
initial or boundary values (see right panel of Fig. 1). This is statistical regression.
This view gives rise to probabilistic ODE solvers [5,12,18–20] implemented using
GP regression. In these solvers, uncertainty represents the approximation of not
evaluating the ODE at the true solution, but at the current approximation.

At runtime, the solver repeatedly uses the current posterior mean estimate
c̃(ti) for the true solution c(ti) to construct approximate noisy “observations”

yi = f(ti, c̃(ti), ∂c̃(ti)) = c̈(ti) + ηi. (7)

This describes that c̃(ti) is only an approximation to the true solution c(ti) as the
observation yi is corrupted by an error ηi. Here, ηi is assumed to be Gaussian,
and the current uncertainty over c is propagated through the algorithm:

At step i, assume a posterior p(c) = GP(c; µ̃i, k̃i). We construct the estimates
c̃i and ∂c̃i as the current “best guess”, the mean [c̃i; ∂c̃i] = [µ̃i(ti); ∂µ̃

i(ti)]. An
estimate for the error of this approximation is provided by the local variance

cov

(
c̃i(ti)
∂c̃i(ti)

)
=

 k̃i(ti, ti)
∂k̃i(ti,t)

∂t

∣∣∣
t=ti

∂k̃i(t,ti)
∂t

∣∣∣
t=ti

∂2k̃i(t,u)
∂t∂u

∣∣∣
t,u=ti

 =: Σi. (8)

Assuming we have upper bounds U > ∂f/∂c and U̇ > ∂f/∂ċ on the gradients of
f , Σi can be used to estimate the error on yi as (U, U̇)ᵀΣi(U, U̇) =: Λi, i.e.
ηi ∼ N (0,Λi). This gives an observation likelihood function

p(yi | c̈(ti)) = N (yi; c̈(ti),Λ
i). (9)

The belief is updated with Eq. 6 to obtain µ̃i+1, k̃i+1, and the process repeats.
The repeated extrapolation to construct c̃(ti) in the GP solver is similar to

explicit Runge-Kutta methods as it defines a Butcher tableau. For some GP
priors, the posterior mean even coincide with results from such methods [18].

Regressing a Noisy ODE. When the metric is uncertain, the geodesic ODE
can only be evaluated probabilistically as p(f). To handle this situation, we ex-
tend the probabilistic ODE solver to cope with Gaussian uncertain observations.

Due to noise, the curvature yi = f(ti, c̃i, ∂c̃(ti)) can only be estimated up to
Gaussian noise p(yi | mt,c̃,∂c̃,Ct,c̃,∂c̃) = N (yi; mt,c̃,∂c̃,Ct,c̃,∂c̃). As the normal
distribution is symmetric around the mean, this is a likelihood for yi,

p(mt,c̃,∂c̃ | yi,Ct,c̃,∂c̃) = N (mt,c̃,∂c̃; yi,Ct,c̃,∂c̃). (10)

Since both likelihoods (9, 10) are Gaussian, the latent yi can be marginalized
analytically, giving the complete observation likelihood for mt,c̃,∂c̃

p(mt,c̃,∂c̃ | c̈(ti)) = N (mt,c̃,∂c̃; c̈i,Cti,c̃i,∂c̃i
+ Λi) . (11)

Solutions to noisy ODEs are then inferred by replacing Eq. 9 with Eq. 11, using
mt,c̃,∂c̃ = E[ft,c,ċ] in place of the (inaccessible) function evaluations yi = ft,c̃,∂c̃,
such that the approximation error is modeled by the additive uncertainty Ct,c̃,∂c̃.
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The ODE solver rely on two noise terms: ηi in Eq. 7 captures the numer-
ical error, while C in Eq. 10 describes the uncertainty arising from the data.
While the terms are structurally similar they capture different error sources; e.g.
changes in the number of grid points imply a change in η, while C is unaffected.
Both noise terms are approximated as Gaussian to ensure efficient inference.

Adaptation to Tractography. To compute geodesics in DTI we subsample
the diffusion gradients, estimate the mean and covariance of Γd, and finally
solve the noisy geodesic ODE (1) numerically. For the prior covariance we use
a Gaussian kernel k(ti, tj) = exp

[
−(ti − tj)2/(2λ2)

]
with length scale λ. To

estimate V and λ we maximize their likelihood with gradient descent on the
positive definite cone. We initialize the prior mean with the Dijkstra path under
the deterministic metric, which we pre-process with a GP smoother.

4 Experimental Results

Tractography was performed on pre-processed diffusion data of 20 subjects from
the Q3 release of the Human Connectome Project (HCP) [7, 8, 10, 21]. The
pre-processed HCP diffusion data contains 270 diffusion directions distributed
equally over 3 shells with b-values = 1000, 2000 and 3000 s/mm2 [21]. Diffusion
directions were uniformly subsampled into 20 batches each containing 80% of
the directions, where DTI tensors were computed with dtifit [2]. Segmenta-
tion was performed with FAST [23]. The cortico-spinal tract (CST) and inferior
longitudinal fasiculus (ILF) used for experiments were obtained from the proba-
bilistic expert-annotated Catani tract atlas [4]. ROI atlases were constructed in
MNI152 “template space” by overlapping the tract atlas with regions from the
Harvard-Oxford atlas [6]. The CST ROIs are the overlap with the brainstem,
the hippocampus and the amygdala for one region, and the overlap with the
superior frontal gyrus, the precentral gyrus and the postcentral gyrus for the
second region. The ILF ROIs are the overlap with the temporal pole for one
region, and the overlap with the superior occipital cortex, the inferior occipital
cortex and the occipital pole for the second region. The constructed ROIs were
warped from “template space” to “subject space” using warps provided by HCP.

As a first illustration, Fig. 2 shows the density of a single geodesic within the
CST projected onto a slice. The center column shows that the geodesic density
roughly consists of two certain vertical line segments with an uncertain connec-
tion between them (green box). The bottom row shows the standard deviation of
Γd. The geodesic uncertainty appears related to data noise. This is not attained
with other GP ODE solvers [19] as they model constant observation noise.

Next we sample 250 endpoint pairs and compute the corresponding geodesics.
Fig. 3 shows the resulting heatmaps. The GP solution provides a more coherent
picture of the tract compared to the picture generated with Dijkstra’s algorithm.

To compare solution qualities we compute the set of voxels each geodesic
passes through. Taking the Catani atlas as a reference we measure the percentage
of voxels which are classified as part of the tract by at least one expert. Figure 4
shows the results for 20 subjects. In ILF the median accuracy is comparable
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Fig. 2. Top row: The density of a single GP geodesic under the random metric. The
density heatmap is projected into axis-aligned slices; the background image is the
expected metric trace; and the outline is where at least one expert annotated the CST.
Bottom row: Standard deviation of Γd at the same slices as the top row.

Dijkstra in CST GP in CST Dijkstra in ILF GP in ILF

Fig. 3. Example shortest paths in the CST and ILF using both Dijkstra’s algorithm
on a deterministic metric, and a GP solver with a random Riemannian metric.

0 0.5 1

Dijkstra

GP

0.2 0.4 0.6 0.8 1

ILF CST

Fig. 4. Agreement with at least one expert in the Catani atlas as estimated by Dijkstras
algorithm and the GP solver.
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for Dijkstra and GP paths, but the GP error bars are significantly smaller. For
the CST, we observe similar quality results for Dijkstra and GP paths. This is
expected, as the ILF is generally considered the harder tract to estimate.

5 Discussion and Conclusion

SPT methods are advantageous for tracts that connect two brain regions, e.g. for
structural brain networks. However, a long-standing problem is that SPT only
finds a single connection with no insight to its uncertainty. This is in contrast to
walk-based methods, which are often probabilistic in nature. In this paper, we
provide a first fully probabilistic SPT algorithm that models stochastic diffusion
tensors and returns a distribution over the shortest path. While uncertainty
propagates in probabilistic walk-based methods, the uncertainty of probabilistic
SPT only depends on local data uncertainty, not the seed point distance.

Through experiments we visualize the estimated geodesic densities between
brain regions, and validate that the estimated geodesic densities are less certain
in areas where the estimated diffusion tensor is uncertain. We see that the vi-
sualized geodesic densities from the probabilistic SPT yield smoother and more
coherent tracts than the corresponding Dijkstra solutions.

While Riemannian SPT only applies to second order tensor models, a Finsler
geometry framework has emerged enabling continuous SPT with higher order
tensors for HARDI data [1]. Our proposed numerical tools also extend to these
models, and can provide a probabilistic interpretation of Finsler models. Further
future work includes shape analysis on the resulting estimated geodesic densities,
which are suitable for GP-based tract shape analysis [22].
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