
Diss. ETH No. 24098

Nonparametric Disturbance Correction
and Nonlinear Dual Control

A thesis submitted to attain the degree of

Doctor of Sciences of ETH Zurich
(Dr. sc. ETH Zurich)

presented by

Edgar Dietrich Klenske

Dipl.-Ing., University of Stuttgart
born 1986-08-13

citizen of Germany

accepted on the recommendation of

Prof. Dr. Melanie N. Zeilinger, examiner
Dr. Philipp Hennig, co-examiner

Prof. Dr. Carl E. Rasmussen, co-examiner

2017

Nonparametric Disturbance Correction
&

Nonlinear Dual Control

Edgar Dietrich Klenske

2017

Nonparametric Disturbance Correction and Nonlinear Dual Control
© 2017 Edgar D. Klenske

to the stars

Abstract

Automatic control is an important aspect of modern technology, and many devices we use on a daily
basis are using automatic control for actuation and decision-making. However, many advanced auto-
matic control methods need a model of the system to control—a mathematical representation of the
system’s behavior. These models are not always easy to come by because of the underlying complexity
of the system or the required measurement precision. Therefore, often a big portion of time is used for
identification and tuning of these models.

Machine learning methods with the available regression and inference frameworks offer a new
potential in the combination with model-based control methods to speed up, or even entirely automate,
the process of model-creation, identification and tuning. This potential similarly extends to disturbance
prediction: Methods from time-series forecasting can be used to infer a model of the environmental
disturbances, which then can be used in predictive control methods.

The first concept covered in this thesis is the identification of quasiperiodic models for disturbance
forecasting. Quasiperiodic disturbances are encountered in many applications that are affected by the
ubiquitous day-night-cycle, revolving mechanical parts or recurring motions from biological objects.
Being able to forecast disturbances, such as the outside air temperature, recurring gear errors or the
beating motion of a heart, can help to increase control performance of the affected systems, especially in
combination with model predictive control. In this thesis a quasiperiodic Gaussian process regression
framework is used to learn and to predict periodic disturbances. A subsequent reference tracking
model predictive controller then uses these predictions to control the system to a higher precision. The
benefits of using this method are not only shown with simulated experiments, but also on hardware,
on a telescope tracking setup in the laboratory. Since the development of this method was driven
by a real problem in astronomical imaging, it is described how the method was implemented as a
software solution. The advantage of the disturbance prediction method is shown on telescope tracking
experiments in the field. The use of automatically identified quasiperiodic Gaussian process models
makes it possible to use disturbance forecasting on a variety of systems not necessarily known at
modeling time.

The second concept presented in this thesis is nonlinear dual control. While methods for simulta-
neous identification and control were published already in the 1960s, most approaches are either too
complex to be used in practice or too simple to retain all critical features of the original dual control
framework: caution, exploration and selectiveness. The dual control framework in this thesis is based
on one approximation to the—theoretically ideal, but fundamentally intractable—optimal dual control
problem. So far being used for linear systems only, this framework is extended to nonlinear systems.
This is done by employing regression methods from machine learning; namely parametric regression,
Gaussian process regression and neural network regression. Furthermore, the framework, which was
originally only suitable for systems with quadratic cost, is extended to a general cost setting. This
makes it possible to apply dual control to problems of economic cost. An exemplary application to a
nonlinear building control problem shows the potential that dual control offers for real world applica-
tions. Overall, the presented extensions make it possible to use approximation-based dual control in
the context of nonlinear regression models and flexible cost structures.

Zusammenfassung

Regelungstechnik ist ein wichtiger Bestandteil der modernen Technik, und viele Geräte, die wir täglich
nutzen, arbeiten nur mit Hilfe von Reglern zuverlässig. Viele moderne Regler benötigen dynamische
Modelle—mathematische Beschreibungen des Systemverhaltens—um zu funktionieren. Leider ist es
aufgrund der Komplexität und der erforderlichen Messgenauigkeit nicht immer einfach, diese Mo-
delle zu erstellen. Deshalb ist die Systemidentifikation und das Anpassen der Modelle an die realen
Begebenheiten oftmals mit einem hohen Zeiteinsatz verbunden.

Methoden des maschinellen Lernens bieten die Möglichkeit, den Prozess der Modellierung und
Anpassung zu beschleunigen oder gänzlich zu automatisieren. Dieses Potential gilt auch für Methoden
zur Vorhersage von Störungen: Algorithmen zur Zeitreihenvorhersage können genutzt werden, um
den zukünftigen Verlauf externer Störungen vorherzusagen. Diese Vorhersagen können anschließend
in der modellprädiktiven Regelung genutzt werden, um die Regelgenauigkeit zu verbessern.

Das erste Konzept, welches in dieser Arbeit behandelt wird, ist die Identifikation von quasiperio-
dischen Modellen für die Vorhersage von Störungen. Quasiperiodische Störungen findet man in vielen
Anwendungen, insbesondere bei solchen, die vom Tag- und Nacht-Zyklus, rotierenden mechanischen
Teilen oder anderen periodischen Bewegungen abhängen. Die Möglichkeit, Störungen wie die Außen-
temperatur, Getriebefehler oder das Schlagen eines Herzens vorherzusagen, kann die Regelgenauigkeit
der betroffenen Systeme erheblich verbessern. In dieser Arbeit wird ein quasiperiodischer Gauß-Prozess
eingesetzt, um periodische Störungen zu modellieren und vorherzusagen. Ein Referenzfolgesystem auf
Basis modellprädiktiver Regelung nutzt diese Vorhersagen, um die Nachführgenauigkeit des Reglers
zu verbessern. Die Vorteile dieser Methode werden nicht nur mit simulierten Experimenten, sondern
auch auf einem mechanischen Versuchsträger, einem Teleskop-Aufbau im Labor, gezeigt. Für die Ver-
besserung der Regelung von Teleskopen in der Astrophotographie wurde der Algorithmus in einer
Softwarelösung implementiert und der Nutzen der Störungsvorhersage mit Experimenten im Feldver-
such demonstriert. Mit dieser Softwarelösung ist es nun möglich, die Störungsvorhersage auf einer
Vielzahl von Systemen zu nutzen, die zur Zeit der Modellierung nicht notwendigerweise bekannt sein
müssen.

Das zweite Konzept in dieser Arbeit ist die nichtlineare duale Regelung. Während Methoden für die
zeitgleiche Identifikation und Regelung dynamischer Systeme schon in den 1960er-Jahren publiziert
wurden, sind die meisten Ansätze entweder zu komplex um in der Praxis eingesetzt zu werden, oder
zu einfach um alle wichtigen Eigenschaften der dualen Regelung zu erhalten: Vorsicht, Exploration und
Selektivität. Der Ansatz in dieser Arbeit basiert auf einer Approximation des—theoretisch idealen, aber
praktisch nicht lösbaren—optimalen dualen Regelungsproblems. Diese bisher nur für lineare Systeme
eingesetzte Methode wird auf nichtlineare Modelle erweitert. Dies wird durch die Nutzung verschiede-
ner nichtlinearer Regressionsmethoden erreicht: parametrische Regression, Gauß-Prozess-Regression
und Regression auf Basis neuronaler Netze. Weiter wurde der Ansatz, der bisher nur für Systeme mit
quadratischen Kosten nutzbar war, auf allgemeine Kostenstrukturen erweitert. Dies ermöglicht es, dua-
le Regelung auch auf Probleme mit ökonomischen Kosten anzuwenden. Eine beispielhafte Anwendung
auf nichtlineare Gebäuderegelung zeigt das Potential, welches duale Regelung für praktische Anwen-
dungen bietet. Insgesamt machen es die vorgestellten Erweiterungen möglich, approximative duale
Regelung im Kontext nichtlinearer Regressionsmodelle und flexiblen Kostenstrukturen einzusetzen.

The highest forms of understanding we can achieve
are laughter and human compassion.

— Richard P. Feynman

Acknowledgements

Even though there is only one author listed on the cover, I never was alone. I was fortunate to receive
constant support by many wonderful people during my PhD adventures.

First of all, I want to thank all the past and present colleagues at the Max Planck Institute for Intelligent
Systems for the good times, for inspiring discussions over coffee, lunch and foosball, and for the
thought-provoking caketalks and teatalks. I am grateful for having been surrounded by so many smart
people, from which I could easily learn something new every day.

Thanks to Sabrina, Andrea, Diana, Karin and Sebastian for running the department so smoothly, and
to Markus Schneller for tracking down old papers and tech reports from the pre-digital age.

My work was partly supported by the Max Planck ETH Center for Learning Systems. In addition to the
financial support, I am grateful for the many opportunities to travel to Zürich and elsewhere to connect
with the members and fellows of the CLS.

There is a big difference between a piece of research code running in the lab, and proper software
working robustly on many devices. I want to thank Raffi Enficiaud and the team of the Software
Workshop at the Max Planck Institute in Tübingen for their help in making it happen. Thanks to the
developers of PHD2 Guiding, especially Andy Galasso and Bruce Waddington, for the valuable input
and their help with including my work into the PHD2 Guiding project.

I want to thank Bernhard Schölkopf for giving me an amazing scientific home for more than four years,
for his expertise on telescope guiding, and for the star gazing sessions in Tübingen, in the Black Forest
and on La Palma. It was an amazingly quiet and productive, but at the same time exciting and inspiring
working environment.

I owe my deepest gratitude to my supervisors Philipp Hennig and Melanie Zeilinger, who invested
a lot in my PhD. To Philipp, for the long hours in front of the blackboard, for the PhD guidance
and the constant support, and for the invaluable advice, not limited to scientific matters. And to
Melanie, for teaching me so many things about control, and for always keeping a calm mind despite
the administrative obstacles. It was an honor working with you, and I hope we can continue working
together in the future.

Finally, I would like to thank Verena for her selfless support during the times where being a PhD student
was hard and exhausting, and for her love over all these years.

Edgar Klenske
Leinfelden, March 2017

it is not important to accumulate knowledge
it is important to share it

Contents

Prologue 1
0 Introduction 3

I Preliminaries 7
1 Gaussian Process Regression 9

1.1 Model and Notation 10
1.2 Inference in Gaussian Processes 10
1.3 Sampling from Gaussian Processes 12
1.4 Choosing a Covariance Function 12
1.5 Setting the Kernel Parameters 16
1.6 Numerical Effort and Approximations 19
1.7 Extensions 21

2 Discrete-Time Optimal Control 25
2.1 Linear Time-Invariant Systems 25
2.2 Optimal Control 26
2.3 Dynamic Programming 27
2.4 Model Predictive Control 32
2.5 Receding Horizon Control 35
2.6 Extensions 36

3 Adaptive Control 39
3.1 Types of Adaptive Controllers 39
3.2 Model Identification Adaptive Control 41
3.3 System Identification and Adaptive Control 42
3.4 Adaptivity and Robustness 42

II Nonparametric Disturbance Correction 45
4 Gaussian Processes for Periodic Error Correction 47

4.1 Problem Statement 48
4.2 GPs for Quasiperiodic Functions 49
4.3 GP Predictions in Model Predictive Control 54
4.4 Numerical Results 58
4.5 Conclusion 60

5 Periodic Error Correction for Telescope Tracking 61
5.1 The Telescope Problem 61
5.2 Experiments 62
5.3 Conclusion 68

6 Software Implementation: PHD2 Guiding 71
6.1 The PHD2 Guiding Framework 71
6.2 Periodic Error Correction for PHD2 Guiding 72

6.3 The Declination Axis 77
6.4 Experiments 79
6.5 Conclusion 80

III Nonlinear Dual Control 81
7 Introduction to Dual Control 83

7.1 Model and Notation 85
7.2 Approximate Dual Control for Linear Systems 90
7.3 A Simplistic Experiment 95
7.4 Conclusion 96

8 Nonlinear Dual Control 97
8.1 Extension to Nonlinear Models 97
8.2 Experiments 102
8.3 Conclusion 108

9 Dual Control for Buildings 109
9.1 Problem Statement 110
9.2 Non-Quadratic Cost and Constraints 110
9.3 Experiments 113
9.4 Conclusion 119

Epilogue 121
10 Conclusions and Outlook 123

Appendix 127
A Additional Material 129

A.1 Reference Tracking Dynamic Programming 129
A.2 Stochastic Dynamic Programming 130
A.3 Derivation of the Nonparametric EKF 132
A.4 Gradients and Hessians of Dynamics Functions 136

B Bibliography 139
P Publications 149

xiii

List of Figures

1 Centrifugal governor with steam valve. 3
2 One-dimensional Gaussian distribution. 9
3 Two-dimensional Gaussian distribution. 9
4 Gaussian process prior. 10
5 Gaussian process posterior after two noise-free observations. 11
6 Gaussian process posterior after two noisy observations. 11
7 Correlation of different points in output space. 13
8 Square exponential covariance function. 14
9 Periodic covariance function. 14
10 Gaussian process prior and posterior for an additive covariance. 15
11 Comparing different output projections from a combined covariance. 16
12 Gaussian process with high/low signal variance. 17
13 Gaussian process with long/short length scale. 17
14 Gaussian process with long/short period length. 17
15 Comparison of a finite kernel approximation to the full kernel. 22
16 Relation between physical states and planning states. 26
17 Simple routing problem. 28
18 Comparison between the control behavior of ∞-LQR and f-LQR. 31
19 Comparison between the control behavior of f-LQR and MPC. 34
20 The receding horizon principle. 35
21 Comparison between the control behavior of linear MPC and nonlinear MPC. 38
22 Schematics of one of the first adaptive controllers. 39
23 Classification of adaptive control methods. 40
24 Structure of a model identification adaptive controller. 41
25 Kernel combination, covariance function and samples. 50
26 Comparison of Gaussian process posteriors for structured extrapolation. 51
27 Slice through the likelihood surface. 53
28 Comparison of MCMC inference to MAP inference. 54
29 Closed-loop input and output trajectories with MPC control. 59
30 Star motion around the northern celestial pole. 61
31 Typical German equatorial mount. 61
32 Comparison of the RMS error at different sampling times. 63
33 Comparison of the RMS error after sensor failure. 65
34 The telescope mount used for the tracking experiments. 66
35 The gearbox of the telescope mount. 66
36 The gearless ASA DDM60 Pro telescope mount. 66
37 State measurements from the indoor tracking experiment. 68
38 Power spectra from the indoor tracking experiment. 69
39 GUI of PHD2 Guiding in version 2.5.0. 72
40 Relationship between the signal-to-noise ratio and measurement variance. 73

41 Telescope setup with main and guiding telescope. 74
42 Combining the components of the model. 75
43 Structure of the telescope controller for the RA axis. 78
44 Structure of the telescope controller for the Dec axis. 78
45 Comparison between state-of-the-art tracking and GP-based tracking. 79
46 Tracking under cloudy conditions. 80
47 Computing the T = 2 dual cost for the simple system. 90
48 Flowchart of the approximate dual control algorithm. 91
49 Comparison of sampling to three approximations. 96
50 Two-layer feed-forward neural network. 102
51 Controller comparison for time-dependent exploration. 105
52 Controller comparison for relevance-dependent exploration. 106
53 Controller comparison under fading beliefs. 107
54 Schematic overview of the building model. 113
55 Disturbance trajectories over 24 hours. 116
56 Visual overview of the control performance. 117
57 Problem instance where both heating and cooling are used. 118
58 Problem instance where only heating is necessary. 118

List of Tables

1 Experimental results from indoor telescope tracking. 67
2 Experimental results from outdoor telescope tracking. 79
3 Quantitative comparison of different controllers. 108
4 Overview of the model states, disturbances and parameters. 114
5 Numerical values of the model parameters. 114
6 Overall performance comparison. 117

List of Algorithms

1 Customized parameter optimization. 53

Prologue

0Introduction

Figure 1: Centrifugal governor with
steam valve. Image from [120].

[120] Routledge, Discoveries and Inven-
tions of the Nineteenth Century, 1900

Feedback control is one of the key enabling technologies of our
time. It is hidden in many devices and appliances without most

users even noticing. The use of feedback controllers dates back to the
ancient Greece, where they were used to control water-based clocks.
[98, §II.1] In the modern world, one of the first uses of feedback

[98] Mayr, The Origins of Feedback Control,
1970

controllers were centrifugal governors [95] (Figure 1) to control steam

[95] Maxwell, “On Governors,” 1867

engines—sparking the industrial revolution. Since then, feedback
controllers have found their way into our lives and we are using them
every day.

A typical example is electronic stability control (ESC) in modern
cars, where the steering angle is constantly measured as a proxy to the
driver’s steering intention. Also the turn rate of the car is measured
with a gyroscope. In the case of fading tire grip, the measured turn
rate deviates from the driver’s intention. This discrepancy is picked
up by the controller and then fed back as control inputs in the form of
brake signals for the individual wheels. This way the car stays safely
on the road, while without feedback control it would have departed
from the road.

While there exist simple model-free feedback methods to compen-
sate deviations from the desired value, many advanced methods re-
quire a mathematical model of the controlled system. The model
predicts the state evolution of the system and can be used to either
synthesize the feedback law or to calculate the feedback signal in each
time step. Model-based control usually requires less tuning and can
have advanced features like lookahead for reference tracking. Since
we want to make use of such features, the controllers in this thesis are
all model-based.

The classic way of doing model identification is physical modeling,
e.g., Newton’s laws can be used to deduce the mathematical equations
of motion of mechanical systems. If physical modeling is not possible,
either due to the lack of knowledge about the system, or because pre-
cise enough measurements can not be made, system identification [86] [86] Ljung, System Identification: Theory

for the User, 1999is often used to find an approximation to the dynamics.
For some applications, building a controller a priori is not viable.

The systems in question might not be known beforehand or can be
subject to changes in the dynamics. In these cases, offline system
identification can lead to bad system performance or may not be able [76] Kumar and Varaiya, Stochastic Sys-

tems: Estimation, Identification and Adap-
tive Control, 1986

to achieve the desired controller requirements. Adaptive control [76]

4 | INTRODUCTION

offers the possibility to create controllers that are able to adapt to un-
known plants, changing plant dynamics, or unknown environments.
Adaptivity means that the control system needs a way of learning
about the relevant dynamics of the plant or the environment.

Disturbance Forecasting
For many applications, controllers are built for feedback-based distur-
bance rejection, which means that the effect of outside disturbances is
kept small by using the measured tracking error. However, sometimes
feedback-based disturbance rejection is not fast enough due to high
performance demand or slow measurement processes. In such cases
it can help to incorporate a prediction of the disturbance to eliminate
parts of the error introduced by the disturbance in advance.

General time-series forecasting is a challenging topic, but it gets
more manageable if the disturbance in question is of periodic nature—
for example when the origin of the disturbance is tied to the day-night-
cycle or periodic motions. In such cases, the use of periodic models to
predict the disturbances can considerably increase predictive perfor-
mance and, thus, make the use of disturbance forecasting much more
available.

Active Identification
Most adaptive control methods only learn in a passive manner. The
available information is used, but it is not attempted to invest control
energy for exploration or identification. In episodic settings, where
the control system executes the same task multiple times, this is often
sufficient. However, for non-episodic problems—the control of a sin-
gle trial—active exploration is an important aspect. When a system
never runs twice under the same conditions, it is crucial not only to use
the available information in the best possible way, but also to actuate
the system such that the relevant information is generated. This si-
multaneous identification and control is the realm of dual control [148]. [148] Wittenmark, “Adaptive Dual Con-

trol Methods: An Overview,” 1995The key to differentiate between these methods is the time at which
the information is acquired. In system identification, the data is col-
lected upfront, before the controller is used on the plant. This also
means that the controller is not updated online. An adaptive controller
is learning “on-the-fly”, while the system is running. It collects data
and updates the internal model regularly. A dual control system goes
one step further and uses reasoning about the learning process itself
to find the optimal actions. This means that a dual controller incor-
porates the predicted future information acquisition into the decision
process.

INTRODUCTION | 5

Outline
Part I introduces the relevant mathematical background. Gaussian
process regression (Chapter 1) is used to model system dynamics
and external error sources. Model predictive control (Chapter 2) is a
well-suited control framework for incorporating predictions into the
control system. We also give an overview on the field of adaptive
control (Chapter 3).

Part II shows how quasiperiodic Gaussian process models can
be used to enhance control performance. The general concept of
quasiperiodic disturbance forecasting in combination with reference
tracking model predictive control is introduced (Chapter 4) and subse-
quently applied to an experimental problem in astronomical imaging:
the periodic error correction in telescope guiding (Chapter 5). Based
on this work, we developed software to use the periodic error correc-
tion feature in an open source telescope guiding system (Chapter 6).

Part III is concerned with the concept and application of dual con-
trol to nonlinear systems. We first give a general overview of the dual
control literature and a classic algorithm (Chapter 7) which is then
extended to modern nonlinear regression techniques (Chapter 8). We
further extend this nonlinear framework to constrained systems with
linear cost structure and show a potential application to building con-
trol (Chapter 9).

Chapter 10 gives a concise summary of the work presented in this
thesis and concludes with an outlook on future research directions.

Publications
Parts of the work in this thesis were done in collaboration with col-
leagues and are based on the following publications:

Chapters 4 and 5 are based on the following journal publication:

E. D. Klenske, M. N. Zeilinger, B. Schölkopf, and P. Hennig.
“Gaussian Process-Based Predictive Control for Periodic Error
Correction.” In: IEEE Transactions on Control Systems Technology
24.1 (2016), pp. 110–121. doi: 10.1109/TCST.2015.2420629

A conference version was published in:

E. D. Klenske, M. N. Zeilinger, B. Schölkopf, and P. Hennig.
“Nonparametric Dynamics Estimation for Time Periodic Sys-
tems.” In: Annual Allerton Conference on Communication, Control,
and Computing. 2013, pp. 486–493. doi: 10.1109/Allerton.
2013.6736564

http://dx.doi.org/10.1109/TCST.2015.2420629
http://dx.doi.org/10.1109/Allerton.2013.6736564
http://dx.doi.org/10.1109/Allerton.2013.6736564

6 | INTRODUCTION

Chapters 7 and 8, as well as Section 1.6.2, are based on the following
journal publication:

E. D. Klenske and P. Hennig. “Dual Control for Approximate
Bayesian Reinforcement Learning.” In: Journal of Machine Learn-
ing Research 17.127 (2016). Ed. by M. Opper, pp. 1–30. url: http:
//jmlr.org/papers/v17/15-162.html

Chapter 9 is based on the following conference publication:

E. D. Klenske, P. Hennig, B. Schölkopf, and M. N. Zeilinger.
“Approximate Dual Control Maintaining the Value of Informa-
tion with an Application to Building Control.” In: European
Control Conference (ECC). 2016, pp. 800–806. doi: 10.1109/ECC.
2016.7810387

http://jmlr.org/papers/v17/15-162.html
http://jmlr.org/papers/v17/15-162.html
http://dx.doi.org/10.1109/ECC.2016.7810387
http://dx.doi.org/10.1109/ECC.2016.7810387

Part I

Preliminaries

1Gaussian Process Regression

Regression is the task of learning a functional relationship between
input and output variables from potentially noisy observations.

Regression problems are an important part of learning methods in
control theory and applications. For example, regression can be used
to infer state transition functions of dynamical systems from noisy
measurements of the states. These learned dynamics can then be
used to synthesize controllers or to predict the state evolution.

Classically in system modeling and automatic control, parametric
models are used to describe the equations of motion derived from first
principles1. The parameters in such models are the physical properties 1 For example, in mechanical systems

the first principles are Newton’s equa-
tions of motion.that can be measured: mass, length, etc. If possible, this is the ideal

case, but often it is difficult to describe all relevant effects a priori.
Since many systems are complex, it is challenging to come up with
perfect parametric models for them and, thus, more flexible models
that can infer unforeseen functional relationships can offer substantial
benefits.

Figure 2: One-dimensional Gaussian
distribution (). The mean ()
and the bands of one () and two
standard deviations () are high-
lighted.

When using flexible models, the problem of overfitting quickly
arises, where even non-effects like noise are fitted, leading to poor
generalization. One way to mitigate overfitting is to use a probabilistic
prior on the function space. Adding a prior effectively regularizes the
regression problem and brings about a global solution. A Gaussian
prior on the function space is called a Gaussian process (GP).

A Gaussian Distribution over Functions

The well-known one-dimensional Gaussian (or normal) distribution is
shown in Figure 2. The Gaussian distribution is defined by two param-
eters: the mean, which defines the average value, and the variance,
which defines the breadth of the distribution.

Figure 3: Two-dimensional Gaussian
distribution. The mean () and the area
of one () and two standard devia-
tions () are shown.

The Gaussian distribution easily extends to the multivariate case,
where we now have a mean vector and a covariance matrix defining the
distribution. The role of the mean remains the same, but since we now
have multiple variables, we not only have to define the breadth of the
distribution, but also the coupling between variables, the correlation.
Breadth and shape of the distribution are defined by the covariance
matrix, where the off-diagonal terms define the coupling between
variables. Figure 3 shows a two-dimensional Gaussian distribution.

Analogously to the extension to multiple dimensions, we can ex-
tend this notion to entire functions. Instead of a mean vector we now

10 | GAUSSIAN PROCESS REGRESSION

have a mean function and instead of a covariance matrix we have a
covariance function that defines the correlation between function val-
ues at different inputs. The extension of the Gaussian distribution to
functions is called Gaussian process, an example is shown in Figure 4.

Figure 4: Gaussian process prior. Shown
are the mean (), two standard devi-
ations () and three samples ().

1.1 Model and Notation
A regression task is to infer a function f (x) from measurements y at
locations x. Usually the measurements are corrupted by Gaussian
noise:

y = f (x) + γ, γ ∼ N (0, σ2), (1.1)

where N is a Gaussian (normal) distribution.
For notational simplicity, this chapter only covers the scalar case

of Gaussian processes. In the case of a vector-valued function f ,
one GP is trained for every dimension. For our purposes, a Gaus-
sian process GP(f ; m, k) is an infinite-dimensional probability dis-
tribution over the space of real-valued functions f : R _ R, such
that every finite, N-dimensional linear restriction to function values
f (x) ∈ RN (measurements) at locations x ∈ RN (measurement loca-
tions) is an N-variate Gaussian distribution N (f (x); m(x), k(x, x)). It
is parametrized by a mean function m(x) : RN _ RN , and a covari-
ance function k(x, x) : RN × RN _ RN×N . The mean has a relatively
straightforward role; it simply shifts predictions. The covariance func-
tion’s responsibility is more intricate. It can be interpreted as a simi-
larity measure over function values, expressed in terms of the inputs,
and controls the shape of the Gaussian process belief in the space of
functions. It has to be chosen such that, for any x ∈ RN , the matrix
k(x, x) ∈ RN×N , also known as the kernel matrix, is positive semidefi-
nite.

As common in the Gaussian process literature, without loss of
generality, we assume the mean function m to be zero to simplify
notation. Note that this does not imply that only zero-mean Gaussian
processes should be considered for practical applications. Rather, the
choice of mean function should be part of the modeling considerations.

1.2 Inference in Gaussian Processes
The main inference machinery in the GP regression framework is
Bayes’ rule

posterior = likelihood × prior
evidence , p(M|D) =

p(D|M)× p(M)

p(D)

INFERENCE IN GAUSSIAN PROCESSES | 11

where p is a probability density function, D stands for the data and M
for the model. When the prior is a Gaussian process and the likelihood
is Gaussian, the posterior is again a Gaussian process. The mean and
covariance function of the posterior can be calculated in closed form
with linear algebra calculations.

Even if the Gaussian process GP(f ; m, k) is an infinite-dimensional
object with mean function m and covariance function k, we can reason
about any finite amount of data points x = [x1, . . . , xN] and prediction
point x by evaluating the mean and covariance function at those loca-
tions only. This amounts to the application of the marginalization rule
of Gaussian algebra [21, §2.3] and results in a multivariate Gaussian [21] Bishop, Pattern Recognition and Ma-

chine Learning, 2006distribution. Stacking the predictive value y and the vector of noise-
free function evaluations y = [y1; . . . ; yN] into one vector results in the
following joint distribution⎡⎣y

y

⎤⎦ ∼ N
⎛⎝⎡⎣0

0

⎤⎦ ,

⎡⎣kxx kxx

kxx kxx

⎤⎦⎞⎠ , (1.2)

where we have introduced the shorthand notation k·· = k(·, ·).

Figure 5: Gaussian process posterior af-
ter two noise-free observations. Shown
are the mean (), two standard devi-
ations () and three samples ().

Since we have measured y, but not y, we apply the conditioning
rule [21, §2.3] of Gaussian algebra to obtain

y ∼ N
(

kxxK−1y, kxx − kxxK−1kxx

)
, (1.3)

where K = k(x, x). The matrix K is called the Gram matrix (or kernel
matrix). We can write the predictive mean and predictive covariance
explicitly as

m|x,y(x) = kxxK−1y (1.4a)

k|x(x, x′) = kxx′ − kxxK−1kxx′ , (1.4b)

which can easily be implemented.2 Figure 5 shows an example of a

2 Note that, while the formulation (1.4)
is mathematically concise, the Cholesky
decomposition [115] of the Gram matrix
is usually used to carry out the calcula-
tions for increased speed and numerical
stability.

[115] Rasmussen and Williams, Gaussian
Processes for Machine Learning, 2006

GP posterior with noise-free observations. After conditioning on the
measurements, the function space is restricted to functions that pass
through them.

So far, we only considered noise-free observations. Adding inde-
pendent and identically distributed Gaussian observation noise to the
GP framework is done simply by adding measurement noise to the
Gram matrix K:

Knoisy = k(x, x) + σ2 I (1.5)

The inference under noisy measurements results in a similar posterior,
with the difference that the posterior mean is closer to the prior, and
the pointwise posterior distribution is not as narrow as in the noise-
free case. Figure 6 shows an example of GP inference under noise.

Figure 6: Gaussian process posterior af-
ter two noisy observations. Shown are
the mean (), two standard devia-
tions () and three samples ().

12 | GAUSSIAN PROCESS REGRESSION

1.3 Sampling fromGaussian Processes
Gaussian processes are generative models. This means that it is possi-
ble to draw samples from the prior or posterior distribution, similar to
drawing from a Gaussian distribution. This is of two-fold importance:

First, methods that use the GP model might need samples for nu-
merical marginalization, when analytic integration is intractable. In-
stead of calculating an expectation directly, a sum over samples can
serve as approximation

E f [c(f)] =
∫

c(f)GP(f ; m, k)d f ≈ 1
S

S

∑
i=1

c(si), (1.6)

where c(f) is a functional operator and si are the samples from the
GP.

Secondly, samples are a great tool for analyzing the function space
defined by the GP. It is important to note that the mean of a GP
looks fundamentally different from samples from the same process,
see Figures 4 and 5. This is due to the smoothing property of the mean
[115, § 2.6]. For choosing the covariance function and its parameters3 [115] Rasmussen and Williams, Gaussian

Processes for Machine Learning, 2006

3 See Sections 1.4 and 1.5.

it is, thus, helpful to compare samples of the selected GP with real
data to see if they look similar. This can help in the analysis of how
the chosen model fits the data.

For finite-dimensional datasets, where the samples s are vectors of
function evaluations at locations x, the sampling process is relatively
straightforward, since it is equivalent to sampling from a multivariate
Gaussian distribution with the covariance of the GP:

s = Lρ, (1.7)

where L is a matrix satisfying LL⊺ = k(x, x) and ρ is a random Gaus-
sian vector of appropriate size. k can be any suitable positive semidef-
inite covariance function, especially also the posterior covariance of a
GP.

1.4 Choosing a Covariance Function
The covariance function defines how samples and predictions of the
Gaussian process look like, by shaping the underlying probability
distribution in the function space. So far, we considered the covariance
function as given. But where does it come from, and how should it be
chosen?

There is an alternate way of deriving Gaussian processes, usually
called the “weight-space view” [115, § 2.1]. We will not reproduce the [115] Rasmussen and Williams, Gaussian

Processes for Machine Learning, 2006entire derivation here, but instead point out certain aspects.

CHOOSING A COVARIANCE FUNCTION | 13

Consider general linear regression

f (x) = w⊺Φ(x), (1.8)

where w are weights and Φ(x) is a vector of potentially nonlinear
feature functions. The shape of the functions that can be represented
by this model is defined by the shape of the chosen feature functions.

The notion of general linear regression can be expressed in the
GP framework and can be extended to the nonparametric case with
infinitely many features.4 We then obtain a covariance function (or 4 This is usually done by reformulating,

and application of the famous “kernel
trick” [125, §2.2].

[125] Schölkopf and Smola, Learning with
Kernels: Support Vector Machines, Regular-
ization, Optimization, and Beyond, 2002

kernel) that is defined by the feature functions that we have chosen in
the first place. This means that, by the choice of covariance function,
we can choose the shape of the functions that can be represented by
the Gaussian process.

Theoretically, every positive semidefinite kernel can be used as co-
variance function for a Gaussian process. However, for this thesis, we
only consider stationary covariance functions, for which the covari-
ance depends on the distance r = |x − x′| of the inputs and not on the
location itself.

1.4.1 Output Correlation
The covariance function of a Gaussian process defines a mapping from
the distance r in input space to correlation in output space. For radial
basis functions, for example, this means that the function values of
two points that are close in input space are correlated to a higher
degree than the function values of points that are far away in input
space. Figure 7 visualizes this.

Figure 7: Correlation of different points
in output space for a radial basis func-
tion. Top: GP with mean (), two
standard deviations () and three
samples (). Middle: Correlation
function () for the reference lo-
cation () and evaluation locations
(). Bottom: Two-dimensional Gaus-
sian distributions between the reference
location and the different evaluation lo-
cations, shown as areas for 1 and 2 stan-
dard deviations (/).

14 | GAUSSIAN PROCESS REGRESSION

This correlation between function values is responsible for the over-
all shape of samples of the GP. If points that are relatively close in
input space have a high correlation, this means that there is not much
variability in the sampled functions, and the inputs have to move
further away to allow for significant changes in the function values.
If the correlation between nearby points is low, this allows for high
variability within shorter distance: The functions are more flexible.

1.4.2 Examples of Covariance Functions
There are many different covariance functions to choose from. In this
section we only provide those which are relevant for this thesis.

Square Exponential Covariance Function

Figure 8: Square exponential covariance
function.

One important covariance function is the square exponential5

5 Also known as “squared exponential”,
“exponentiated quadratic”, “radial basis
function” (RBF) or “Gaussian” covari-
ance function.

kse(x, x′; θ, ℓ) = θ2 exp
(
−|x − x′|2

2ℓ2

)
, (1.9)

where θ2 is the signal variance and ℓ the length scale parameter. Using
this covariance function is equivalent to infinite-dimensional Gaussian
feature regression. It is differentiable and integrable and therefore
compatible to many use-cases. The shape of the square exponential
covariance function is shown in Figure 8.

Periodic Covariance Function

Figure 9: Periodic covariance function.

Much more specific is the periodic covariance function [92]

[92] MacKay, “Introduction to Gaussian
Processes,” 1998

kp(x, x′; θ, ℓ, λ) = θ2 exp

(
−2 sin2 (π

λ (x − x′)
)

ℓ2

)
, (1.10)

where θ2 and ℓ are similar parameters as above, and λ is the period
length. This periodic covariance is essentially a square exponential
covariance where the inputs are warped through a sine. A GP with
this covariance function can only represent periodic functions with a
specified period length λ. This might seem restrictive, but it can be
valuable because it is much more data efficient than other covariances
and has better extrapolation performance because stronger assump-
tions on the underlying function space are made. The shape of the
periodic covariance function is shown in Figure 9.

1.4.3 Combined Covariance Functions
In practice, the functions we want to learn are often mixtures of dif-
ferent signals and it is hard to find a covariance function that suits all

CHOOSING A COVARIANCE FUNCTION | 15

of them simultaneously. Instead of trying to fit all components with a
single covariance function, which usually leads to poor data efficiency
and/or predictive performance, the Gaussian process framework is
flexible enough to allow for combinations of covariance functions.

In practice, combined covariance functions are obtained by element-
wise addition or multiplication of the kernel matrices:

kc(x, x) = k1(x, x) + k2(x, x) (1.11)

or

kc(x, x) = k1(x, x)⊙ k2(x, x), (1.12)

where kc stands for the kernel combination and k1, k2 are the individ-
ual kernels. The meaning of the additive kernel is relatively simple:
It adds two different functions on top of each other. [115, §4.2] One [115] Rasmussen and Williams, Gaussian

Processes for Machine Learning, 2006example for a GP with additive covariance structure is shown in Fig-
ure 10.

Figure 10: Gaussian process prior (left)
and posterior (right) for an additive co-
variance. The covariance function is
combined from a square exponential
and a periodic covariance. Shown are
the mean (), two standard devia-
tions () and one sample () each.

The effect of multiplying kernels is more intricate. While it can
be shown that element-wise multiplications still retain the positive-
definiteness of the resulting matrices [126], it is harder to grasp what [126] Schur, “Bemerkungen zur Theo-

rie der Beschränkten Bilinearformen mit
Unendlich Vielen Veränderlichen,” 1911

this means for the function. In a way, the multiplication acts similarly
to a logical and, so that there is a high correlation between points that
have a high correlation under both covariance functions.

Output Projections

When inference is done with a covariance combination, it is also pos-
sible to split the prediction to the different parts for additional inter-
pretation possibilities or for the subsequent use in other algorithms.
This is done with the Gaussian algebra of Equations (1.2) and (1.3) by
conditioning the prediction on the kernels that we are interested in.

16 | GAUSSIAN PROCESS REGRESSION

If, for example, the prediction should be done only for kernel 1, the
resulting predictive posterior amounts to [40] [40] Duvenaud, “Automatic Model Con-

struction with Gaussian Processes,”
2014m|x,y

1 (x) = k1(x, x)K−1
c y (1.13a)

k|x1 (x, x′) = k1(x, x′)− k1(x, x)K−1
c k1(x, x′). (1.13b)

where Kc is the Gram matrix for a combined kernel and k1 is the kernel
function for only one of the kernels. The effect of this conditioning of
the posterior is shown in Figure 11, using the same kernel combination
as in Figure 10.

Figure 11: Comparing different out-
put projections from a combined co-
variance. The Gaussian conditioning
shows the periodic component (left)
and the square exponential component
(right) respectively. Shown are the
mean (/), two standard de-
viations (/) and one sample
(/) each.

1.5 Setting the Kernel Parameters
Most covariance functions have parameters, like the signal variance θ2

or the length scale ℓ in Equation (1.9). These parameters are usually
called hyperparameters. The reason for this name is the idea of a Gaus-
sian process being an infinite-dimensional linear regression model:
In linear regression, the weights for the different features are called
parameters, and the Gaussian process has infinitely many of these pa-
rameters.6 To distinguish the parameters of the covariance function 6 These methods are also referred to as

nonparametric in the literature, to stress
the fact that there is no finite amount of
features to select.

from the linear regression parameters, they are called hyperparameters.

1.5.1 The Role of the Hyperparameters
Even though covariance functions like the square exponential are uni-
versal kernels that can theoretically learn any function [101], it is im- [101] Micchelli, Xu, and Zhang, “Univer-

sal Kernels,” 2006portant to set the hyperparameters correctly. Otherwise the learning
can be inefficient and might need much more data than a GP with a
suitable set of hyperparameters. [144] [144] van der Vaart and van Zanten, “In-

formation Rates of Nonparametric Gaus-
sian Process Methods,” 2011

Output Variance

The scale factor (θ2 in Equation (1.9)) of the covariance function defines
the output variance of the GP, i. e. the range over which functions
typically vary in value. The effect of this parameter is visualized in
Figure 12.

SETTING THE KERNEL PARAMETERS | 17

Figure 12: Gaussian process with high
signal variance (left) compared to one
with low signal variance (right), using a
square exponential kernel. Shown are
the mean (), two standard devia-
tions () and three samples ()
each. The higher signal variance allows
for larger function values.

Length Scale

Most covariance functions have a length scale parameter (ℓ in Equa-
tion (1.9)). Often, changing the length scale parameter is equivalent
to a scaling of the input distance. This parameter defines how much
the function values can vary relative to the input distance. The effect
of this parameter is visualized in Figure 13.

Figure 13: Gaussian process with long
length scale (left) compared to one with
short length scale (right), using a square
exponential kernel. Shown are the mean
(), two standard deviations ()
and three samples () each. The
shorter length scale allows for more vari-
ation within the same distance in input
space.

Period Length

The periodic covariance has a period length parameter (λ in Equa-
tion (1.10)). This parameter defines the distance in input space after
which the function repeats itself. The effect of this parameter is visu-
alized in Figure 14.

Figure 14: Gaussian process with long
period length (left) compared to one
with short period length (right), us-
ing a periodic kernel. Shown are the
mean (), two standard deviations
() and one sample () each. The
sampled functions are perfectly periodic
with the chosen period length.

18 | GAUSSIAN PROCESS REGRESSION

1.5.2 The Hyperparameter Likelihood
For many applications it can be enough to choose the hyperparameters
from physical reasoning, but this is not always the case. Especially
for automatic parameter tuning it is important to assess how good the
parameters fit the data.

Assume that all kernel parameters are subsumed in the parameter
vector η. Inferring good values for η is important for good model-
ing performance. The fundamental framework for GP inference is
provided by Bayes’ theorem. The likelihood for observations y at lo-
cations x, conditioned on the parameters η, can be found by marginal-
ization over the unknown function f , which is feasible because both
p(y| f) and p(f |η) are Gaussian distributions:

p(y|x, η) =
∫

p(y| f)p(f |η)d f (1.14)

=
∫

N (y; f (x), σ2 I)GP(f ; 0, k(η))d f

= N (y; 0, K(η)).

These calculations are easier to perform in log domain, where the
logarithm of the marginal likelihood is given by

log p(y|x, η) = −1
2

y⊺K(η)−1y − 1
2

log |K(η)| − N
2

log 2π. (1.15)

With this likelihood, it is easy to compare the model fit for different
sets of hyperparameters.

1.5.3 Hyperparameter Optimization
One way of setting the hyperparameters is to maximize the marginal
likelihood (1.15),

η∗ = arg max
η

p(y|x, η). (1.16)

This is usually done with a gradient-based optimizer; often quasi-
Newton methods, such as the BFGS algorithm [103, §6.1], are used. [103] Nocedal and Wright, Numerical Op-

timization, 2006Since the optimization leads to the maximum likelihood (ML) solution
for the hyperparameters, it is usually called type-II maximum likelihood7, 7 The maximum likelihood approach is

also known as evidence maximization in
the literature.to distinguish it from the GP inference itself. [115, §5.4.1] In a way,

[115] Rasmussen and Williams, Gaussian
Processes for Machine Learning, 2006

hyperparameter optimization can be seen as a second layer of inference
on top of the Gaussian process.

Using the ML estimate is one of the most widely studied and best
understood strategies in statistics. [147, §9.3 – §9.6] It is not without [147] Wasserman, All of Statistics: A Con-

cise Course in Statistical Inference, 2010weaknesses, e. g., the optimization is prone to get stuck in local min-
ima. Some of these weaknesses are often resolved if enough data is

NUMERICAL EFFORT AND APPROXIMATIONS | 19

available, or by the use of customized optimization algorithms. Other
approaches, for example, integrating the hyperparameters over ML
estimates or cross validation, have been examined in the past and
found to perform worse than the above type-II maximum likelihood
approach in practice, see, e. g., [91]. [91] MacKay, “Comparison of Approx-

imate Methods for Handling Hyperpa-
rameters,” 1999

1.5.4 Priors on the Hyperparameters
In order to make the method more robust, it can be beneficial to intro-
duce priors on the parameters. For the strictly positive parameters η,
gamma priors [13, §8.3] are a classic choice: [13] Barber, Bayesian Reasoning and Ma-

chine Learning, 2011

p(η|κ, τ) = ∏
i

η
κi−1
i exp(− ηi

τi
)

Γ(κi)τ
κi
i

, (1.17)

where κi and τi are tuning-parameters8, and Γ is the gamma function. 8 Sometimes also referred to as hyper-
hyperparameters.Again, the maximization is easier to perform in log domain, in

which the effect of the prior is additive, leading to the following opti-
mization problem:

η∗ = arg max
η

p(η|y, x) = arg max
η

p(y|x, η)p(η)

= arg max
η

(log p(y|x, η) + log p(η)). (1.18)

In (1.18), the prior effectively turns into a regularizer, simplifying
optimization and avoiding degeneracy. The additional computational
cost is negligible compared to the matrix inversion needed for (1.15).

1.6 Numerical Effort and Approximations
Gaussian processes are generally considered to be a relatively expen-
sive method. This is due to the matrix inversion and determinant
calculation in Equation (1.3) which both have (naïve9) asymptotic com- 9 Sometimes, lower complexity num-

bers are reported for using the Strassen
algorithm [136] and further improve-
ments, but they are rarely implemented
in practice.

[136] Strassen, “Gaussian Elimination is
Not Optimal,” 1969

plexity of O(N3) in the number of samples N. For large amounts of
training data, this can be prohibitive.

In the light of using GPs for applications in automatic control, there
is another point to consider: It is rarely, if ever, acceptable to have
growing inference cost over time. Control algorithms should run
reliably fast and therefore have almost constant runtime for both the
inference and the control part.

There are many different ways of dealing with the numerical com-
plexity of Gaussian processes, see Chapter 8 of the textbook by Ras-
mussen and Williams [115] for an overview. In the following, we [115] Rasmussen and Williams, Gaussian

Processes for Machine Learning, 2006review two methods that will be used in subsequent chapters of this
work.

20 | GAUSSIAN PROCESS REGRESSION

1.6.1 Subset-of-Data Approximation
One of the simplest and most efficient approximation methods is the
Subset-of-Data (SD10) method. The idea is to reduce the number N of 10 In the literature also abbreviated as

“SoD”.available data points by considering only a smaller subset of M data
points with M ≪ N. Since M can be chosen in advance, the runtime
of the algorithm is known and remains constant.

Changing the set of data points does not change the inference algo-
rithm at all; therefore, this method can be implemented quickly and
efficiently. Of course, the considered data points need to be chosen
at runtime. Ideally the selection should be done according to how
informative a data point is, but this optimization can be demanding,
too. Hence, usually approximative methods are used. For example,
depending on the expected distribution of data points in the dataset,
the used data can be randomly sampled or selected by optimization
of some criterion, e. g., a differential entropy score [81]. [81] Lawrence, Seeger, and Herbrich,

“Fast Sparse Gaussian Process Methods:
The Informative Vector Machine,” 2003

1.6.2 Sparse Spectrum Approximation
By Mercer’s theorem [73, §3.a], the kernel can be decomposed into a [73] König, Eigenvalue Distribution of

Compact Operators, 1986converging series over eigenfunctions ϕ(x), as

k(x, x′) =
∞

∑
l=1

λlϕl(x)ϕ∗
l (x′), (1.19)

where ϕl are functions that are orthonormal relative to some measure
µ (the precise choice of which is irrelevant for the time being), with
the property∫

k(x, x′)ϕl(x′)dµ(x′) = λlϕl(x). (1.20)

In this sense, Gaussian process regression can be seen as “infinite-
dimensional” Bayesian linear regression, where the infinite inner prod-
uct (1.19) is tractable because of the kernel trick [125, §2.2]. [125] Schölkopf and Smola, Learning with

Kernels: Support Vector Machines, Regular-
ization, Optimization, and Beyond, 2002

Using the kernel formulation comes at the cost of a growing Gram
matrix and, thus, rising inference cost, and is rarely acceptable for
practical control applications. Therefore, it is often necessary to project
the GP belief onto a finite representation, replacing the infinite sum
in Equation (1.19) with a finite inner product of a low-dimensional
explicit feature map Φ(x)

k(x, x′) ≈ Φ(x)⊺ΛΦ(x′), (1.21)

EXTENSIONS | 21

where Λ is a diagonal eigenvalue matrix. This bounds the computa-
tional cost of the inference (1.4), because the more efficient formulae
of general linear regression can be used

m|x,y(x) =
1
σ2 Φ(x)⊺A−1Φ(x)y (1.22a)

k|x(x, x′) = Φ(x)⊺A−1Φ(x), (1.22b)

where A = σ−2Φ(x)Φ(x)⊺ + Λ−1.
We define the feature map Φ that projects the inputs onto a pre-

defined finite basis of functions, drawn from the eigenspectrum of
the kernel with respect to the Lebesgue measure. Similar approaches
have been recently proposed in the literature [82], [113]. The following [82] Lázaro-Gredilla et al., “Sparse Spec-

trum Gaussian Process Regression,”
2010

[113] Rahimi and Recht, “Random Fea-
tures for Large-Scale Kernel Machines,”
2008

provides a short, self-contained introduction:
By Bochner’s theorem [133, §2.5], the covariance function k(r) (with

[133] Stein, Interpolation of Spatial Data:
Some Theory for Kriging, 1999

r = |x − x′|) of a stationary mean-square continuous random process
can be represented as the Fourier transform of a positive finite measure
and, if that measure has a density S(s), as the Fourier dual of S:

k(r) =
∞∫

−∞

S(s)e2πısrds, (1.23)

where ı is the imaginary unit. This means that the eigenfunctions
of the kernel are trigonometric functions, and stationary covariance
functions, like the commonly used square exponential kernel (1.9), can
be approximated by cosine basis functions as

k(x, x′) ≈ k̃(x, x′) =
θ2

F

F

∑
i=1

cos(ωi|x − x′|), (1.24)

where F is the number of features, and the frequencies ωi of the
feature functions can be sampled from the power spectrum of the
process.11 An example of such kernel approximation is shown in 11 For example, the Latin hypercube

sampling technique [99] can be used.

[99] McKay, Beckman, and Conover, “A
Comparison of Three Methods for Select-
ing Values of Input Variables in the Anal-
ysis of Output from a Computer Code,”
1979

Figure 15. With increasing number of features, the approximation can
be chosen as close to the true covariance function as needed, while
keeping the number of features in a range that is still feasible within
the time constraints of the control algorithm.

1.7 Extensions
The Gaussian process framework is powerful and has many useful
features and extensions. Two further concepts are important for this
thesis and will thus be presented here.

22 | GAUSSIAN PROCESS REGRESSION

fu
ll

ke
rn

el
prior posterior kernel

ke
rn

el
ap

px
im

at
io

n

Figure 15: Comparison of a finite ker-
nel approximation to the full kernel.
Prior (left), posterior (middle) and ker-
nel function (right) of both the full ker-
nel function (top row) and the approx-
imate kernel (bottom row). Shown are
the mean (/), two standard de-
viations (/) and three samples
each (/)

1.7.1 Heteroscedastic Noise
Usually noise is assumed uniform for all measurements (homoscedas-
tic), but this may not be satisfied in practice. Not all measurement pro-
cesses have constant noise level, therefore it can be useful to consider
heteroscedastic noise instead, allowing for variable noise variance.

The additive noise matrix in Equation (1.5) can also be given in the
form of a diagonal matrix

Knoisy = k(x, x) +

⎛⎜⎜⎜⎝
σ2

1
. . .

σ2
N

⎞⎟⎟⎟⎠ , (1.25)

where σ2
i for i = {1 . . . N} is the noise variance for the i-th measure-

ment. This way a sensor or measurement method with variable noise
level can be modeled accurately within the Gaussian process frame-
work.

1.7.2 Explicit Feature Functions
Since Gaussian processes are related to general linear regression, it is
possible to combine both methods. This is useful if certain parts of a
regression problem can be modeled as parametric features and other
parts can not. Even though a GP can potentially learn everything, it

EXTENSIONS | 23

is much more efficient to model as much as possible in the form of
parametric features and train a more general GP for the remainder
only.

An additive combination of general linear regression and Gaussian
process can be modeled as

g(x) = β⊺ψ(x) + f (x), (1.26)

where β ∼ N (b, B) is a parameter vector, ψ is a set of parametric
feature functions and f (x) ∼ GP(0, k f).

A numerically stable way of formulating the predictive mean and
covariance is [115, §2.7] [115] Rasmussen and Williams, Gaussian

Processes for Machine Learning, 2006

m|x,y
g (x) = m|x,y

f (x) + β̄⊺R(x) (1.27a)

k|xg (x, x′) = k|xf (x, x′) + R(x)⊺
(

B−1 + ΨK−1Ψ⊺
)−1

R(x′), (1.27b)

where the feature matrix Ψ collects the feature vectors ψ(x) for all
data points, β̄ = (B−1 + ΨK−1Ψ⊺)−1(ΨK−1y + B−1b), and R(x) =

ψ(x) − ΨK−1k f (x, x). These calculations represent the inference in
the joint model, combining general linear regression with a Gaussian
process. If the prior on the parametric part of the model should be
uninformative, one can obtain the limit case by letting B−1 _ 0, which
is possible in the formulation of Equation (1.27).

2Discrete-TimeOptimal Control

Model-based optimal control is successfully used in many control
systems and poses a prerequisite for this thesis. Since the topic

is rather broad, we only cover the topics relevant for this thesis.
We briefly introduce linear time-invariant (LTI) systems and the con-

cepts of stability and controllability (Section 2.1). For LTI systems, we
describe different types of model-based optimal controllers: Dynamic
programming based optimal control (Section 2.3) and model predic-
tive control by constrained optimization (Section 2.4). We introduce
the concept of receding horizon control (Section 2.5) and describe some
important extensions of discrete-time optimal control (Section 2.6).

2.1 Linear Time-Invariant Systems
Linear time-invariant (LTI) systems are often used in model-based
control due to their advantageous computational properties. Even
though most systems are not linear, often a linear approximation to
a nonlinear system offers good performance in the vicinity of the
operating point. [105, §2.7] [105] Ogata, Modern Control Engineering,

2010For this chapter, we use the common discrete-time LTI system

x(tk+1) = Ax(tk) + Bu(tk), k ∈ N, (2.1)

where tk ∈ R denotes the k-th time instant relative to the sampling
time ∆t, x ∈ Rnx is the state, A ∈ Rnx×nx is the discrete-time state-
transition matrix and B ∈ Rnx×nu is the discrete-time input matrix.

Starting from a continuous model

ẋ(t) = Acx(t) + Bcu(t), (2.2)

with Ac and Bc of appropriate size, the discrete-time model can be
obtained by exact discretization [46, §3.2]. Throughout this thesis, we [46] Friedland, Control System Design: An

Introduction to State-space Methods, 2005consider discrete-time systems, if not stated otherwise.

2.1.1 Stability and Controllability
Informally, stability for linear systems can be viewed as the property
of keeping the system in a bounded domain. For system (2.1) and
u(t) ≡ 0, the state evolution starting from state x(0) amounts to Akx(0)
after k time steps. This state evolution only is bounded for k _ ∞ if

26 | DISCRETE-TIME OPTIMAL CONTROL

the absolute values of all eigenvalues λ of the dynamics matrix A are
smaller than 1.

[104] Ogata, Discrete-time Control Systems,
1995Definition 2.1 ([104, §4.3])

A discrete-time autonomous linear system is stable, if the eigenvalues λ of the
state transition matrix A lie inside of the unit circle.

While the stability property describes whether the system states
experience infinite growth, controllability describes whether the system
can be moved from any bounded starting point to any bounded target
point in the state space with a finite number of control actions.

[104] Ogata, Discrete-time Control Systems,
1995Definition 2.2 ([104, §6.2])

A discrete-time linear system is controllable, if the controllability matrix
C = [B, AB, A2B, . . . , AT−1B] has full rank.

2.2 Optimal Control
While the definition of optimal control in the literature is intricate, this
thesis focuses on a class of optimal controllers that are optimization-
based. Depending on a chosen cost function, the goal of optimal
control is to find the control inputs that minimize a cost criterion, e.g.,

J(x(tk), u) = lT(xT) +
T−1

∑
i=0

li(xi, ui), x0 = x(tk), (2.3)

where li is the stage cost, lT is the terminal cost, u = [u0, . . . , uT−1]

is the input trajectory, and i = 0 . . . T is the time index along the
horizon. The corresponding states x1, . . . , xT are defined according to
the discrete-time dynamics xi+1 = Axi + Bui, given the initial state
x0.

Note the difference between the planning states in subset notation xi

and the physical states in parenthesis notation x(tk), which is depicted
in Figure 16. The first planning state x0 is identical to the current
physical state x(tk).

x(tk)· · ·x(t0)

x0 x1 · · · xi · · · xT

future
past

physical states

planned states

Figure 16: Relation between physical
states (denoted by x(tk)) and planning
states of the algorithm (denoted by xi).

DYNAMIC PROGRAMMING | 27

Depending on the problem at hand, different cost functions can be
chosen for l. Usually quadratic cost is used for states and inputs in
tracking problems, it is defined as

li(xi, ui) = x⊺i Qixi + u⊺
i Riui, lT(xT) = x⊺TQTxT , (2.4)

where Qi are symmetric positive semidefinite matrices and Ri are a
symmetric positive definite matrices.

Linear cost is often used in systems of economic type, e. g., for
evaluating energy cost or monetary value, it is defined as

li(xi, ui) = q⊺i xi + r⊺i ui, lT(xT) = q⊺TxT , (2.5)

where qi and ri are cost scaling vectors.
An optimal controller finds the control input for the current time

step by minimizing the cost (2.3) with respect to the control inputs u

u∗(tk) = u∗
0 u∗ = arg min

u
J(x(tk), u), (2.6)

where u∗
0 is the first element of the optimal control trajectory u∗; opti-

mality is denoted by ·∗.
The optimization of the control inputs can be done in different

ways. We highlight two commonly used approaches: dynamic pro-
gramming (Section 2.3) and model predictive control (Section 2.4).

2.3 Dynamic Programming
The first optimization technique that we introduce for optimal control
is dynamic programming1 (DP), introduced by Richard Bellman [19]. 1 Note that, being coined earlier than

the term “computer programming”, the
term programming usually stands for “op-
timization” in the mathematical context.
Nowadays this can be a bit confusing.
See [30] for a full explanation.

[30] Dantzig, “Linear Programming,”
2002

[19] Bellman, Dynamic Programming,
1957

It is considered an important milestone for optimization and automatic
control because it enabled the use of optimal planning and optimal
control for many systems where this was too hard a problem before.
A comprehensive overview on the topic is given by Bertsekas [20].

[20] Bertsekas, Dynamic Programming and
Optimal Control, 2005

Dynamic programming speeds up optimization in dynamical sys-
tems by breaking down the overall optimization problem into smaller
subproblems that are quickly solved. The drawback is that, since dy-
namic programming for continuous systems only works efficiently for
problems with closed-form solution, it can not be straightforwardly
used for systems with constraints. In such cases, the more general
model predictive control approach (Section 2.4) can be used.

2.3.1 The Dynamic Programming Equation
The fundamental idea behind dynamic programming is the principle of
optimality: Informally it means that, for any given state of the system,
the optimal action only depends on the state and not on the way this

28 | DISCRETE-TIME OPTIMAL CONTROL

state was reached. This is an obvious property of route planning
problems (illustrated in Figure 17): The optimal route from any point
on the way between start and destination does not depend on the
locations visited before. Once a certain state is reached, only the way
from there to the destination is relevant.

Z

H

S

B

T

35

43

45

21

?

Figure 17: Simple routing problem. A
student wants to go from Zurich (Z) to
Stuttgart (S). No matter which of the
many possible routes he takes to the in-
termediate town H, the rest of the prob-
lem is identical to the problem of finding
the shortest path from H to S.

In the light of the principle of optimality, the optimal cost for the
cost function (2.3) can be written in the form of nested minimizations

J∗(x(tk)) = min
u

J(x(tk), u)

= min
u0

[
l0(x0, u0) + min

u1
[l1(x1, u1) + . . .]

]
, (2.7)

where x0 = x(tk), and xi+1 = Axi + Bui. This reformulation is pos-
sible because the inner part (the truncated subproblem starting from
i = 1) does not depend on the optimization variable u0 of the outer
part. Replacing the optimal cost of the inner subproblem by J∗1 (x1),
we obtain

J∗0 (x0) = min
u0

[l0(x0, u0) + J∗1 (x1)] . (2.8)

More generally, we can write this as the recursive dynamic program-
ming equation [20, §1.3]

[20] Bertsekas, Dynamic Programming and
Optimal Control, 2005

J∗i (xi) = min
ui

[
li(xi, ui) + J∗i+1(xi+1)

]
, (2.9)

where J∗i is the optimal accumulated cost from time step i to the end
of the horizon, and li is the cost for the current state and input.

Using this formulation stresses the fact that the optimal cost-to-
go J∗i+1 only depends on the next state and not on past states. This
makes it possible to break down the optimization problem into small
subproblems, every subproblem depending only on the current state.

2.3.2 The Finite-Horizon Linear Quadratic Regulator
Most quadratic optimization problems in dynamic settings can be bro-
ken down into smaller subproblems with the dynamic programming
equation. Consider the dynamical system (2.1) and quadratic cost
over a horizon 0 . . . T:

J(x0, u) = x⊺TQTxT +
T−1

∑
i=0

(
x⊺i Qixi + u⊺

i Rui
)

, (2.10)

where the state weights Qi are symmetric positive semidefinite matri-
ces and the input weight Ri is a symmetric positive definite matrix.
In order to obtain the overall minimizing input trajectory u∗, a large
optimization problem needs to be solved.

DYNAMIC PROGRAMMING | 29

However, using the recursive formulation originating from the DP
equation makes it possible to solve this optimization problem with low
computational budget. This formulation implicitly exploits the sparse
structure of the optimization problem due to the Markov characteristic
of the dynamic system.

For the last time step, the cost simply is

JT(xT) = x⊺TQTxT = x⊺TVTxT , (2.11)

where VT is the quadratic value matrix, initialized at the last time
step. Using the dynamic system equation (2.1) in the DP equation
(2.9) we can compute the value matrix Vi recursively, resulting in the
discrete-time Riccati equation (DRE) [20, §4.1] [20] Bertsekas, Dynamic Programming and

Optimal Control, 2005

Vi = A⊺Vi+1 A − A⊺Vi+1B (B⊺Vi+1B + Ri)
−1 B⊺Vi+1 A + Qi. (2.12)

The DRE not only defines the optimal cost-to-go depending on the
current state

J∗0 (x(tk)) = x⊺0 V0x0, x0 = x(tk), (2.13)

but also the optimal control law

u∗
0(x(tk)) = − (B⊺V1B + R0)

−1 B⊺V1 Ax0, x0 = x(tk), (2.14)

which is called the finite-horizon linear quadratic regulator (f-LQR).
Note that this equation defines a control policy for each time step

up to the horizon, which returns an optimal control action for the
states xi = x(tk+i). This is important for systems under uncertainty:
An optimal plan consisting of pre-computed control actions can fail
when the states change unexpectedly only by a small amount. A
policy-based optimal controller, on the other hand, can deal with state
uncertainties by calculating the optimal action based on the current
state in each time step.

2.3.3 The Infinite-Horizon Linear Quadratic Regulator
For continuously running systems, the optimal controller should opti-
mize the cost up to an infinite horizon. In practice this is not possible
because of the infinite number of recursion steps that would need to
be carried out. Letting T _ ∞ and assuming constant cost Qi = Q ∀i,
Ri = R ∀i in the discrete-time Riccati equation (2.12) results in the
algebraic Riccati equation

V∞ = A⊺V∞ A − A⊺V∞B (B⊺V∞B + R)−1 B⊺V∞ A + Q, (2.15)

which has a steady-state solution if the pair (A, B) is controllable. [20] [20] Bertsekas, Dynamic Programming and
Optimal Control, 2005

30 | DISCRETE-TIME OPTIMAL CONTROL

The steady-state solution can be found, e. g., by iterating Equation (2.12)
until convergence, or by the Schur method [79]. The static feedback [79] Laub, “A Schur Method for Solving

Algebraic Riccati Equations,” 1979law

u∗
∞(x(tk)) = − (B⊺V∞B + R)−1 B⊺V∞ Ax(tk) := Lx(tk) (2.16)

is usually called infinite-horizon linear quadratic regulator (∞-LQR)
and is an instance of optimal static feedback control for a steady state.
The ∞-LQR is popular in practice because the state-feedback con-
troller has negligible computational cost once the feedback-gain L is
computed. Therefore, using the ∞-LQR is a powerful design method
for state-feedback controllers if a model of the system is available and
there are no constraints.

2.3.4 Reference Tracking with Lookahead
Controllers often have the goal of controlling the system to a setpoint
or “desired state.” Especially in linear systems, the optimal control
problem can be transformed easily so that the goal state is the origin.
In that case, applying standard ∞-LQR control can be enough to create
a feedback controller.

For many applications, however, it is not enough to keep the state
close to a setpoint. In robotics, for example, being able to track a
desired reference trajectory xref is important for the execution of a
planned motion. If the reference trajectory is known in advance, the
dynamic programming equations can be implemented accordingly.
Carrying out the finite-horizon dynamic programming calculations
including a future reference trajectory entails the necessity of using a
quadratic ansatz that also includes linear terms in the value function:

J∗i (xi) = x⊺i Vixi + v⊺i xi + const . (2.17)

For reference tracking dynamic programming, the recursive equa-
tions for calculating Vi and vi are (see Appendix A.1):

Vi = A⊺
(

Vi+1 − Vi+1B (B⊺Vi+1B + Ri)
−1 B⊺Vi+1

)
A + Qi VT = QT (2.18a)

vi = A⊺
(

vi+1 − Vi+1B (B⊺Vi+1B + Ri)
−1 B⊺vi+1

)
− Qixref

i vT = −QTxref
T , (2.18b)

and the optimal control is defined by

u∗
0(x(tx)) = u∗

0(x0) = − (B⊺V1B + R0)
−1 [B⊺V1 Ax0 + v1] . (2.19)

The important advantage of finite-horizon reference tracking lies
in the “lookahead” (or “preview”) property. A static state-feedback
controller, such as the ∞-LQR, can only ever act based on the current
deviation from the desired setpoint. This means that every change in

DYNAMIC PROGRAMMING | 31

reference can only be taken into account after it occurs. A controller
with access to the future trajectory, on the other hand, can already
act in a feed-forward fashion, which often results in better system
behavior. An example of this is shown in Figure 18, where the pure
feedback controller “waits” much longer and acts more abruptly than
the dynamic programming based optimal controller, which benefits
from the lookahead property.

−1
0
1

x

−5
0
5

ẋ

−5
0
5

θ

−10
0

10

θ̇

−1
0
1

x

−5
0
5

ẋ

−5
0
5

θ

−10
0

10

θ̇

0 0.2 0.4 0.6 0.8 1 1.2
−20

0
20

time [s]

u

0 0.2 0.4 0.6 0.8 1 1.2
−20

0
20

time [s]

u

∞-LQR

0

0.2

0.4

0.6

0.8

1

1.2

tim
e

[s
]

f-LQR

0

0.2

0.4

0.6

0.8

1

1.2

tim
e

[s
]

Figure 18: Comparison between the con-
trol behavior of ∞-LQR (left) and f-LQR
(right) for an inverted pendulum on a
cart. The reference position jumps at
0.5 s from -0.5 to 0.5. The pendulum is
actuated, with its base moving along the
rail. The pendulum is plotted for each
sampling time, where the color indicates
the time. The states and input are plot-
ted underneath, where x is the horizon-
tal position, θ the angle and u the input.

2.3.5 Stochastic Systems
When considering stochastic control systems of the form

x(tk+1) = Ax(tk) + Bu(tk) + ξ(tk) ξ(tk) ∼ N (0, D) (2.20a)

y(tk) = Cx(tk) + γ(tk) γ(tk) ∼ N (0, W), (2.20b)

the state evolution is not deterministic any more, and since states are
not fully measurable, there is uncertainty about the true states x(tk).
The optimal solution in the linear case is to maintain a Gaussian belief [64] Kálmán, “A New Approach to Lin-

ear Filtering and Prediction Problems,”
1960

[122] Särkkä, Bayesian Filtering and
Smoothing, 2013

over the states by Kalman filtering [64, 122].
In order to account for the future uncertainty along the control

horizon, we denote the Kalman filtered state covariance as Σi+1|i after

32 | DISCRETE-TIME OPTIMAL CONTROL

prediction from time step i and as Σi+1|i+1 after updating with the
measurement yi+1 made at time step i + 1. Of course, the future
measurement is not yet available, but the predictive covariance is
deterministic and can therefore be incorporated in the calculations
below.

For the uncertain system, the cost function is defined in expectation:

JT(xT) = E
xT

{
x⊺TQTxT

}
(2.21)

Ji(xi, ui) = E
xi

{
x⊺i Qixi + u⊺

i Riui + J∗i+1(xi+1)
}

. (2.22)

After some linear algebra manipulations (Appendix A.2), we obtain
the same recursion for the value matrix (2.12), and the same control
policy (2.14). Nonetheless, the cost function is different in this case:

J∗i (xi) = E
xi

{
x⊺i Vixi

}
+ tr

{
T−1

∑
j=i

[
Σj+1|j − Σj+1|j+1

]
Vj+1

}
+ tr

{
T

∑
j=i

QjΣj|j

}
. (2.23)

The additional terms arising from uncertainty are usually not consid-
ered, since they do not influence the control policy. [20, §5.2] [20] Bertsekas, Dynamic Programming and

Optimal Control, 2005

2.4 Model Predictive Control
Constraints are ubiquitous. Finite actuator power and other physical
limitations are encountered in many practical systems. Model predic-
tive control (MPC) is a framework that can explicitly incorporate such
constraints. MPC is similar to dynamic programming in the way the
model is used for predictions; the fundamental difference is the op-
timization procedure. While in dynamic programming the Bellman
principle is used to construct an optimal policy for each time step
recursively, in MPC the entire optimization problem is solved at once,
which makes it much easier to incorporate constraints. However, this
comes at a price, since dealing with the full optimization problem
and the need for constrained optimization methods makes the overall
procedure computationally demanding. Therefore, MPC originally
was used only in slow control systems, e. g., in the processing indus- [90] Maciejowski, Predictive Control with

Constraints, 2002

[119] Rossiter, Model-based Predictive Con-
trol: A Practical Approach, 2003

[117] Rawlings and Mayne, Model Predic-
tive Control: Theory and Design, 2009

try. Nowadays, MPC has found widespread use, partly due to the
increasing computational power available in control systems.

Model predictive control constitutes a large field of research. Com-
prehensive overviews can be found, e. g., in [90], [119], [117].

MODEL PREDICTIVE CONTROL | 33

2.4.1 Constrained Finite-TimeOptimal Control
In addition to the system definition (2.1), we consider constraints on
states and inputs resulting in the constrained LTI system

x(tk+1) = Ax(tk) + Bu(tk) (2.24a)

u(tk) ∈ U ∀k, x(tk) ∈ X ∀k, (2.24b)

where U and X are polytopic sets defining the input and state con-
straints. Taking these constraints into account, dynamic programming
has no closed form solution, but the more general MPC methods can
be used.

The standard case of a model predictive control problem is to find
the optimal state and input trajectory for the constrained dynamical
system

(x∗, u∗) = arg min
x,u

lT(xT) +
T−1

∑
i=0

li(xi, ui) (2.25a)

s.t. x0 = x(tk) (2.25b)

xi+1 = Axi + Bui i = 0 . . . T − 1 (2.25c)

ui ∈ U i = 0 . . . T − 1 (2.25d)

xi ∈ X i = 1 . . . T (2.25e)

where x := [x1, . . . , xT] is the state trajectory and u := [u0, . . . , uT−1]

are the controls. After the optimization problem (2.25) is solved, the
optimal control action u∗(tk) = u∗

0 can be extracted from the optimal
control trajectory u∗.

An example of the different behaviors of unconstrained (f-LQR)
and constrained (MPC) optimization under input saturation is shown
in Figure 19. Not taking the input constraints into account leads to a
failing experiment for the f-LQR controller.

2.4.2 Optimization
In order to solve the MPC optimization problem with readily available
optimization software (e. g., [52], [61]), it is necessary to reformulate [52] Grant and Boyd, CVX: Matlab Soft-

ware for Disciplined Convex Programming,
Version 2.1, 2014

[61] IBM, ILOG CPLEX Optimizer, 2016

the MPC problem into standard forms. For example, most quadratic
programming (QP) solvers use the problem formulation

z∗ = arg min
z

1
2

z⊺Hz + h⊺z (2.26a)

s.t. Aeqz = beq (2.26b)

Ainz ≤ bin, (2.26c)

34 | DISCRETE-TIME OPTIMAL CONTROL

−1
0
1

x

−5
0
5

ẋ

−5
0
5

θ

−10
0

10

θ̇

−1
0
1

x

−5
0
5

ẋ
−5

0
5

θ

−10
0

10
θ̇

0 0.2 0.4 0.6 0.8 1 1.2
−20

0
20

time [s]

u

0 0.2 0.4 0.6 0.8 1 1.2
−20

0
20

time [s]

u

f-LQR

0

0.2

0.4

0.6

0.8

1

1.2

tim
e

[s
]

MPC

0

0.2

0.4

0.6

0.8

1

1.2

tim
e

[s
]

Figure 19: Comparison between the con-
trol behavior of f-LQR (left) and MPC
(right) for an inverted pendulum on a
cart with constrained input (−8 ≤ u ≤ 8,
enforced by clipping). The reference po-
sition jumps at 0.5 s from -0.5 to 0.5. Ev-
erything else as in Figure 18.

where z is the vector that collects all optimization variables x1...T and
u0...N−1, H defines the quadratic and h the linear part of the quadratic
cost function. The dynamics is encoded as equality constraints with
Aeq and beq, state constraints as inequality constraints with Ain and
bin.

A comprehensive overview on optimization methods is given, e. g.,
by Nocedal and Wright [103], or by Boyd and Vandenberghe [22]. [103] Nocedal and Wright, Numerical Op-

timization, 2006

[22] Boyd and Vandenberghe, Convex Op-
timization, 20042.4.3 Reference Tracking

Until the end of the horizon, a change in reference can be incorporated
by changing the cost function to the more general form

li(xi, ui) = (xi − xref
i)⊺Qi(xi − xref

i) + u⊺
i Riui (2.27a)

lT(xT) = (xT − xref
T)⊺QT(xT − xref

T), (2.27b)

so that the cost function penalizes the deviation from the reference
trajectory xref. This leads to additional linear terms in the objective
function of (2.26a).

Again, it is important to note that this reference tracking can offer
lookahead if the reference is known a-priori.

RECEDING HORIZON CONTROL | 35

2.5 Receding Horizon Control
Most control systems run indefinitely. Therefore, most model predic-
tive controllers are implemented in a receding horizon fashion: After
each measurement, the optimal control problem is solved up to the end
of the horizon, starting with the current state. Only the first control ac-
tion is executed, after which the next measurement is made. Figure 20
depicts this procedure. The fixed-length horizon is advanced by one
time step at each sampling time, hence the name “receding horizon”.

DO

DO

DO

DO

PLAN

PLAN

PLAN

PLAN

t0

t1

t2

t3

u(t0) u(t1) u(t2) u(t3) control actions

time

Figure 20: The receding horizon prin-
ciple. The optimal control is planned
for the whole horizon, but only the first
control action is executed on the system.
After one sampling interval, the plan is
calculated anew.

2.5.1 Accounting for the Infinite Horizon
For a system running indefinitely, the cost objective in Equation (2.25a)
should be the infinite sum

∞

∑
i=0

li(xi, ui), (2.28)

but, of course, it is not possible to optimize this objective, due to
the infinite number of variables. Instead, the basic MPC (2.25) is
formulated with a receding horizon of finite length. This change in
the objective function can lead to instabilities and performance loss.
Therefore, it is often attempted to account for the infinite horizon MPC
by adjusting the terminal weight matrix QT accordingly [90, §6.2], or [90] Maciejowski, Predictive Control with

Constraints, 2002by constraining the final state xT to be in a suitable feasible set.

The Riccati Terminal Weight

For the unconstrained linear quadratic problem, finding a steady-state
solution for the infinite horizon cost is possible by carrying out the Ric-
cati recursion to the steady-state solution (Section 2.3). This amounts
to using the infinite-horizon LQR for the time steps after the hori-

36 | DISCRETE-TIME OPTIMAL CONTROL

zon ends. The necessary terminal weight is obtained by solving the
discrete-time algebraic Riccati equation

VR
∞ = A⊺VR

∞ A − (A⊺VR
∞B)(R + B⊺VR

∞B)−1(B⊺VR
∞ A) + Q (2.29)

for the terminal weight QT = VR
∞. The algebraic Riccati equation has

a solution if the pair (A, B) is controllable. [20, §4.1] [20] Bertsekas, Dynamic Programming and
Optimal Control, 2005

The Lyapunov Terminal Weight

Another option for determining a terminal weight is to use the solution
to the discrete-time Lyapunov equation

VL
∞ = A⊺VL

∞ A + Q. (2.30)

Using QT = VL
∞ as a terminal weight amounts to not issuing control

actions after the end of the horizon. Along the horizon, this leads
to more aggressive control behavior than the Riccati terminal weight.
Because no control is used after the end of the horizon, the discrete-
time Lyapunov equation only has a solution if A is asymptotically
stable. [90, §6.2] [90] Maciejowski, Predictive Control with

Constraints, 2002

2.6 Extensions
Due to its simplicity in the mathematical formulation, discrete-time
optimal control is a flexible framework that is easily extensible for spe-
cific needs. In addition to the reference tracking, which is somewhat
different for dynamic programming and general MPC, two other ex-
tensions are used in this thesis: The use of disturbance predictions
and nonlinear dynamics.

2.6.1 Incorporating Disturbance Predictions
Often there are disturbances in a control system that are known before-
hand or can be predicted to a certain extend. Consider the dynamics

x(tk+1) = Ax(tk) + Bu(tk) + d(tk), (2.31)

with additional time-dependent disturbance d(tk). A prediction d̃(tk)

of the disturbance can easily be incorporated by adding this distur-
bance prediction to the state-transition function used in the algorithm.
For MPC, this means adding it to the equality constraint (2.25c) and
for DP this means adding it for all state transitions in the recursion
(2.9).

EXTENSIONS | 37

If the disturbance can be predicted to high precision, this can in-
crease the controller performance significantly. Disturbance predic-
tion is frequently used, e. g., for building control with MPC [107]. [107] Oldewurtel et al., “Reducing Peak

Electricity Demand in Building Climate
Control Using Real-time Pricing and
Model Predictive Control,” 20102.6.2 Nonlinear Dynamics

Standard MPC works well for linear systems because the underlying
optimization problem usually results in an easy-to-solve form, e. g., a
quadratic program in the case of the common ℓ2 norm cost. Linear
MPC is often also applied to nonlinear systems that are sufficiently
linear close to the operating point. However, when a system is strongly
nonlinear or needs to leave the area close to the linearization point,
nonlinear MPC methods are necessary.

There is a large body of literature on nonlinear MPC methods, see,
e. g., [75], [3] for an overview of the topic. [75] Kouvaritakis and Cannon, Non-

linear Predictive Control: Theory and Prac-
tice, 2001

[3] Allgöwer et al., “Nonlinear Predic-
tive Control and Moving Horizon Esti-
mation – An Introductory Overview,”
1999

In this thesis we use the common approach of sequential lineariza-
tion and optimization to solve the underlying nonlinear program. The
resulting algorithm is sequential quadratic programming (SQP) or se-
quential linear programming (SLP), depending on the cost function.

For a general discrete-time system of the form

x(tk+1) = f (x(tk), u(tk)), (2.32)

the linearization is done along the horizon for each time step

xi+1 ≈ f (x̄i, ūi) +
∂

∂xi
f
⏐⏐⏐⏐
x̄i ,ūi

Ai

(xi − x̄i) +
∂

∂ui
f
⏐⏐⏐⏐
x̄i ,ūi

Bi

(ui − ūi), (2.33)

where the Jacobians Ai and Bi are calculated along an existing trajec-
tory. This trajectory can be initialized, e. g., with a steady state, zero,
or the optimized trajectory from the last time step. Equation (2.33) can
then be used to replace the equality constraint (2.25c) to account for
the nonlinear dynamics function.

The linearization along the trajectory is done iteratively, usually
several times per time step. However, for systems with sufficiently
high control rate, it can be enough to linearize once per time step. [35] [35] Diehl, Bock, and Schlöder, “A Real-

time Iteration Scheme for Nonlinear Op-
timization in Optimal Feedback Con-
trol,” 2005

Using nonlinear MPC methods makes it possible to execute com-
plex motions, such as the swing-up of an inverted pendulum on a cart
(Figure 21), that are not possible with linear MPC. The linear MPC fails
in this case because the system dynamics is highly nonlinear between
the two reference points.

38 | DISCRETE-TIME OPTIMAL CONTROL

−1
0
1

x

−5
0
5

ẋ

−5
0
5

θ

−10
0

10

θ̇

−1
0
1

x

−5
0
5

ẋ

−5
0
5

θ

−10
0

10

θ̇

0 0.2 0.4 0.6 0.8 1 1.2
−20

0
20

time [s]

u

0 0.2 0.4 0.6 0.8 1 1.2
−20

0
20

time [s]

u

MPC

0

0.2

0.4

0.6

0.8

1

1.2

tim
e

[s
]

NMPC

0

0.2

0.4

0.6

0.8

1

1.2

tim
e

[s
]

Figure 21: Comparison between the con-
trol behavior of linear MPC (left) and
nonlinear MPC based on SQP (right) for
a swing-up of an inverted pendulum on
a cart. The reference angle jumps from
π to 0 at t = 0.5 s. The linear MPC is
linearized about the target position. Ev-
erything else as in Figure 18.

3Adaptive Control

Figure 22: Schematics of one of the first
adaptive controllers in the literature, im-
plemented in hardware. [83]

Controllers that are able to adjust themselves to different envi-
ronmental conditions are usually subsumed under the umbrella

term “adaptive control”. Adaptivity is an important concept because
there is always a discrepancy between assumed models and the real
world. In fact, for many control systems a big proportion of devel-
opment time is spent in hand-crafting and tuning models. Adaptive
control systems aim at learning models at runtime, or at adjusting
them if the environment is changing.

[83] Leblanc, “Sur l’électrification des
chemins de fer au moyen de courants
alternatifs de fréquence élevée,” 1922

The idea of adaptive control is quite old, and many sources (e. g.,
[5]) report the paper by Leblanc [83] as the first paper on this topic, see

[5] Ariyur and Krstić, Real-time Optimiza-
tion by Extremum-Seeking Control, 2003

Figure 22 for an illustration of the hardware implementation. Since
then, adaptive controllers have found many applications in the auto-
matic control of technical systems.

Unfortunately, the term adaptive control has no clear definition and
the meaning often depends on the author. For example, in their text-
book on this topic, Åström and Wittenmark [7] define “an adaptive

[7] Åström and Wittenmark, Adaptive
Control, 1994

controller [as] a controller with adjustable parameters and a mecha-
nism for adjusting the parameters”. The definition of adaptive control
now depends on the definition of a parameter, which also is not always
clear.

Usually, the states are expected to change more rapidly and as direct
response to control actions and disturbances. Parameters, on the other
hand, are changing more slowly and are therefore seen on a different
time scale. [43, §3.1] For example, while position, velocity and acceler- [43] Filatov and Unbehauen, Adaptive

Dual Control, 2004ation are usually states, the physical properties like weight or length
of mechanical components are parameters. But also slowly-varying
states like the angle of attack of a plane can be seen as parameters,
since they change slowly, but govern other parts of the overall dynam-
ics. In hierarchical control systems, the states of a higher level can be
viewed as parameters of a lower one.

3.1 Types of Adaptive Controllers
Typically, adaptive controllers are classified into four different types
of adaptive control schemes [7, 123]: [7] Åström and Wittenmark, Adaptive

Control, 1994

[123] Sastry and Bodson, Adaptive Con-
trol: Stability, Convergence and Robustness,
2011

Gain Scheduling This is the simplest case of an adaptive control sys-
tem. Based on a pre-defined condition (for example, one of the
states or parameters being in a certain range), the control system

40 | ADAPTIVE CONTROL

switches between different setpoints or operating conditions. A
static feedback control law is provided for every setpoint. The
system is adaptive because the local controllers are tuned for each
setpoint individually. [84] [84] Leith and Leithead, “Survey of Gain-

scheduling Analysis and Design,” 2000
Model-Reference Adaptive Control This is a form of extremum seeking

control, where a performance criterion based on a reference trajec-
tory is optimized by parameter tuning. Usually this is done with a
gradient-based optimization scheme, where the gradients are eval-
uated by numeric differentiation. [77] [77] Landau, “A Survey of Model Refer-

ence Adaptive Techniques–Theory and
Applications,” 1974Self-Tuning Regulators This is a model-based control strategy. A model

of the system dynamics is learned or maintained online (e. g., via pa-
rameter tracking in a parametric model). The model of the system
is then used to calculate a controller with standard model-based
control techniques. [9] [9] Åström and Wittenmark, “On Self-

tuning Regulators,” 1973

1 Dual control is an integral part of this
thesis and will be covered in depth in
Part III.

Dual Control1 This is the theoretically ideal way of performing adap-
tive control. An optimal dual controller would perform nonlinear
stochastic optimal control on a system state that comprises both
the states and the belief over the system dynamics. This type of
controller is of such complexity that it is challenging to apply it in
practice. [148] [148] Wittenmark, “Adaptive Dual Con-

trol Methods: An Overview,” 1995
Figure 23 shows an overview of adaptive control methods in re-

lation to time of information acquisition. While all adaptive control
methods are online methods, only dual control takes future measure-
ments into account.

Gain Scheduling

Model-Reference
Adaptive Control

Self-Tuning Regulator

Model Identification
Adaptive Control

Dual Control

model-based

model-free

online time
predictive

.

Figure 23: Classification of adaptive con-
trol methods, based on the time of infor-
mation acquisition (left to right) and the
use of a model (top and bottom).

Note the distinction between model-free and model-based adaptive
controllers. From the above classifications, gain scheduling and model-
reference adaptive control are model-free, which means that they are

MODEL IDENTIFICATION ADAPTIVE CONTROL | 41

tuning a control-law2 directly. The other two classes, self-tuning regu- 2 A control-law is sometimes also called
“policy”, especially in the reinforcement
learning community.lators and dual control, qualify as model-based schemes. This means

that the model of the process is adapted and a controller is synthesized
from this model according to some principle.

3.2 Model Identification Adaptive Control
The definition of adaptive control by Åström and Wittenmark [7] is [7] Åström and Wittenmark, Adaptive

Control, 1994relatively broad and can sometimes lead to confusion. Also, the dis-
tinction between adaptive and non-adaptive is much harder to make
for model-free controllers than for model-based ones.3 In the follow- 3 Essentially all model-free controllers

(except static state-feedback controllers)
are adaptive because they depend on
changing parameters. This complicates
the discussion quite a bit.

ing, we therefore only consider model-based controllers, where we
assume that the system is governed by a true, but unknown, dynam-
ics function

xt+1 = ft(xt, ut) (3.1)

that depends on the states x, the inputs u and the time instance t.
The adaptive controller builds or updates an estimate f̂t of the true
dynamics ft and uses it to calculate the control input

ut = c(f̂t, xt), (3.2)

where c is the model-based controller.4 Consequently, the controllers 4 In the case of optimal control, also a
cost function lt would be necessary.in this thesis can all be seen as model identification adaptive con-

trollers in the broader context of adaptive control.

Controller Plant

Model
Estimator

u x

f̂

Figure 24: Structure of a model identi-
fication adaptive controller. The estima-
tor maintains a model f̂ of the dynamics
which is used by the controller together
with the state x to generate the control
signal u.

Definition 3.1
A model identification adaptive controller generates control inputs using
an continually estimated model of the uncertain and possibly time-varying
system dynamics.

Henceforth, we use adaptive control as a synonym for model identifi-
cation adaptive control to simplify reading.

42 | ADAPTIVE CONTROL

3.3 System Identification and Adaptive Control
Sometimes there is confusion between system identification [86] (in [86] Ljung, System Identification: Theory

for the User, 1999combination with a regular controller) and adaptive control. This
comes from the fact that both techniques use similar mathematical
methods. The difference lies in the time of information acquisition:
While system identification is done offline and provides a model for
a controller, adaptive control is an online method. While some types
of adaptive control even try to predict the process of information
acquisition to the future, all adaptive methods use the measurements
during runtime to adjust the controller (see also Figure 23).

It is clear that both system identification as well as adaptive control
can “adapt” to different systems, but while an adaptive controller does
the learning online while controlling, system identification is separate
from the controller. Once the system identification is done, a controller
is synthesized and subsequently used in the control problem. Usually
parameters that do not change between the identification and the
use of the control system are identified with system identification.
Other parameters can only be identified online, either because they
are subject to change or because the specific problem instance can not
be identified in advance.

3.4 Adaptivity and Robustness
Adaptivity is not the only way to deal with uncertainties in the model
or the environment. Another possible option is robust control [152]. [152] Zhou and Doyle, Essentials of Robust

Control, 1998In robust control systems, the controller is designed to be resilient
against uncertainties. This means that deviations in the nominal pa-
rameters and disturbances do not endanger the system’s stability. This
is usually done by considering worst case examples and controlling
the system in a way that all worst case examples are still stable.

If a control system is robust to parameter changes, one could argue
that adaptivity is not necessary. But there are still reasons to design
adaptive systems as well. Because robust control systems need to be
compatible with multiple worst case instances of a given problem, in
many situations infeasibility can arise: Not for all scenario distribu-
tions or combinations of worst cases a robust controller does exist. [24] [24] Calafiore and Campi, “The Scenario

Approach to Robust Control Design,”
2006

But also when feasibility is given for the uncertain system, robust con-
trol trades performance for worst case stability. If the control system is
adaptive, the performance level can be much higher after the system
is learned because many of the unlikely examples can be ruled out by
the learning process.

ADAPTIVITY AND ROBUSTNESS | 43

Of course, adaptivity and robustness are not exclusive. A robust
control system can be designed relative to the current state of an
adaptive control system, combining the features of both. [62] [62] Ioannou and Sun, Robust Adaptive

Control, 1996

Part II

Nonparametric Disturbance Correction

4Gaussian Processes for Periodic Error Correction

Screws and gears are not the only source of periodically recurring
errors in dynamical systems. Every system that is tied to the

ubiquitous day-night cycle (like building control or energy systems)
or to recurring movements (like a beating heart or a satellite) suffers
from periodic errors. Since these effects are often small relative to
the required control precision, they are in practice usually neglected
in the controller design. For high-precision control systems, however,
such errors can be the dominant source of problems.

Correcting errors only after they are measured leads to a delay
in the error correction. If the errors can be anticipated, the control
performance can be significantly improved. While stochastically aris-
ing errors can not be preempted systematically, periodic effects are
amenable for prediction: Since their future resembles their past, ex-
trapolation is easier and more structured. Based on this idea, we
present a framework for identification and control of periodic effects.
Our framework continually performs identification at runtime, and is [64] Kálmán, “A New Approach to Lin-

ear Filtering and Prediction Problems,”
1960

[41] Erm and Sandrock, “Adaptive Peri-
odic Error Correction for the VLT,” 2003

[29] Crassidis and Markley, “Predictive
Filtering for Nonlinear Systems,” 1997

[122] Särkkä, Bayesian Filtering and
Smoothing, 2013

[150] Yuen, Novotny, and Howe,
“Quasiperiodic Predictive Filtering for
Robot-assisted Beating Heart Surgery,”
2008

[71] Kocĳan et al., “Gaussian Process
Model Based Predictive Control,” 2004

[10] Aswani et al., “Provably Safe and Ro-
bust Learning-Based Model Predictive
Control,” 2013

[137] Tanaskovic et al., “Adaptive Model
Predictive Control for Constrained Lin-
ear Systems,” 2013

[56] Hennig, “Optimal Reinforcement
Learning for Gaussian Systems,” 2011

[70] Ko and Fox, “GP-BayesFilters:
Bayesian Filtering Using Gaussian Pro-
cess Prediction and Observation Mod-
els,” 2009

thus applicable to stochastic time varying systems.
The correction of periodic errors has repeatedly been studied. The

“Very Large Telescope” uses an internal parametric model for the
known error sources, and a Kalman filter [64] as an estimator for the
model parameters. [41] High-precision tracking of spacecrafts on peri-
odic trajectories was addressed by Crassidis and Markley [29], based
on predictive filtering using an extended Kalman filter. To predict
the beating motion of a human heart, extended Kalman filtering for
state estimation was used by Yuen, Novotny, and Howe [150], allow-
ing the nonlinear model to change over time. Concerning the use of
learning based models for control, there is a wide range of literature
available in the context of adaptive control. For methods based on
model predictive control see, e. g., the recent works [71], [10], [137].

In contrast to previous methods for periodic error correction, the
approach presented here does not rely on a pre-specified finite-dimen-
sional model class. Instead, we propose a nonparametric framework
based on Gaussian process (GP) regression that is frequently used for
system identification. It is closely related to least-squares regression,
which is the most commonly employed technique in system identifica-
tion, but is based on a probabilistic interpretation, which can be used
to guide exploration during identification [56]. There is recent work
on using GPs for state filtering [70] and on modeling and control of

48 | GAUSSIAN PROCESSES FOR PERIODIC ERROR CORRECTION

nonlinear systems [111], [55]. The idea of using the learned model in [111] Pillonetto et al., “Kernel Methods
in System Identification, Machine Learn-
ing and Function Estimation: A Survey,”
2014

[55] Hall, Rasmussen, and Maciejowski,
“Modelling and Control of Nonlinear
Systems Using Gaussian Processes with
Partial Model Information,” 2012

predictive control is conceptually similar to [71], [10], [89], with the

[71] Kocĳan et al., “Gaussian Process
Model Based Predictive Control,” 2004

[10] Aswani et al., “Provably Safe and Ro-
bust Learning-Based Model Predictive
Control,” 2013

[89] Maciejowski and Yang, “Fault Tol-
erant Control Using Gaussian Processes
and Model Predictive Control,” 2013

key difference that we use a GP to predict time varying effects.
A Gaussian process model is parametrized by two objects: mean

and covariance function. When used in system identification, in par-
ticular the choice of covariance function has a strong effect on perfor-
mance, and requires consideration of the dynamics to be identified.
Although the literature knows “universal” covariance functions that
can technically approximate any continuous function [134, 101], this

[134] Steinwart, “On the Influence of the
Kernel on the Consistency of Support
Vector Machines,” 2002

[101] Micchelli, Xu, and Zhang, “Univer-
sal Kernels,” 2006

notion only applies in the infinite limit, and can be subject to extremely
slow convergence [145, 144]. Hence, the choice of covariance function

[145] van der Vaart and van Zanten,
“Rates of Contraction of Posterior Distri-
butions Based on Gaussian Process Pri-
ors,” 2008

[144] van der Vaart and van Zanten, “In-
formation Rates of Nonparametric Gaus-
sian Process Methods,” 2011

is often critical in practice.
In this chapter, the focus lies on the identification of quasiperiodic

systems (Section 4.1) by using a specific model class involving periodic-
ity (Section 4.2.1). The identification of hyperparameters is performed
by exploiting the structure of the problem at hand (Section 4.2.2). We
focus on the case where the only nonlinearity is the periodic effect,
and use model predictive control to achieve optimal closed-loop per-
formance (Section 4.3.1). A reformulation in the form of a tracking
problem is proposed, which offers simple implementation and facili-
tates analysis of the control performance (Section 4.3.2). To show the
qualitative properties of this framework, we apply it to a simulated,
educational problem (Section 4.4). While GPs and MPC are well stud-
ied techniques, the main contribution of this work is a combination
that is tailored to quasiperiodic functions, allowing for extrapolation
and efficient computation, which is crucial for online identification
and control.

4.1 Problem Statement
Consider the continuous dynamical system

ẋ(t) = Acx(t) + Bcu(t) + g(t), (4.1)

composed of a linear system with continuous dynamics matrices Ac

and Bc, and a nonlinear time varying function g : R+ _ Rnx , where
x ∈ Rnx denotes the state and u ∈ Rnu the input. For simplicity, full
state measurement is assumed. The structure of (4.1) could be chosen
more generally—Gaussian process models can also learn nonlinear
functions of the state and input. We opt for this linear formulation
with nonlinear external reference here to keep the resulting control
problem conceptually clear and computationally simple. If needed, [3] Allgöwer et al., “Nonlinear Predic-

tive Control and Moving Horizon Esti-
mation – An Introductory Overview,”
1999

the definition can also be adapted to a nonlinear system using a non-
linear model predictive control technique [3].

GPS FOR QUASIPERIODIC FUNCTIONS | 49

The disturbance function g(t) captures nonlinear time dependent
effects, in particular we focus on systems exhibiting some form of peri-
odic behavior. Systems with time dependent errors of periodic charac-
teristic appear in different application areas, such as building tempera-
ture control [51], beating-heart surgery [150] or electrical power grids [51] Gondhalekar, Oldewurtel, and

Jones, “Least-restrictive Robust MPC of
Periodic Affine Systems With Applica-
tion to Building Climate Control,” 2010

[150] Yuen, Novotny, and Howe,
“Quasiperiodic Predictive Filtering for
Robot-assisted Beating Heart Surgery,”
2008

[138]. For strictly periodic functions, there exists a constant period

[138] Taylor and McSharry, “Short-term
Load Forecasting Methods: An Evalua-
tion Based on European Data,” 2007

λ, such that g(t + nλ) = g(t) for n ∈ N. However, error sources in
real systems are often not perfectly periodic in this sense, they show
various forms of phase-shift, deformation and desynchronization. To
address this issue, we generalize to consider locally periodic func-
tions. These are functions for which g(t) ≈ g(t + nλ) for nλ ≪ ℓ and
g(t) ̸≈ g(t + nλ) for nλ ≫ ℓ, where ℓ is some measure of temporal
locality. Intuitively speaking, local periodicity means that the period-
icity is not strict, i. e. variations are allowed. In particular, this covers
functions that vary on a slower time-scale, e. g., a decaying oscillation
or an oscillation with long-term change in shape.

We consider the case where a linear model (matrices Ac and Bc) is
available and the goal is to infer the disturbance function g(t) online
from measurements. This is motivated by the fact that often a nominal
model is derived either from physical considerations or an offline
system identification step.

At every measurement time tk, the system goes through the follow-
ing process:

1. Measure x(tk), ẋ(tk)

2. Construct observation for g(tk), update model for g(t)

3. Compute control input u(x(tk), g(tk)) and apply to the system

4.2 GPs for Quasiperiodic Functions
GP regression is a general framework for nonlinear regression, see
Chapter 1 for an introduction. Note that in the current chapter we use
the time t as the function argument, since this chapter is concerned
with time-series forecasting.

As mentioned above, in the context of our particular setup, the GP
framework may in fact also be used to construct probabilistic models
for fully nonlinear systems g(x, u, t), without major changes. However,
we focus on the simpler case of g(t), allowing for direct incorporation
in stochastic predictive control techniques.

This section proposes a covariance function suitable for the identi-
fication of quasiperiodic functions and presents an efficient technique
for hyperparameter optimization.

50 | GAUSSIAN PROCESSES FOR PERIODIC ERROR CORRECTION

4.2.1 Quasiperiodic Covariance Functions
The way to construct a periodic hypothesis class, and the central idea
of this chapter, is to construct a covariance function that focuses prior
probability mass on locally periodic functions. Among the most pop-
ular kernels for regression purposes is the square exponential1 kernel 1 The square exponential kernel is also

known as squared exponential kernel, Gaus-
sian kernel, or radial basis function.

kse(t, t′; ℓse) = exp
(
−|t − t′|2

2ℓ2
se

)
, (4.2)

with length-scale ℓse. This kernel gives a stationary model which does
not allow for structured extrapolation. MacKay proposed a periodic
covariance function, based on a sine-transformation of the input [92] [92] MacKay, “Introduction to Gaussian

Processes,” 1998

kp(t, t′; ℓp, λ) = exp

(
−2 sin2 (π

λ (t − t′)
)

ℓ2
p

)
, (4.3)

with length-scale ℓp and period-length λ. Function values g(t), g(t′)
jointly sampled from Gaussian process priors with this covariance
function are perfectly correlated if |t − t′| = λ, resulting in identical
function values for points that are one period length apart. Thus,
sampled functions are perfectly periodic with period λ. Within this
period length, samples vary on a typical regularity length scale of
δ = sin−1(ℓp/2)λ/π, over a range with standard deviation θ = 1
(Figure 25).

ℓse
θ

δ = sin−1(ℓP/2)λ/π
λ

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

t

k(
0,

t)

(a) Covariance functions

ℓse

±
2θ

δ

λ

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

t

g(
t)

(b) Samples from GPs with these covariance functions

Figure 25: Kernel combination, covari-
ance function and samples. Top: The
compound kernel kc (,(4.4)) is the
product of kse (, (4.2)) and kp (,
(4.3)). Bottom: Samples drawn from
Gaussian process priors using these co-
variance functions (same colors). Sam-
ples using the periodic kernel are per-
fectly periodic, while samples using the
compound kernel are only periodically
similar on a scale controlled by the pa-
rameter ℓse of (4.4). This local period-
icity can be used to increase modeling
flexibility.

For many systems, strict periodicity is too strong an assumption.
For example, the weather is periodic, but also stochastic, which has an

GPS FOR QUASIPERIODIC FUNCTIONS | 51

effect on the periodic temperature in a building. Therefore, modeling
external errors with perfect periodicity can lead to severe overfitting
and low extrapolation performance. To weaken the perfect correlation,
we use the fact that the kernel property is closed under multiplication
and addition (i. e. kernels form a semiring [115, §4.2.4]): Although [115] Rasmussen and Williams, Gaussian

Processes for Machine Learning, 2006the product of two Gaussian processes is not a Gaussian process, the
product of two kernel functions is also a kernel and therefore a valid
covariance function for a Gaussian process.

This property of covariance functions is useful to construct com-
posite covariance functions, either automatically from data [39] or [39] Duvenaud et al., “Structure Dis-

covery in Nonparametric Regression
through Compositional Kernel Search,”
2013

manually. Since we assume access to physical knowledge about the
system, we constructed a suitable kernel in a qualitative manner. Mul-
tiplying the periodic kernel with a broad square exponential gives an-
other kernel whose corresponding Gaussian process condenses mass
at periodic functions that change over time

kc(t, t′; θ2, ℓse, ℓp, λ) = θ2 · kse(t, t′; ℓse) · kp(t, t′; ℓp, λ), (4.4)

with signal variance θ2 and the other parameters as stated above. This
kernel considers two input times similar if they are similar under both
the square exponential and the periodic kernel. If ℓse ≫ λ, this al-
lows encoding a decay in the covariance over several oscillations. The
different covariance functions are shown in Figure 25 (a), exemplary
randomly sampled functions from Gaussian processes with those co-
variance functions are shown in Figure 25 (b). The posteriors of GPs
with aperiodic and periodic covariance, trained on periodic data, are
shown in Figure 26. In the region far away from data points the pre-
dictions are equal, whereas close predictions show significantly more
structure with the locally periodic kernel.

(a) SE kernel

(b) Locally periodic kernel

Figure 26: Comparison of Gaussian pro-
cess posteriors (posterior mean function
as thick line, shaded region covers two
marginal standard deviations) arising
from the same periodic data () for the
square exponential kernel (/)
and a product of periodic and square
exponential kernel (/). The lo-
cally periodic kernel provides a richer
extrapolation, which can be used for im-
proved predictive control.

52 | GAUSSIAN PROCESSES FOR PERIODIC ERROR CORRECTION

Figure 26 (b) illustrates the key benefit of this approach: With in-
creasing distance from data, the prediction degrades gracefully back to
the zero mean. If a not perfectly periodic function would be predicted
with a purely periodic kernel, prediction and reality could run out of
phase over time, leading to bad predictive behavior. The proposed
locally periodic covariance function circumvents this problem.

4.2.2 Custom Parameter Optimization
The combined kernel (4.4) has four hyperparameters, which will hence-
forth be subsumed in the vector η := (θ2, ℓse, ℓp, λ). This includes the
period length λ of the periodicity. Inferring good values for η is im-
portant for good modeling performance. The parameter optimization
is done by type-II maximum likelihood / maximum a-posteriori, as
described in Section 1.5. However, using this optimization scheme in
a non-modified (“vanilla”) fashion usually does not work in periodic
or quasiperiodic settings.

The log-likelihood surface for η is, especially for periodic likeli-
hoods, not convex. Figure 27 shows a slice through this surface along
the periodicity parameter λ for a quasiperiodic dataset. Standard nu-
merical optimizers will, thus, usually return suboptimal local extrema
of this function. An interesting observation in our specific context is
that the periodic structure of the covariance function and the data is
reflected in this hyperparameter likelihood as well. The reason for this
is a harmonic effect: If the data has a true period of λ, then periodic
functions whose periodicity is an integer multiple of λ also fit the data
well, resulting in low values in the log likelihood

log p(y|t, η) = −1
2

y⊺K(η)−1y − 1
2

log |K(η)| − N
2

log 2π. (4.5)

Intuitively, this can be compared to a function with periodicity
λ, which could also be considered as a function with period length
2λ. To see this, recall from Figure 25 that the periodic functions can
have an arbitrary recurring pattern in each repetition. By inspecting
Equation (4.5), we can gain intuition and notice that the likelihood is
a nonlinear function of terms of the form (4.3). Since each of these
terms is periodic in λ−1, the overall function will show periodicity in
that term.

This harmonic structure can be exploited by means of a heuristic
to increase numerical stability of the optimizer. We designed a cus-
tomization of a numerical optimizer, outlined in Algorithm 1, that,
after convergence to a local minimum η = (θ2, ℓse, ℓp, λ), also eval-
uates the function value at η′ = (θ2, ℓse, ℓp, λ

2). If the negative log
likelihood at this location is lower, the optimal value and its location
is updated, and the bisection is repeated. The locations that are iter-

GPS FOR QUASIPERIODIC FUNCTIONS | 53

atively proposed during the loop (Line 4 of Algorithm 1) are shown
as vertical lines () in Figure 27. This approach uses the otherwise
problematic harmonic structure in the hyperparameter optimization
to find better optima.

0 50 100 150 200 250 300 350 400
λ

−
lo

g
p

Figure 27: Slice through the likelihood
surface along the dimension of the hy-
perparameter λ, defining the period
length of g. Shown are the logarithm
of the type-II marginal likelihood ()
and the logarithm of the posterior distri-
bution (). The shape of the log pos-
terior is dominated by the likelihood, in-
dicating that most prior assumptions are
dominated by the observed data. The
meaning of the vertical lines is explained
in Section 4.2.2.

Algorithm 1: Customized parameter op-
timization. After the convergence of
the standard optimizer, the likelihoods
for halved period lengths are evaluated.
The period length with the lowest nega-
tive log likelihood is accepted.

1: η := (θ2, ℓse, ℓp, λ) ▷ initial guess
2: η ^ Locally_Optimize(η) ▷ use std. optimizer
3: loop
4: η′ ^(θ2, ℓse, ℓp, 1

2 λ) ▷ make proposal
5: if nll(η′) > nll(η) then ▷ compare neg. log lik.
6: break ▷ reject and leave loop
7: else
8: η ^ η′ ▷ accept proposal
9: end if

10: end loop
11: return η

4.2.3 SamplingMethods for Parameter Identification
Instead of using only a maximum likelihood or maximum a-posteriori
point estimate, theoretically the goal would be to compute the marginal

p(g) =
∫

p(g|η)p(η)dη (4.6)

using a prior density p(η) [115, §5.2], which can only be performed [115] Rasmussen and Williams, Gaussian
Processes for Machine Learning, 2006approximately at high computational expense. One comparably elab-

orate and precise way to approximate the posterior distribution over η

and to marginalize over the unknown parameters η is sampling, using
a Markov chain Monte Carlo (MCMC) method. We found shrinking-
rank slice sampling [139] to be particularly well-suited for this task and [139] Thompson and Neal, “Slice Sam-

pling with Adaptive Multivariate Steps:
The Shrinking-Rank Method,” 2010

implemented the method for a comparison between the MAP point-
estimate and MCMC sampling.

The left column of Figure 28 shows the resulting marginals on
the function g at two different points in the learning process for a

54 | GAUSSIAN PROCESSES FOR PERIODIC ERROR CORRECTION

quasiperiodic system. As expected, the posterior uncertainty is high
after only a few observations, in particular after less than one full
period, but collapses to a highly confident distribution after several
periods of observations have been collected.

The right column of Figure 28 shows the Gaussian process point es-
timates for g resulting from MAP inference. From the figure, it is clear
that point estimation leads to a more limited, and generally overly
confident extrapolation model, especially in early phases of learning,
when the dataset does not yet cover several periods. However, MAP
offers two advantages that make it attractive from an applied perspec-
tive: The first one is computational cost—MCMC sampling can be
orders of magnitude more expensive than optimization for a MAP
estimate. The second one is an algebraic one: MCMC estimates are
mixtures of Gaussian process models (see Figure 28). This means the
overall model for the regression function defined by these models is
an object challenging to work with. Therefore, applications often use
the computationally much less taxing MAP inference.

0 100 200 300 400

−0.5

0

0.5

0 100 200 300 400

−0.5

0

0.5

0 100 200 300 400

−0.5

0

0.5

0 100 200 300 400

−0.5

0

0.5

Figure 28: Comparison of Markov chain
Monte Carlo inference (left column)
with the maximum a-posteriori point es-
timate (right column) on hyperparame-
ters of the Gaussian process model. Top:
Initial phase of learning, after only a few
observations. Bottom: Convergence af-
ter observation of several periods.

4.3 GP Predictions inModel Predictive Control
Popular control frameworks supporting the incorporation of feed-
forward model predictions include linear quadratic regulator (LQR)

GP PREDICTIONS IN MODEL PREDICTIVE CONTROL | 55

techniques [104, §8.3], or model predictive control (MPC) [117]. See [104] Ogata, Discrete-time Control Systems,
1995

[117] Rawlings and Mayne, Model Predic-
tive Control: Theory and Design, 2009

Chapter 2 for an introduction to these methods.
For periodic error correction, we employ an online MPC framework,

computing the optimal control input by solving an optimization prob-
lem for each measured state. This allows for direct incorporation and
updating of the GP model as well as system constraints, such as input
constraints.

4.3.1 Discrete-timeMPC formulation
A discrete-time MPC approach is used based on the discretization of
the model (4.1)

xk+1 = Axk + Buk + ak, (4.7)

where A and B are obtained from a zero-order-hold discretization and
ak is a discretization of choice of g(t) at time tk.

Since the optimal control input is computed at each sampling time
based on the current measured state, the model can be updated online.
An important aspect and advantage of combining online learning of a
continuous time function with MPC is the possibility to decouple the
discretization from the sampling time. While in a standard MPC setup,
unmodeled effects only become apparent through state measurements
and therefore require fast sampling rates, the GP model captures these
effects and provides a continuous prediction of their evolution in the
future. As a result, the sampling time can be chosen as a multiple of the
discretization or prediction interval without sacrificing performance
by using the sequence of control inputs in between state measurements.
It is clear that an upper bound on the sampling time is imposed by the
prediction horizon.

Since the prediction from the Gaussian process model is stochastic
and provides a distribution over future function values rather than one
particular sequence, stochastic MPC methods offer a natural frame-
work to incorporate the GP model and make use of the posterior model
uncertainty. For an overview of recent stochastic MPC methods, see
e. g., [74], [97] and the references therein. The model uncertainty is an [74] Kouvaritakis and Cannon, “Stochas-

tic Model Predictive Control,” 2014

[97] Mayne, “Model Predictive Con-
trol: Recent Developments and Future
Promises,” 2014

important advantage over other nonparametric methods like kernel
ridge regression or regularized least squares, which do not provide
posterior uncertainty.

A common cost function in stochastic MPC for regulating the sys-
tem state to the origin is the expected value of the sum of stage costs

J(x0, p(g), u) := E

[
T

∑
i=0

l(xi(p(g)), ui)

]
(4.8)

56 | GAUSSIAN PROCESSES FOR PERIODIC ERROR CORRECTION

where p(g) = GP(g; m|t,y, k|t) denotes the posterior distribution over
the function g. If the stage cost l is chosen to be quadratic (which is
the case for many practical MPC problems) and since the inputs are
deterministic and the GP posterior is Gaussian, the expected value
is equivalent to using the mean of the state evolution, i.e. the mean
GP prediction of g(t) in dynamics (4.1). The most common stochastic
MPC problem hence results in a deterministic formulation by using
the GP posterior mean g̃(t) = m|t,y(t), and reduces to the certainty
equivalent controller.

We consider the case of quadratic stage cost in the following. Since
the true function g(t) is unknown, a discrete-time system describing
the mean of the state trajectory is approximated by replacing ak in
(4.7) with ãk, obtained by discretizing the mean of the GP prediction
g̃(t). ·̃ denotes the estimate of the true function inferred from data,
and emphasizes that these are generally not the same. The resulting
discrete-time system can directly be used in a standard MPC formula-
tion.

4.3.2 TrackingMPC
We propose a different formulation in the following, which simplifies
implementation by transforming the regulation problem into a linear
tracking problem. The state of the mean discrete-time system at pre-
diction time step k + n, starting from state xk at time step k is given by:

x̃k+n = Anxk +
n

∑
m=1

Am−1Buk+n−m +
n

∑
m=1

Am−1 ãk+n−m, (4.9)

where ãk is the discretization of the GP prediction g̃. This is the sum
of the linear system and a system driven by ãk. The MPC problem for
regulating system (4.7) to the origin can be reformulated as a tracking
problem for the linear system, tracking a nonlinear reference.

The reference signal is generated from the GP prediction according
to (4.9):

xref =

[
ãk+1 · · ·

n

∑
m=1

Am−1 ãk+n−m

]
. (4.10)

The resulting MPC problem is given by

(x∗, u∗) = arg min
x,u

T

∑
n=0

l(xn − xref
n , un) (4.11a)

s.t. xn=0 = x(tk) (4.11b)

xn+1 = Axn + Bun (4.11c)

u ∈ U (4.11d)

GP PREDICTIONS IN MODEL PREDICTIVE CONTROL | 57

where U ⊆ Rnu is a polytopic set defining the input constraints, x :=
[x0, . . . , xT] is the state trajectory and similarly for u. The resulting
problem is a quadratic program that can be solved efficiently using
available optimization software (e. g., [52]) or fast MPC techniques [52] Grant and Boyd, CVX: Matlab Soft-

ware for Disciplined Convex Programming,
Version 2.1, 2014

proposed in recent years, such as code generation (e. g., [36]). Because

[36] Domahidi, FORCES: Fast Optimiza-
tion for Real-time Control on Embedded Sys-
tems, 2012

this is an instance of a basic MPC technique, the standard properties
of MPC apply. It also allows for a more principled analysis of the
closed-loop properties: Extensions in the field of tracking MPC can be
applied to ensure stability, such as reference governors, or the periodic
MPC approach in [85]. Applying the modified tracking formulation [85] Limon et al., “MPC for Tracking Pe-

riodic Reference Signals,” 2012in [85], convergence can be guaranteed if the model g̃(t) converges to
a periodic function.

Remark 4.1
The discrete-time model (4.7) with the predicted nonlinear term ãk can in prin-
ciple be used in any linear or linearized state estimation or control method
based on state prediction. One example is the Kalman filter. The nonlinear
prediction from the GP can be incorporated into the state prediction without
complicating the Kalman filter equations. The measurement update of the
Kalman filter remains unchanged. The GP predictions increase the perfor-
mance by providing a better state estimate. This leads to smaller correction
terms and smaller posterior variance.

Remark 4.2
Because the point-wise posterior of a Gaussian process is a Gaussian dis-
tribution, state constraints can be included in the form of soft constraints,
penalizing the amount of constraint violation, or chance constraints, ensur-
ing constraint satisfaction with a certain probability [127, 108]. [127] Schwarm and Nikolaou, “Chance-

constrained Model Predictive Control,”
1999

[108] Ono and Williams, “Iterative Risk
Allocation: A New Approach to Robust
Model Predictive Control with a Joint
Chance Constraint,” 2008

Remark 4.3
The approach can also be applied to stage cost functions and constraints that
do not allow for a deterministic representation using the GP model, e. g., a
value-at-risk formulation involving the variance of the cost by using sample-
based methods to approximate the stochastic MPC problem [25, 124]. GPs [25] Campi, Garatti, and Prandini, “The

Scenario Approach for Systems and Con-
trol Design,” 2009

[124] Schildbach et al., “The Scenario Ap-
proach for Stochastic Model Predictive
Control with Bounds on Closed-Loop
Constraint Violations,” 2014

fit well in this framework by being generative models from which sample
trajectories can be easily drawn.

Remark 4.4
Depending on the discretization, a trade-off between the mean and variance
of a quadratic cost function can be formulated as a deterministic optimization
problem using the posterior GP prediction:

E

[
1
2

x⊺nQnxn

]
= µ⊺

nQnµn + tr(QnΣn), (4.12a)

V

[
1
2

x⊺nQnxn

]
= µ⊺

nQnΣnQnµn +
1
2

tr(QnΣnQnΣn). (4.12b)

This is the case whenever the distribution N (µn, Σn) of ak can be directly
obtained from the distribution of g(t), e. g., in the case of Euler discretization.

58 | GAUSSIAN PROCESSES FOR PERIODIC ERROR CORRECTION

4.4 Numerical Results
The presented method was implemented for a simple problem and
evaluated in simulation to show how the state evolution is anticipated
by the use of the GP prediction. In Chapter 5, this method will also
be evaluated on an experimental application in hardware.

4.4.1 Implementation Details
Since in practice the state and derivative can not be measured directly,
they have to be approximated from potentially noisy measurements.
A Kalman filter [64] can be used to estimate the state, which increases [64] Kálmán, “A New Approach to Lin-

ear Filtering and Prediction Problems,”
1960

the performance, especially when the measurement noise is high.
Since the function to be inferred acts as additional input to the

dynamics, observations of the disturbance are constructed from ob-
servations of the change in state, ∆x = xk+1 − xk. We therefore assume
g(t) to be piece-wise constant, here a zero-order-hold linearization is
used, chosen to be at t + 1

2 ∆t

ak = Gg(t +
1
2

∆t), G =
∫ ∆t

0
eAτdτ, (4.13)

where ∆t is the sampling time. Note that this is only used to generate
the data point, the resulting GP model is still a continuous function.
The value g(t + 1/2∆t) is obtained as solution of the linear system

Gg(t +
1
2

∆t) ≈ (xk+1 − Axk − Buk) , (4.14)

which is the data point used to train the GP.
In the experiments presented in the following, the discretization of

the mean prediction g̃(t) is obtained from the exact discretization

ãk =

∆t∫
0

eAcτ g̃((k + 1)∆t − τ)dτ, (4.15)

evaluated with a standard ODE-solver [37]. [37] Dormand and Prince, “A Family
of Embedded Runge-Kutta Formulae,”
1980

4.4.2 A Simple Example
As a simple problem for providing intuition, consider the following
linear double integrator system with an additive time-periodic com-
ponent g(t):

ẋ(t) =

⎡⎣0 1

0 0

⎤⎦ x(t) +

⎡⎣0

1

⎤⎦ u(t) + g(t), g(t) =

⎡⎣ sin(t)

cos(1.3t)

⎤⎦ . (4.16)

NUMERICAL RESULTS | 59

The goal is to control the first state of the system to the origin. We use
the quadratic cost

l(xn, un) =
1
2

x⊺nQxn +
1
2

u⊺
nRun (4.17)

with diagonal state weight Q = diag(100, 0). The weight on the
control input is set to R = 1, allowing for aggressive control behavior.
The horizon length of the MPC is set to T = 15. State and input
constraints are omitted for simplicity.

The system was simulated numerically with a sampling rate of
1 Hz. Figure 29 shows control inputs and resulting state trajectories
for a model predictive controller without information about the distur-
bance g, and a model predictive controller using the posterior mean
functions of two periodic Gaussian process regressors as a model for
g. One GP is trained for each dimension of the disturbance.

After an identification phase in the first 5 s of the experiment, the GP
based controller shows a drastic performance improvement. Omitting
this identification phase, the root-mean-square (RMS) error, measured
with respect to the origin, drops by 90 %, from 0.94 for the linear model
to 0.097 for the GP based controller. Speaking more qualitatively,
Figure 29 also shows less residual structure in the controlled state x1.
It is visible that control signals are applied earlier when the prediction
is used.

While the GP based controller is effective at reducing the periodic
structure from the first controlled state, the regression model itself
remains able to predict the periodic error correctly into the future,
even when trained exclusively on controlled states. This is possible
because the regression model is obtained from the controlled dynam-
ics, so it can account for the shift of periodicity from the states to the
control input. This feature of the framework is crucial for identifying
controlled systems.

0 5 10 15 20 25 30 35 40 45 50

−2

0

2

t

x 1

0 5 10 15 20 25 30 35 40 45 50
−5

0

5

u

Figure 29: Closed-loop input and output
trajectories with MPC control. MPC us-
ing a linear model () is compared to
the GP based MPC controller ().

60 | GAUSSIAN PROCESSES FOR PERIODIC ERROR CORRECTION

4.5 Conclusion
High-precision control of dynamical systems requires precise models,
even of minor external error sources. Where analytic models are not
available, they can only be constructed numerically from measure-
ments of the system. Periodic error sources are an especially promis-
ing domain in this regard, as they can be extrapolated well into the
future. We have studied a nonparametric modeling framework based
on a carefully crafted Gaussian process prior exhibiting a weak, local-
ized form of periodicity. Because Gaussian regression returns models
in the form of stochastic differential equations, they can be combined
directly with existing control frameworks. Integration into a model
predictive control scheme was investigated, which can evaluate the
prediction at a desired temporal resolution.

5Periodic Error Correction for Telescope Tracking

Figure 30: Star motion around the north-
ern celestial pole. The image is compo-
sed of several sub-frames, the total expo-
sure time is about half an hour. Image
by Robert Vanderbei [146].

[146] Vanderbei et al., Roque de los Mucha-
chos Observatory, 2012

Our planet is rotating, performing one full turn relative to the
sky in a stellar day of about 23 hours and 56 minutes [2, §12.2].

[2] Allen and Cox, Allen’s Astrophysical
Quantities, 2000

This poses a problem to photographers: Due to the low light intensity
of most astronomical objects, the exposure times for astronomical im-
ages range from seconds to several hours. Without counteracting the
Earth’s rotation, the stars travel long distances across a camera’s image
sensor during exposure. Figure 30 shows an intentional example of
this effect.

Efforts to tackle this problem have lead to the development of spe-
cialized mechanical devices, actuated telescope mounts, that follow the
stars’ motion. However, mechanical devices are never perfect. A slight
imperfection in the shape of a cog or a worm in the gear of a telescope
mount leads to pointing errors of usually several arcseconds1. Taking

1 One arcsecond (′′) is the 3600th fraction
of a degree.

into account the fine angular resolution of typical imaging setups, this
means several pixels of blur during a long-exposure image.

The periodic error correction method based on Gaussian processes
(Chapter 4) is suitable to address periodic errors in telescope tracking.
In this chapter we first describe the telescope guiding problem (Sec-
tion 5.1), and then apply the method on both simulation and hardware
experiments (Section 5.2).

5.1 The Telescope Problem RA
Dec

Figure 31: Typical German equatorial
mount. When used for astronomical
imaging, the right ascension (RA) axis is
aligned with the Earth’s rotational axis.
The declination axis (Dec) is necessary
to be able to point at arbitrary positions.

Amateur telescope mounts for astronomical imaging are usually built
in equatorial design [110, 18], one such mount is shown in Figure 31.

[110] Parker, Making Beautiful Deep-sky
Images: Astrophotography with Affordable
Equipment and Software, 2007

[18] Beish, Design a German Equatorial
Mount for the Planetary Telescope, 2001

The mechanics is designed in a way that the right ascension (RA)
axis of the telescope mount is aligned with the Earth’s rotational axis
when set up properly. This way, only this axis has to be constantly in
motion to follow the stars, which simplifies the control problem. The
telescope can now be modeled in the form of a linear scalar model

ẋ(t) = acx(t) + bcu(t) + g(t), (5.1)

where ac is the scalar dynamics, bc the scalar input gain and g(t) a
scalar disturbance. As described in detail in Chapter 4, the distur-
bance is modeled with a quasiperiodic Gaussian process regression
model. It should be noted that in practice, measurements of ẋ(t) are
generally not available and will be approximated numerically, see also
the experimental details in Section 5.2.

62 | PERIODIC ERROR CORRECTION FOR TELESCOPE TRACKING

Existing periodic error correction systems require careful system iden-
tification by the user of the telescope, and still regularly lead to unsat-
isfactory performance.

A challenge specific to this astronomical application is that state
measurements are performed by taking images of guiding stars [110, [110] Parker, Making Beautiful Deep-sky

Images: Astrophotography with Affordable
Equipment and Software, 2007

§1], which requires relatively long exposure times, resulting in the
measurement interval reaching the order of magnitude of the error
periodicity. This is precisely the domain in which we expect to see
utility from a periodic model.

The performance gain one can expect from the use of a periodic
model for feed-forward compensation depends on the sampling rate
of the control system: If the external error is slow compared to the
measurement rate, a locally linear model is sufficient. But if the exter-
nal error is on the same time scale as the measurement, it helps to use
feed-forward control based on GP predictions. With the presented ap-
proach it is even possible to choose the control interval smaller than
the actual measurement interval. See Section 5.2.1 for a more detailed
discussion.

5.2 Experiments
The presented method was implemented for the telescope problem
and evaluated on different problems. After testing on a simulated
telescope system, where the performance under different measure-
ment frequencies and under sensor failure was analyzed, the proposed
method was evaluated in an experiment on a real telescope system,
showing substantial improvements in control performance.

5.2.1 Simulated System
The period length of the periodic error in telescopes is relatively long.
To allow rapid prototyping, we designed a simulation system with
dynamics similar to a real telescope. Experiments have shown that
the model can be simplified by considering only the angular pointing
error as state, measured relative to the desired state. The pointing
error can be influenced by an input velocity. The resulting model is

ẋ(t) = u(t) + g(t), (5.2)

with an unknown function g(t) that is observed to be quasiperiodic.
Figure 32 shows simulation results that empirically confirm the

intuition from Section 5.1 that the benefit of periodic prediction in
control depends on the sampling rate. Using the numerical simulation,
we compare, for various sampling rates of the state,

EXPERIMENTS | 63

• an MPC controller using the linear model (4.1) with g(t) = 0 ∀t

• two MPC controllers, both using a nonparametric, but fully station-
ary (i.e. not periodic) GP model for g with the square exponential
covariance function (4.2); one of these models uses a length scale
smaller than the periodicity (i. e. it can extrapolate periodic swings
locally, but not beyond one period); the other a length scale longer
than the periodicity (i. e. it averages over the periodic variations)

• two MPC controllers using instances of the periodic model for g;
one in which the hyperparameters are fixed to a good value a priori
(amounting to the assumption that the period of g is known), the
other using the full setup described in Section 4.2, in which the peri-
odicity hyperparameter is learned by type-II maximum likelihood
during identification

Since we are only interested in the performance in the limit in this ex-
periment, all the controllers were run for an identification phase of 10
period lengths to avoid artifacts from identification. Figure 32 shows
RMS error, i.e. deviation of the state from the origin, as a function of
the sampling time. The RMS error is measured over 10 period lengths,
starting after the identification phase. The discretization time for the
MPC is always set to 1/100 of the period length, i. e. to 1 s. Between
measurements, the MPC controllers are operated in open-loop mode,
i.e. the control actions are obtained from the sequence of the last MPC
optimization.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

20

40

60

sampling time [period length]

RM
S

er
ro

r[
′′]

linear model
square-exp., ℓ ≪ λ

square-exp., ℓ ≫ λ

periodic, inferred λ

periodic, optimal λ

Figure 32: Comparison of the RMS error
at different sampling times (in simula-
tion), for five different prediction mod-
els: linear (), square exponential
with ℓ ≪ λ (), square exponential
with ℓ ≫ λ (), periodic with in-
ferred λ () and periodic with op-
timal λ (). MPC control inputs
are computed at the indicated sampling
times, shown as a fraction of the period
length. The control rate is 1 Hz for every
plot. The MPC parameters were set to
Q = 102 and R = 101. The horizon
length was chosen such that the hori-
zon covers the time until the next mea-
surement. Between measurements, the
MPCs are operated in open-loop mode.
g(t) is set to be a sine with fixed period
λ = 100 s.

The results demonstrate the intuition: For sampling times much
smaller than λ, the dynamics are locally linear, and all models achieve
an error close to zero. Their performance difference is only marginal
(lower left in Figure 32). For sampling times between about 10 % and
80 % of λ, the periodic model offers considerable benefits. When the
sampling times are close to, or larger than, the periodicity, the Nyquist

64 | PERIODIC ERROR CORRECTION FOR TELESCOPE TRACKING

rate imposes limits on identifiability of the system, which adversely
affects the performance of the periodic nonparametric model. This
shows that a broad prior can lead to bad performance if only little
data is available. On the other hand, if λ is known precisely, very
good control is possible even for sampling rates lower than λ. The
parameter-inferring model () in Figure 32 represents the perfor-
mance of a system almost ignorant of λ in the beginning: the prior
is very broad. One can expect prior information about λ of varying
vagueness to give performance somewhere in the region between the
parameter-inferring model () and the optimal-parameter model
() in Figure 32.

The case where sampling rate and λ are equal is special, since then
g appears to be constant in the measurements, and even the informed
periodic model can not learn the behavior of g. A weaker version of
this effect is also visible in the plot at a sampling rate of λ/2. This
“selection bias” affects all regression models, including the aperiodic
ones.

5.2.2 Evaluation of Fault Tolerance
A similar experiment was conducted to investigate the effect of missing
measurements on the performance of the controlled system. Figure 33
shows the empirical results. The setup is the same as in the experiment
described before, but now the sampling time is fixed to a value of 5 s,
while the period length is 100 s. The length of the horizon is set to
41 time steps (i. e. 205 s), covering more than two full periods of the
periodic effect, which is a realistic setting for a real telescope.

After giving the system enough time to learn under regular output
measurements, no new data is used to update the GP model of g(t),
and no new state estimate is available to the controller. This corre-
sponds to a fault in the sensor (or clouds in front of the camera in the
telescope setting). The sensor does not recover within the simulation
time. Figure 33 shows the performance of the different controllers,
measured in terms of the RMS error since the beginning of the fault,
here at time 0. In all controller setups, the MPC control sequence can
not be updated as there is no state estimate available. For the follow-
ing time steps without measurement, the MPC therefore is operated
in open-loop mode, i. e. the control actions from the control sequence
computed at the time before the fault are used.

At the beginning of the failure (lower left of Figure 33), the perfor-
mance of all methods is good, since the effect of the periodic distur-
bance is still small. Over time, we see the simple controller without
prediction () slowly degrading. Interestingly, the performance of
the GP with square exponential kernel with too long a length scale

EXPERIMENTS | 65

() performs even worse than not predicting g(t) at all. This il-
lustrates how critical the choice of the hyperparameters is and that
a wrong choice can even degrade the performance. The model with
sensible length scale () performs significantly better initially, but
the extrapolation of the SE kernel degrades quickly (see also Figure 26
(a)) resulting in an overall performance that is only slightly better than
for the linear model.

With periodic predictions, in contrast, the controllers perform sig-
nificantly better during the fault. The periodic GP () is better than
the SE with short length scale, even if the period length is inferred
and not fixed at a good value. The RMS error for the GP with opti-
mal parameter λ () is virtually zero and even a controller having
access to the true function g(t) would therefore only show marginal
improvement. This analysis shows that the proposed combination of
a periodic GP model and MPC control is able to compensate tempo-
rary sensor failures and maintain high control performance for locally
periodic dynamic effects.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

failure time [period length]

RM
S

er
ro

r[
′′]

linear model
square-exp., ℓ ≪ λ

square-exp., ℓ ≫ λ

periodic, inferred λ

periodic, optimal λ

Figure 33: Comparison of the RMS error
after sensor failure (in simulation), for
five different prediction models: linear
(), square exponential with ℓ ≪ λ
(), square exponential with ℓ ≫ λ
(), periodic with inferred λ ()
and periodic with optimal λ ().
Sampling time and discretization time
of the MPC are both 5 s. The MPC pa-
rameters are set to T = 41, Q = 102 and
R = 101. After a training period, no
new measurements are available (“dark
phase”). The MPC is operated in open-
loop mode. g(t) is set to be a sine with
fixed period λ = 100 s.

5.2.3 Hardware Experiment
We have tested our implementation on a physical system, a commer-
cially available Vixen Sphinx telescope mount (Figure 34). Without
closed-loop control, this mount shows about 7′′ of RMS error after
correction for static drift. The error arises from the imperfect shape
of the cogs in the gear of this mount (Figure 35). The imperfect shape
is not visible to the naked eye, see Figure 37 (a) for an uncontrolled
measurement.

Because outdoor measurements are subject to random, time-varying
effects like weather conditions, we constructed a more reproducible ex-
perimental setup using a second, high-precision gearless ASA DDM60

66 | PERIODIC ERROR CORRECTION FOR TELESCOPE TRACKING

Figure 34: The telescope mount used for
the tracking experiments. On the right
side is the camera lens used as guiding
telescope. A main telescope is not used
for the tests.

Figure 35: The gearbox of the telescope
mount. One of the motors is visible on
the left. The two cogs on the right trans-
mit the motor’s rotation to a worm gear
(not visible), which sits on the same axis
and thus has the same period. These
cogs and the worm gear are the likely
source of the periodic error.

Pro telescope mount equipped with a laser “star” as tracking reference
(Figure 36). It has a typical tracking RMS error of about 0.4′′. The
measurement is done with a Canon EF400DO lens on a The Imaging
Source DMK 41AU02.AS camera.

Figure 36: The gearless ASA DDM60 Pro
telescope mount, attached to the ceiling
of our laboratory.

For the hardware interaction, the open source “PHD Guiding”
software package is used. In the original implementation this soft-
ware uses a proportional controller with hysteresis to prevent direc-
tion switching. The telescope is connected to the computer with a
Shoestring Astronomy GPUSB, a device that sends pulse-width modu-
lated signals to telescopes over a commonly used 6-wire interface.

We altered the software to gain access to the measured displace-
ment of the camera image. The value is sent through a network socket
to Matlab, with which the proposed controller was implemented to
calculate the optimal control signal. The control signal is sent back to
the guiding software, which then passes it on to the telescope hard- 2 The pixel resolution of our lens and

camera combination was determined
with nova.astrometry.net [58].

[58] Hogg et al., “Automated Astrome-
try,” 2008

ware. For plotting and calculation of the RMS error, the measured
displacement is converted from pixels into arcseconds (′′) with an
empirically determined conversion factor2.

EXPERIMENTS | 67

For real-time implementation, algorithmic complexity is relevant.
The computational cost of the GP prediction scales cubically in the
number of data points. To bound computational cost, we limit the
number of used data points to 90 in a moving window fashion. This
gives a sufficient coverage of 270 s, or about 3 periods of the short
periodic component. Since inference continuously runs in an extrap-
olation setting (see also Figure 26 (b)), this is sufficient for precise
inference and control.

For the prediction of the dynamics in the MPC framework, an ODE-
solver is employed to predict the tracking reference from the mean of
the GP prediction. This has manageable computational cost because
the inference of a Gaussian process is dominated by the initial one-
time operation of inverting the Gram matrix K in O(N3) time, while
evaluating the mean function at M times only has cost O(MN).

The optimization of the hyperparameters is also an expensive part
of this algorithm. As the kernel Gram matrix has to be filled and
inverted at every evaluation of the objective function, the number of
evaluations has to be kept small at every sampling time. We use a
numerical optimizer based on the BFGS update [23, 45, 50, 128], a [23] Broyden, “A New Double-rank Min-

imization Algorithm,” 1969

[45] Fletcher, “A New Approach to Vari-
able Metric Algorithms,” 1970

[50] Goldfarb, “A Family of Variable
Metric Updates Derived by Variational
Means,” 1970

[128] Shanno, “Conditioning of Quasi-
Newton Methods for Function Mini-
mization,” 1970

quasi-Newton algorithm that updates an estimate of the inverse Hes-
sian in each iteration. In the standard implementation, the estimate of
the Hessian obtained at one time step is discarded after each individ-
ual call to the optimizer. For the use in the control setting, we altered
the algorithm so that the estimate of the inverse Hessian is stored
and used to initialize the optimizer’s estimate at the next sampling
time. This makes it possible to do one iteration per sampling interval
(in a sense, threading the optimization algorithm into the learning
algorithm). This significantly reduces computation time.

The presented method was tested on two different setups, one with
an MPC based on the linear model only and one with the GP prediction
for the periodic error g(t). The test was run 3 times for 25 min each.
Both the sampling and the discretization time were set to 3 s. The
horizon length was T = 10; the state and control weights were set to
Q = 102 and R = 103. The results of these runs are shown in Table 1.

Run 1 Run 2 Run 3 Mean

Plain MPC 0.9839 1.0234 0.9353 0.9809
GP-MPC 0.7365 0.7792 0.7605 0.7587

Table 1: Experimental results from in-
door telescope tracking (RMS error, ′′).

The RMS error drops by 22.64 % through the use of GP predictions
in this hardware setup. Baseline measurements without movement
showed about 0.25 to 0.35′′ of noise. The noise introduced by the
stepper motor could not be quantified with the current measurement
system. Overall, the presented method eliminated at least a third
of the controllable error, after subtracting baseline noise but without

68 | PERIODIC ERROR CORRECTION FOR TELESCOPE TRACKING

taking the stepper motor into account. This is a good result in this
domain, but could probably be further improved, which is also visible
through the weak residual structure visible in Figure 37 (c).

0 200 400 600 800 1,000 1,200 1,400

−10

0

10

time [s]

er
ro

r[
′′]

(a) Uncontrolled, RMS(e) = 6.533′′

0 200 400 600 800 1,000 1,200 1,400

−2

0

2

time [s]

er
ro

r[
′′]

(b) Plain MPC, RMS(e) = 1.023′′

0 200 400 600 800 1,000 1,200 1,400

−2

0

2

time [s]

er
ro

r[
′′]

(c) GP-MPC, RMS(e) = 0.779′′

Figure 37: State measurements from the
indoor tracking experiment: Without
controller (), where the highlighted
area () shows the vertical range of
the two other plots; for plain MPC using
only a linear model (); and for the
periodic Gaussian process based MPC
(). The controlled measurements’
data are from run 2 of our experiments,
which resulted in the highest (worst)
RMS error for both models (Table 1).

Figure 38 shows the power spectra of the measurements, obtained
from the Fourier transform. It is noticeable that the strong periodic
components near 100 s and near 500 s, as well as the constant compo-
nent are highly damped with the presented method.

5.3 Conclusion
Telescope tracking requires high precision with low sampling rates.
Therefore, Gaussian process regression with a quasiperiodic prior is
a well-suited prediction framework for this application.

Numerical and hardware experiments confirm the intuitive result
that the benefit of periodic models depends on the relative size of state
sampling and disturbance frequencies. We showed that, even in cases
where the gain of a periodic prediction is only marginal during normal
operation, these models are beneficial when sensors fail temporarily.
The presented method also shows considerable increases in control
performance, confirming the practical utility of this framework.

CONCLUSION | 69

100 200 300 400 500 600
0

1

2

3 ·104

period length [s]

po
w

er

(a) Plain MPC

100 200 300 400 500 600
0

1

2

3 ·104

period length [s]

po
w

er

(b) GP-MPC

Figure 38: Power spectra of the mea-
surements of Figure 37, plain MPC us-
ing only a linear model (), and pe-
riodic Gaussian process model based
MPC ().

6Software Implementation: PHD2Guiding

The method described in Chapters 4 and 5 was implemented as part
of the telescope guiding software PHD2 Guiding [132]. PHD2 [132] Stark, McKee, Galasso, et al., PHD2

Guiding, 2016Guiding is an open-source telescope guiding software used by many
amateur astronomers. Developing the adaptive periodic error correc-
tion algorithm as a part of PHD2 Guiding makes it possible to reach
the astronomers that already use this software. Also, by using the
mature and well-engineered PHD2 Guiding platform, we do not need
to take care of hardware interactions and can instead focus on the
guiding algorithm itself.

After introducing the PHD2 Guiding framework (Section 6.1), we
describe several modifications to the algorithm (Section 6.2). These
changes were necessary to increase robustness for the use by unexperi-
enced users. We then briefly present a guiding method for the second
telescope axis (Section 6.3) before discussing the results of experiments
with this predictive telescope guiding framework (Section 6.4).

6.1 The PHD2Guiding Framework
PHD2 Guiding is a GUI-based software for telescope guiding opti-
mized for easy usage. Figure 39 shows the main window of the
software with star display and residual error curves. The software in-
cludes drivers for many guiding cameras as well as telescope mounts,
and handles the hardware interactions. PHD2 Guiding is open-source
software, so it is possible to integrate additional features. It is under
active development and is downloaded several thousand times per
month.

The current state-of-the-art guiding algorithm in PHD2 Guiding
is a proportional controller with hysteresis to prevent changes in the
control direction. This algorithm does not make use of extrapolation.
The lack of a predictive control scheme results in residual structure in
the pointing error when the sampling frequency is low. It is also not
robust, e. g., when a cloud occludes the guide star for some time. In
such a case the guide star is usually lost because it moved too far away
from its original position during the period without measurements.

These two issues can be tackled with the GP framework: Struc-
tured extrapolation together with predictive control reduces residual
error and residual structure. Also, since extrapolation and predictive
control still offer a control input even when no measurements are avail-

72 | SOFTWARE IMPLEMENTATION: PHD2 GUIDING

able, it is possible to issue control actions in those cases. This results
not only in a decrease in pointing error, but also increases robustness
because the guide star remains closer to the target position.

Figure 39: GUI of PHD2 Guiding in ver-
sion 2.5.0. The upper part is the star
display with the guide star highlighted
by the crosshair. The search region for
the guide star is the small box. The lower
part shows the residual error curves and
the controls.

6.2 Periodic Error Correction for PHD2Guiding
Despite the fact that there are libraries for Gaussian processes in C++,
we chose to implement the GP algorithm ourselves. This decision was
made because some crucial features, such as the conditioning on a
subset of the kernel combination, are missing in the readily available
libraries.

Much of the GP infrastructure is based on linear algebra. Thus, we
selected to use the Eigen matrix library [53] to make use of fast and [53] Guennebaud, Jacob, et al., Eigen v3,

2010well-tested linear algebra code. Using the Eigen library also increases
the readability of the overall implementation. The Eigen library itself

PERIODIC ERROR CORRECTION FOR PHD2 GUIDING | 73

has no external dependencies and is therefore relatively easy to include
in the existing project.

6.2.1 Data Acquisition
Instead of retaining all collected data, it is necessary to limit the num-
ber of data points to keep the computational effort bounded and the
runtime predictable. We use a FIFO buffer to store data points, where,
once the buffer is full, the oldest entry is dropped whenever a new
data point is added. This amounts to a windowing of the dataset.

Using the measured pointing error directly to identify the dynamics
function turned out to be not robust enough during our intensive
testing. Therefore, we model the accumulated gear error

ak = ek +
k−1

∑
i=0

ui (6.1)

where ek is the measured pointing error at time step k and ui are the
control signals at time i. This model is more robust because the error
introduced by the gear accumulates, while random effects caused by,
e. g., the stepper motor, average out. Overall, this leads to a better
signal-to-noise ratio for the accumulated gear error compared to the
absolute pointing error.

Additionally, the measurement process does not have uniform
noise. Since the location of the guide star is determined from pixel
intensities via a weighted centroid of the star’s pixels, the accuracy of
the centroid calculation depends on the signal-to-noise ratio (SNR) of
the image. In PHD2 Guiding, the SNR is calculated according to the
method described by Simonetti [129]; the relation between the SNR [129] Simonetti, Measuring the Signal to

Noise Ratio of the CCD Image of a Star or
Nebula, 2004

and the measurement noise variance was determined empirically and
modeled by the linear regression model

σ(ρ) = wσ,1(ρ − ρ0)
−1 + wσ,0, (6.2)

where ρ is the SNR, ρ0 is an input offset and wσ are the parameters for
the regression model. Figure 40 shows this relationship and the data
used to determine it.

0 20 40 60
0

5

10

SNR (from image)

RM
S

[p
x]

Figure 40: Relationship between the
signal-to-noise ratio and measurement
variance. Shown are RMS errors from
simulated exposures for different SNRs
() and the regression line ().

The value of the estimated noise variance is stored along with the
measurements of the signal. It is then used in a heteroscedastic noise
model, as described in Section 1.7.1.

6.2.2 Modeling
In real astronomical imaging setups (see Figure 41 for an example), it
is almost impossible to align the axis of the telescope mount with the

74 | SOFTWARE IMPLEMENTATION: PHD2 GUIDING

Figure 41: Telescope setup with main
and guiding telescope. The guiding tele-
scope is mounted “piggyback” on the
main imaging telescope. The cameras
are not yet attached.

Earth’s rotational axis perfectly. Thus, in most cases there will be a
moderate drift that needs to be modeled and predicted in addition to
the periodic component. As it is hard to find the linear drift component
independently of the periodic gear error, we employ a joint model as
described in Section 1.7.2, consisting of fixed features for constant and
linear components and a Gaussian process to model the nonlinear
part:

a(t) = [β0 β1]

⎡⎣1

t

⎤⎦+ f (t) (6.3)

with f (t) ∼ GP . We assume an uninformative prior where β ∼
N (0, B), B−1 _ 0, as detailed in [115, §2.7]. [115] Rasmussen and Williams, Gaussian

Processes for Machine Learning, 2006The GP itself consists of three different components that were iden-
tified during experimentation. It is also possible to automatically iden-
tify kernel components [39], but for this application the hand-crafted [39] Duvenaud et al., “Structure Dis-

covery in Nonparametric Regression
through Compositional Kernel Search,”
2013

kernels were more compact and robust. The different components are:

slowly-varying SE Not all mechanical effects are periodic. In order
to allow for mechanical deviations, e. g., deformations due to load
shift in the mechanics, we include a long-length-scale square expo-
nential kernel. As a result of the long length scale, this part of the
model is also amenable to extrapolation.

kse,0(t, t′; θ0, ℓ0) = θ2
0 exp

(
−|t − t′|2

2ℓ2
0

)
(6.4)

PERIODIC ERROR CORRECTION FOR PHD2 GUIDING | 75

periodic The periodic component is the important part of the model. It
captures the recurrent disturbances from the gear. This component
was chosen to be periodic to enable long-term predictions.

kp(t, t′; θp, ℓp, λ) = θ2
p exp

(
−2 sin2 (π

λ (t − t′)
)

ℓ2
p

)
(6.5)

quickly-varying SE Since the actual data is not perfectly periodic, we
allow for fast variations with a square exponential kernel with short
length-scale. This kernel captures deviations due to mechanical
roughness.

kse,1(t, t′; θ1, ℓ1) = θ2
1 exp

(
−|t − t′|2

2ℓ2
1

)
(6.6)

The combined kernel function is the sum of the three individual
kernel functions

kc(t, t′; η) = kse,0(t, t′; θ0, ℓ0) + kp(t, t′; θp, ℓp, λ) + kse,1(t, t′; θ1, ℓ1), (6.7)

where we have subsumed parameter dependencies into the parameter
vector η = [θ0, ℓ0, θp, ℓp, λ, θ1, ℓ1]. A sample from the compound model,
combining the linear part and the GP with kernel function (6.7) is
shown in Figure 42.

Figure 42: Combining the components
of the model: Linear drift (), plus
long length-scale SE (), plus peri-
odic (), plus short length-scale SE
(). One sample of the model is gen-
erated from the individual components.

The overall model is expressive enough to capture the different
aspects of the problem. While linear drift, slowly-varying SE and the
periodic component are features that can be extrapolated, the quickly-
varying SE can not. It regresses back to the mean quickly after the last
data point, which disturbs the controller. Therefore, while inference
is done with the full model, the predictions are conditioned on the

76 | SOFTWARE IMPLEMENTATION: PHD2 GUIDING

model without the quickly-varying SE. See Section 1.4.3 for the details
on the output conditioning.

6.2.3 Hyperparameter Identification
While many of the hyperparameters included in the model can be es-
timated by mechanical considerations without affecting performance
too much, one parameter can not: the period length λ. It is crucial for
the predictive power that this parameter closely matches the mechani-
cal period length; there is little robustness regarding the choice of this
parameter.

Instead of relying on the maximization of a probabilistic criterion,
the identification of the main periodic component is done with classic
spectrum analysis. After subtraction of a polynomial fit of order 1 to
remove the linear trend, a Hamming window [109, §7.2.1] is applied [109] Oppenheim, Schafer, and Buck,

Discrete-time Signal Processing, 1999to reduce spectral leakage effects due to the finite-length signal.
In order to obtain the spectral density of the measured signal, the

discrete Fourier transform (DFT) [109, §8.1] is calculated on the pre-
processed data

sk =
N−1

∑
n=0

ane−
2πı
N nk, (6.8)

where s = [s0, . . . , sN−1] is the spectrum, a = [a0, . . . , aN−1] is the
data and ı is the imaginary unit. The period length of the strongest
frequency component is subsequently calculated from the power spec-
trum s. In order to ensure constant frequency resolution, the data
vector is zero-padded up to the maximum number of data points in
the FIFO buffer.

In the software implementation, we use the fast Fourier transform
(FFT) [47, 28] for the spectrum analysis, since the naïve implementa- [47] Gauss, “Nachlass: Theoria Interpo-

lationis Methodo Nova Tractata,” 1866

[28] Cooley and Tukey, “An Algorithm
for the Machine Calculation of Complex
Fourier Series,” 1965

tion of (6.8) is not viable for the online use.

6.2.4 GP Approximation
It is important to note that in the case of periodic covariance functions,
it is not enough to do a simple windowing because it is necessary
to cover multiple periods with the data for decent predictive perfor-
mance. Depending on the choice of sampling frequency, it is often too
expensive to use a full dataset of consecutive measurements to cover
multiple periods. Instead, the FIFO buffer holds multiple periods
worth of measurements and we use a subset-of-data (SD) approxima-
tion to keep inference cheap. See Section 1.6.1 for the details of the SD
method.

THE DECLINATION AXIS | 77

The fact that the extrapolation position is known in advance is
beneficial in this case. In order to obtain a computationally cheap
method, we use the covariance between the prediction point and the
data to select the data points for the approximation:

xsd = sort {x; k(x, x)}0:M−1 , (6.9)

where xsd is the selected dataset, sort sorts the data x according to the
values of the covariance vector k(x, x) and {·}0:M−1 selects the first M
elements.

For each control step, we select a new subset from the large dataset
in the FIFO buffer, depending on the current prediction point. This
way we make sure that there is always relevant data from past periods
available to the GP, while keeping the inference cost low.

6.2.5 Control
The control algorithm used in the guiding software was designed to
avoid the problems that arise from the low sampling frequency, while
keeping the complexity of the algorithm low. Ideally, one would
implement an optimal control scheme as introduced in Section 4.3,
but for the simplicity of the algorithm, only a “deadbeat” controller1 1 A deadbeat controller is a predictive

controller that is tuned to eliminate the
entire error in one step, i. e. the error-
feedback gain is 1.

was considered. Due to the low sampling frequency and non-uniform
sampling intervals, this deadbeat control often led to overshoots and
instabilities. Reducing the control gain, on the other hand, led to
performance loss due to the periodic error.

The implemented algorithm, therefore, is a hybrid controller: Dead-
beat control is applied for the compensation of the periodic error, and
proportional control is used to drive the residual error to zero. The
overall control signal at time k is given by

uk = −(ãk+1 − ãk)− gpek, (6.10)

where ãk is the mean prediction of the Gaussian process modeling
the accumulated gear error ak, and gp is the control gain for the pro-
portional controller. The structure of this hybrid control algorithm is
shown in Figure 43.

6.3 The Declination Axis
When the alignment between the right ascension (RA) axis and the
Earth’s rotational axis is not perfect, the offset introduces a linear drift
in the image plane for both axes. Therefore, also the declination (Dec)
axis needs to be controlled.

78 | SOFTWARE IMPLEMENTATION: PHD2 GUIDING

GP

∑

P
ek

−
ak

∆ãk+1

−

uk

Te
le

sc
op

e

Figure 43: Structure of the telescope con-
troller for the RA axis. While the resid-
ual error is handled with proportional
control, the GP prediction is accounted
for in a deadbeat fashion.

However, since the declination axis is almost still and only needs
to compensate small drift errors, the regression problem is different
from the RA axis: Due to the low signal-to-noise ratio and the small
drift, the control signal of a proportional control often changes its
sign. This leads to gear backlash effects, disrupting even usual robust
regression models, such as ℓ1-regression or Huber-regression [59]. [59] Huber, “Robust Estimation of a Lo-

cation Parameter,” 1964Since the underlying dynamical model is simple, and the estimation
only needs to find a linear drift, we implemented a trimmed mean
estimator for the linear drift:

∆ãDec
k+1 =

1
k − 2nT

k−nT−1

∑
i=nT

sort
{

∆aDec
1:k

}
i
, (6.11)

where ∆aDec
1:k is the collection of finite differences of the accumulated

gear errors aDec
k and nT is the number of elements to trim on either

side. The sort-operator sorts the collection according to the values,
and {·}i selects the i-th element.

The control structure, which is similar to (6.10), is shown in Fig-
ure 44. The estimated drift ∆ãDec

k+1 is corrected for in a deadbeat fashion,
while the error term is driven to zero with a conservatively-tuned PD
controller [8]. [8] Åström and Hägglund, PID Con-

trollers: Theory, Design and Tuning, 1995

TM

∑

PD
eDec

k

−
aDec

k

∆ãDec
k+1

−

uDec
k

Te
le

sc
op

e

Figure 44: Structure of the telescope con-
troller for the Dec axis. While the resid-
ual error is handled with PD control, the
prediction from a trimmed-mean estima-
tor is accounted for in a deadbeat fash-
ion.

EXPERIMENTS | 79

6.4 Experiments
The demonstration of the implemented guiding algorithm was done
for the use-case of tracking stars in the night sky (as opposed to the lab-
oratory setup of Section 5.2.3). The measurements were made in Tübin-
gen, Germany, using a Vixen Sphinx telescope mount with a Canon EF
400 DO IS USM lens and a The Imaging Source DMK 41AU02.AS camera,
the same equipment as in the laboratory setup.

6.4.1 Guiding Performance
The performance of GP guiding is shown in comparison to the state-of-
the-art algorithm2 that is used in PHD2 guiding. Figure 45 shows the 2 In PHD2 Guiding, the standard al-

gorithm is “Hysteresis”, which is a P-
controller with hysteresis to prevent gear
backlash effects.

exemplary comparison of the two algorithms under otherwise iden-
tical conditions. The angular pointing error between target position
of a guide star and its measured position is plotted over time. It is
visible that the GP guiding shows less residual structure after the ini-
tial learning phase (up to around 1000 s). Since the GP guider starts
with zero information, the effect of learning is visible in the data by
the structural change in the error residuals after 1000 s.

−2

0

2

er
ro

r[
′′]

0 500 1,000 1,500 2,000 2,500 3,000

−2

0

2

time [s]

er
ro

r[
′′]

Figure 45: Comparison between state-of-
the-art tracking of PHD2 Guiding 2.5.0
(top,) and GP-based tracking (bottom,

).

When analyzing the guiding performance, the initial learning phase
has to be compared separately. We report the mean, standard devia-
tion and RMS error of the two different algorithms for the different
phases. The GP guiding consistently outperforms the standard algo-
rithm.

overall for t < 1000 for t > 1000

mean sd rms mean sd rms mean sd rms

Hy 0.357 0.968 1.031 0.427 0.917 1.010 0.331 0.985 1.039
GP 0.122 0.751 0.761 0.088 0.893 0.895 0.136 0.685 0.697

Table 2: Experimental results from out-
door telescope tracking (all numbers in
′′). “Hy” is the standard “Hysteresis”
algorithm and “GP” is the GP guiding
algorithm developed in this thesis. In
addition to the overall performance, we
report the performance for the initial
phase (t < 1000) and for the later phase
(t > 1000) separately.

80 | SOFTWARE IMPLEMENTATION: PHD2 GUIDING

6.4.2 Dark Guiding
In order to show the improved robustness under conditions where
the measurement is unavailable for some time, we implemented a
dark guiding mode. When there is no measurement, the guiding is
done with the GP predictions alone. This prevents the telescope from
moving away from the guide star too quickly, increasing chances of
finding the guide star after recovery of the measurement process.

Figure 46 shows the benefit of the GP guider under occlusion condi-
tions. With the GP guider the linear and periodic motion is predicted,
keeping the pointing error comparably small. The state-of-the-art al-
gorithm does not predict the motion of the telescope, leading to larger
pointing errors after an occlusion period.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
0

20

40

60

80

100

120

time [s]

a k
[′′

]

Figure 46: Tracking under cloudy con-
ditions. After enough time for learn-
ing, the measurements were dropped
for a few minutes, simulating the effect
of a cloud covering the guide star. The
plot shows the accumulated gear error ak
from measurements (), and the predic-
tive mean () and uncertainty ()
for the time without measurement (indi-
cated by). The “prediction” of the
state-of-the-art algorithm is flat ().

6.5 Conclusion
Making the Gaussian process based periodic error correction algo-
rithm available to many practitioners in astrophotography was an
important goal of this project. In order to make the algorithm work
on a broad range of telescopes, a number of changes to the algorithm
were developed and implemented, such as a hybrid control strategy
and the parameter identification via FFT.

In experiments under realistic conditions we showed that the im-
plemented algorithm provides improved tracking performance and
can even deal with the case of an unreliable measurement process due
to clouds.

Part III

Nonlinear Dual Control

7Introduction to Dual Control

The idea of performing simultaneous identification and control by
applying optimal control to both states and parameters of un-

certain dynamical systems is today also known as Bayesian reinforce-
ment learning [112] in the machine learning community. Originally it [112] Poupart et al., “An Analytic Solu-

tion to Discrete Bayesian Reinforcement
Learning,” 2006

was termed dual control by Fel’dbaum [42], who already noted that

[42] Fel’dbaum, “Dual Control Theory I-
IV,” 1960–1961

dual control algorithms will be computationally expensive due to the
necessary numerical integration and optimization. Both algorithmic
and—by the standards of the time—computational complexity have
limited its widespread application.

While adaptive control only considers past observations, dual con-
trol also takes future observations into account. This approach mit-
igates a number of drawbacks of other techniques for dealing with
uncertain parameters. Robust controllers [152], for example, may [152] Zhou and Doyle, Essentials of Robust

Control, 1998limit performance due to their worst-case design; adaptive controllers
based on certainty equivalence [76, §11.2] can lead to failure in cases [76] Kumar and Varaiya, Stochastic Sys-

tems: Estimation, Identification and Adap-
tive Control, 1986

of high uncertainty because the uncertainty of the parameters is not
taken into account but only their mean estimates. One approach to
incorporate the uncertainty is stochastic optimal control [6], where [6] Åström, Introduction to Stochastic Con-

trol Theory, 1970the uncertain parameters are marginalized out while calculating the
optimal controller. This leads to smaller control signals when facing
uncertainty (“cautious control”), but it can also result in the so-called
“turn-off phenomenon” [60] if the uncertainties are large: The control [60] Hughes and Jacobs, “Turn-off, Es-

cape and Probing in Nonlinear Stochas-
tic Control,” 1974

is scaled down towards zero, and, as a result, the system never acts or
learns.

For many systems, more excitation leads to better estimation, but
also to worse control performance. Dual control attempts to find a
compromise between exploration and exploitation by taking the future
effect of current actions into account. In episodic settings, where the [149] Wittenmark, “An Active Subopti-

mal Dual Controller for Systems with
Stochastic Parameters,” 1975

[26] Chapelle and Li, “An Empirical Eval-
uation of Thompson Sampling,” 2011

[32] Dearden, Friedman, and Andre,
“Model Based Bayesian Exploration,”
1999

[72] Kolter and Ng, “Near-Bayesian Ex-
ploration in Polynomial Time,” 2009

[131] Srinivas et al., “Gaussian Process
Optimization in the Bandit Setting: No
Regret and Experimental Design,” 2010

control problem is re-instantiated repeatedly with unchanged system
dynamics, comparably simple notions of exploration can succeed. For
example, assigning an exploration bonus to uncertain options [149],
or acting optimally under one sample from the current probabilistic
model of the environment [26], can perform well [32, 72, 131]. Such
approaches, however, do not model the effect of actions on future
beliefs, which limits the potential for the balancing of exploration and
exploitation. This issue is most drastic in the non-episodic case, the
control of a single trial. Here, the controller can not hope to start over,
and exploration must be carefully controlled to avoid disaster.

84 | INTRODUCTION TO DUAL CONTROL

A principled solution to this problem is offered by the dual control
framework: A probabilistic belief over the dynamics and the environ-
ment can be used not just to simulate and plan trajectories, but also to [112] Poupart et al., “An Analytic Solu-

tion to Discrete Bayesian Reinforcement
Learning,” 2006

[56] Hennig, “Optimal Reinforcement
Learning for Gaussian Systems,” 2011

[42] Fel’dbaum, “Dual Control Theory I-
IV,” 1960–1961

[4] Aoki, Optimization of Stochastic Sys-
tems, 1967

[135] Sternby, “A Simple Dual Control
Problem with an Analytical Solution,”
1976

[63] Jacobs and Patchell, “Caution and
Probing in Stochastic Control,” 1972

[149] Wittenmark, “An Active Subopti-
mal Dual Controller for Systems with
Stochastic Parameters,” 1975

[142] Tse, Bar-Shalom, and Meier, “Wide-
sense Adaptive Dual Control for Nonlin-
ear Stochastic Systems,” 1973

[43] Filatov and Unbehauen, Adaptive
Dual Control, 2004

[148] Wittenmark, “Adaptive Dual Con-
trol Methods: An Overview,” 1995

reason about changes to the belief from future observations and their
influence on future decisions. An elegant formulation is to combine
the physical state with the parameters of the probabilistic model into
an augmented dynamical description, which is then controlled jointly.
Due to the inference, the augmented system invariably has nonlinear
and uncertain dynamics, causing the optimal controller to have pro-
hibitive computational cost—even for finite state spaces and discrete
time [112], all the more for continuous space and time [56].

When the learning as response to current actions is taken into ac-
count, the turn-off characteristic vanishes in favor of explorative be-
havior. [42] It was shown that this kind of problem is intractable
[4, §III.3], except for a few comparably simple systems, e. g., [135].
Therefore, a variety of approximate formulations of the dual control
problem have been developed. This includes the introduction of per-
turbation signals [63], exploration bonuses [149], series expansion of
the loss function [142] or modifications of the loss function [43, §4].
A comprehensive overview of dual control methods is given by Wit-
tenmark [148]. A historical side-effect of these numerous treatments
is that the meaning of the term “dual control” has evolved over time,
and is now applied both to the fundamental concept of optimal explo-
ration, and to methods that only approximate this notion to varying
degree. 1 This feature is sometimes also called

“investigation” or “probing” in the dual
control literature.

[15] Bar-Shalom and Tse, “Caution, Prob-
ing, and the Value of Information in the
Control of Uncertain Systems,” 1976

[100] Meier, Combined Optimal Control
and Estimation Theory, 1966

[78] Larsson, “Application-oriented Ex-
periment Design for Industrial Model
Predictive Control,” 2014

[116] Rathouský and Havlena, “MPC-
Based Approximation of Dual Control
by Information Maximization,” 2011

[48] Genceli and Nikolaou, “New Ap-
proach to Constrained Predictive Con-
trol with Simultaneous Model Identifi-
cation,” 1996

[94] Marafioti, Bitmead, and Hovd, “Per-
sistently Exciting Model Predictive Con-
trol,” 2014

[141] Tse and Bar-Shalom, “An Actively
Adaptive Control for Linear Systems
with Random Parameters via the Dual
Control Approach,” 1973

However, many approximate methods are too simple to retain all
features of dual control: caution, the downscaling of control signals
when facing high uncertainty; exploration1, the excitation of the sys-
tem when cautious control does not learn fast enough; and the value of
information, the selective exploration of system parameters that are im-
portant for future performance of the system. [15] An approximation
derived by Tse, Bar-Shalom, and Meier [142, 100] is conceptually close
to optimal dual control and retains all three of the aforementioned
features of dual control. In the following sections we provide a brief
introduction to this method.

Dual control has regained attention over the past few years, but
in many cases exploration bonuses are used and explicitly added to
the control cost. Other methods include constraining the minimal
information gain [78, 116] and persistent excitation [48, 94] to maintain
the parameter knowledge. The approach that will be proposed in the
following chapter focuses on maintaining the value of information,
which can not be expressed through exploration bonuses or excitation
signals, but is one of the key benefits of dual controllers.

In this chapter, we review the algorithm for approximate dual con-
trol introduced by Tse and Bar-Shalom [141] in a mildly simplified

MODEL AND NOTATION | 85

fashion: While the original algorithm is based on differential dynamic
programming (DDP) [96], we view the algorithm in the light of the [96] Mayne, “A Second-order Gradient

Method for Determining Optimal Tra-
jectories of Non-linear Discrete-time Sys-
tems,” 1966

more recent iterative linear quadratic Gaussian (iLQG) framework
[140], where applicable. We first introduce the general stochastic opti-

[140] Todorov and Li, “A Generalized It-
erative LQG Method for Locally-optimal
Feedback Control of Constrained Non-
linear Stochastic Systems,” 2005

mal control problem (Section 7.1), present the dual control approach
and show how the algorithm works (Section 7.2). Finally, we show the
effect of the dual control approach on the cost function (Section 7.3).

7.1 Model and Notation
In this chapter, we consider the discrete-time, finite-horizon stochastic
optimal control problem of the form

xt+1 = Atxt + Btut + ξt (state dynamics) (7.1a)

yt = Cxt + γt (observation model), (7.1b)

with dynamics matrices At ∈ Rnx×nx and Bt ∈ Rnx×1. At time t ∈
{0, . . . , T}, xt ∈ Rnx is the state and ξt ∼ N (0, D) is a Gaussian
disturbance. The control input is denoted ut; for simplicity we assume
scalar ut ∈ R throughout. Measurements yt ∈ Rny are observations of
xt, corrupted by Gaussian noise γt ∼ N (0, W). The generative model
thus reads p(xt+1 | xt, ut) = N (xt+1; Atxt + Btut, D) and p(yt | xt) =

N (yt; Cxt, W), with a linear map C ∈ Rny×nx . Trajectories are vectors
x = [x0, . . . , xT], and analogously for u, y. We occasionally use the
subset notation yi1 :i2 = [yi1 , . . . , yi2].

We further assume that dynamics matrices At, Bt are not known,
but are described by a Gaussian distribution over their elements. To
simplify notation, we reshape the elements of At and Bt into a pa-
rameter vector θt = [vec(At); vec(Bt)] ∈ R(np+1)nx , and define the
reshaping transformations A(θt) : θt ↦→ At and B(θt) : θt ↦→ Bt.

The key observation in dual control is that both the states x and
the parameters θ are subject to uncertainty and can therefore be sub-
sumed in an augmented state z⊺t = [x⊺t , θ⊺t] ∈ Rnx+nθ [42]. Even though
the source of uncertainty is different for states and parameters (the
states are uncertain due to stochasticity, while the parameters are un-
certain due to ignorance), both can then be dealt with in the form of
a joint probability density p(z) = N (z; ẑ, Σ). In this framework, the
dual control problem reduces to stochastic optimal control of the aug-
mented system. In this notation, the optimal exploration-exploitation
trade-off—relative to the probabilistic priors defined above—can be
written compactly as optimal control of the augmented system with
a new observation model p(yt | zt) = N (yt; C̃zt, W) using C̃ = [C, 0]
and a cost analogous to Equation (7.5).

86 | INTRODUCTION TO DUAL CONTROL

Even for the linear and deterministic case, including the augmented
state z results in a nonlinear system because θ and x interact multi-
plicatively

zt+1 =

⎛⎝xt+1

θt+1

⎞⎠ =

⎛⎝A(θt) 0

0 I

⎞⎠ zt +

⎛⎝B(θt)

0

⎞⎠ ut =: f̃ (zt, ut). (7.2)

The parameters θ are assumed to be deterministic, but not known to
the controller. This uncertainty is captured by the distribution p(θ)
representing the lack of knowledge.

At initialization, t = 0, the belief over states and parameters is
assumed to be Gaussian

p

⎛⎝⎡⎣x0

θ0

⎤⎦⎞⎠ = N
⎛⎝⎡⎣x0

θ0

⎤⎦ ;

⎡⎣x̂0

θ̂0

⎤⎦ ,

⎡⎣Σxx
0 Σxθ

0

Σθx
0 Σθθ

0

⎤⎦⎞⎠ . (7.3)

For simplicity, we also assume that the dynamics do not change
over time: p(θt+1 | θt) = δ(θt+1 − θt). This could be relaxed to an au-
toregressive model p(θt+1 | θt) = N (θt+1; Θθt, Ξ), which would give
additive terms in the derivations below. Throughout, we assume a
finite horizon with terminal time T and a quadratic cost function in
states and control inputs

L(x, u) =
T

∑
t=0

(xt − xref
t)⊺Qt(xt − xref

t) +
T−1

∑
t=0

u⊺
t Rtut, (7.4)

where xref = [xref
0 , . . . , xref

T] is a target trajectory. Qt and Rt define state
and control cost, they can be time-varying. The goal, in line with the
standard in both optimal control and reinforcement learning, is to find
the control sequence u that, at each t, minimizes the expected cost to
the horizon

Jt(ut:T−1, p(zt)) = Ezt

[
(xt − xref

t)⊺Qt(xt − xref
t) + u⊺

t Rtut + Jt+1(ut+1:T−1, p(zt+1)) | p(zt)
]

, (7.5)

where past measurements y1:t, controls u1:t−1 and prior information
p(z0) are incorporated into the belief p(zt), relative to which the expec-
tation is calculated. Effectively, p(zt) serves as a bounded rationality
approximation to the true information state [76, §6.5]. Since the equa- [76] Kumar and Varaiya, Stochastic Sys-

tems: Estimation, Identification and Adap-
tive Control, 1986

tion above is recursive, the final element of the cost is

JT(p(zT)) = EzT

[
(xT − xref

T)⊺QT(xT − xref
T) | p(zT)

]
. (7.6)

The optimal control sequence minimizing this cost will be denoted u∗,
with associated cost

J∗t (p(zt)) = min
ut

Ezt

[
(xt − xref

t)⊺Qt(xt − xref
t) + u⊺

t Rtut + J∗t+1(p(zt+1)) | p(zt)
]

. (7.7)

MODEL AND NOTATION | 87

This recursive formulation, if written out, amounts to alternating min-
imization and expectation steps. As ut influences xt+1 and yt+1, it
enters the latter expectation nonlinearly. Classic optimal control is the
base case with known θ, where u∗ can be found by dynamic program-
ming [19, 20]. [19] Bellman, Dynamic Programming,

1957

[20] Bertsekas, Dynamic Programming and
Optimal Control, 2005

Unfortunately, the dynamics for the augmented system are non-
linear, even if the original physical system is linear. This is because
inference is always nonlinear and future states influence future pa-
rameter beliefs, and vice versa. A first problem, not unique to dual
control, is thus that inference is not analytically tractable, even un-
der the Gaussian assumptions above. [42, 4] The standard remedy [42] Fel’dbaum, “Dual Control Theory I-

IV,” 1960–1961

[4] Aoki, Optimization of Stochastic Sys-
tems, 1967

is to use approximations, most popularly the linearization of the ex-
tended Kalman filter [122, §5.2]. This gives a sequence of approximate

[122] Särkkä, Bayesian Filtering and
Smoothing, 2013

Gaussian likelihood terms. But even incorporating these Gaussian
likelihood terms into future dynamics is still intractable because it in-
volves expectations over rational polynomial functions, whose degree
increases with the length of the prediction horizon. The following sec-
tion provides an intuition for this complexity, but also the descriptive
power of the augmented state space.

Remark 7.1
Several authors have previously pointed out another possible construction of
an augmented state: incorporating not the actual value of the parameters θt

in the state, but the parameters θ̂t, Σθθ
t of a Gaussian belief p(θt | θ̂t, Σθθ

t) =

N (θt; θ̂t, Σθθ
t) over them. [65, 56] The advantage of this is that, if the state xt [65] Kappen, “Optimal Control Theory

and the Linear Bellman Equation,” 2011

[56] Hennig, “Optimal Reinforcement
Learning for Gaussian Systems,” 2011

is observed without noise, these belief parameters follow stochastic differential
equations—more precisely, Σθθ

t follows an ordinary (deterministic) differen-
tial equation, while θ̂t follows a stochastic differential equation—and it can
then be attempted to solve the control problem for these differential equations
more directly.

While it can be a numerical advantage, this formulation of the augmented
state also has some drawbacks, which is why we have here decided not to
adopt it: First, the simplicity of the directly formalizable SDE vanishes in
the POMDP setting, i. e. if the state is observed with noise. If the state
observations are corrupted, the exact belief state is not a Gaussian process,
so that the parameters θ̂t and Σθθ

t have no natural meaning. Approximate
methods can be used to retain a Gaussian belief (and we will do so below),
but the dynamics of θ̂t, Σθθ

t are then intertwined with the chosen approxima-
tion (i. e. changing the approximation changes their dynamics), which causes
additional complication. More generally speaking, it is not entirely natural
to give differing treatment to the state xt and parameters θt: Both state and
parameters should thus be treated within the same framework; this also allows
extending the framework to the case where also the parameters do follow an
SDE.

88 | INTRODUCTION TO DUAL CONTROL

7.1.1 An Educational Problem
To provide intuition for the sheer complexity of optimal dual control,
consider the perhaps simplest possible example: the linear, scalar
system

xt+1 = axt + but + ξt, (7.8)

with target xref
t = 0 and noise-free observations (W = 0). If a and b

are known, the optimal ut for a one-step horizon is

u∗
t,oracle = − abxt

R + b2 . (7.9)

Let now parameter b be uncertain, with current belief p(b) =

N (b; b̂t, σ2
t) at time t. The naïve option of simply replacing the param-

eter with the current mean estimate is known as certainty equivalence
(CE) control2 in the dual control literature [16]. The resulting control 2 Sometimes this is also called enforced

certainty equivalence.

[16] Bar-Shalom and Tse, “Dual Effect,
Certainty Equivalence, and Separation
in Stochastic Sontrol,” 1974

law is

u∗
t,ce = − ab̂txt

R + b̂2
t

. (7.10)

CE control is used in many adaptive control settings in practice, but
has substantial deficiencies: If the uncertainty is large, the mean is
not a good estimate, and the CE controller might apply completely
useless control signals. This often results in large overshoots at the
beginning.

A more elaborate solution is to compute the expected cost Eb[x2
t+1 +

Ru2
t | b̂t, σ2

t] and then optimize for ut. This gives optimal feedback (OF)
or “cautious” control [38]3: [38] Dreyfus, “Some Types of Optimal

Control of Stochastic Systems,” 1964

3 Dreyfus used the term “open loop op-
timal feedback” for his approach, a term
that is misleading to modern readers be-
cause it is in fact a closed-loop algorithm.

u∗
t,of = − ab̂txt

R + σ2
t + b̂2

t
. (7.11)

This control law reduces control actions in cases of high parameter
uncertainty. This mitigates the main drawback of the CE controller,
but leads to another problem: Since the OF controller decreases control
with rising uncertainty, it can entirely prevent learning. Consider the
posterior on b after observing xt+1, which is a closed-form Gaussian
because ut is chosen by the controller and has no uncertainty

p(b | b̂t+1, σ2
t+1) = N (b; b̂t+1, σ2

t+1) = N
(

b;
σ2

t ut(but + ξt) + b̂tD
u2

t σ2
t + D

,
σ2

t D
u2

t σ2
t + D

)
(7.12)

(b shows up in the fully observed xt+1 = axt + but + ξt). The dual
effect here is that the updated σ2

t+1 depends on ut. For large values
of σ2

t , according to (7.11), u∗
t,of _ 0, and thus the uncertainty does not

MODEL AND NOTATION | 89

change (σ2
t+1 ≈ σ2

t). The system will never learn or act, even for large
xt. This is known as the “turn-off phenomenon” [14]. [14] Bar-Shalom, “Stochastic Dynamic

Programming: Caution and Probing,”
1981

However, the derivation for OF control above amounts to minimiz-
ing Equation (7.5) for the myopic controller, where the horizon is only
a single step long (T = 1). Therefore, OF control is indeed optimal for
this case. By the optimality principle [20, §1.3], this means that Equa- [20] Bertsekas, Dynamic Programming and

Optimal Control, 2005tion (7.11) is the optimal solution for the last step of every controller.
But since it does not show any form of exploration or “probing” [15], [15] Bar-Shalom and Tse, “Caution, Prob-

ing, and the Value of Information in the
Control of Uncertain Systems,” 1976

a myopic controller is not enough to show the dual properties.
In order to expose the dual features, the horizon has to be at least of

length T = 2. Since the optimal controller follows Bellman’s principle,
the solution proceeds backwards. The solution for the second control
action u1 is identical to the solution of the myopic controller (7.11); but
after applying the first control action u0, the belief over the unknown
parameter b is updated according to Equation (7.12), resulting in

u∗
1 = −

⎡⎣R +
σ2

0 D
u2

0σ2
0 + D

+

(
σ2

0 u0(bu0 + ξ0) + b̂0D
u2

0σ2
0 + D

)2
⎤⎦−1 [

a
σ2

0 u0(bu0 + ξ0) + b̂0D
u2

0σ2
0 + D

x1

]
. (7.13)

Inserting into Equation (7.7) gives

J∗0 (x0) = min
u0

Ex0

[
x2

0 + Ru2
0 + min

u1
Ex1

[
x2

1 + Ru2
1 + Ex2 [x

2
2]
]]

= min
u0

[
x2

0 + Ru2
0 + Eξ0,b

[
x2

1 + R(u∗
1)

2 + Eξ1,b

[
(x1 + bu∗

1 + ξ1)
2 | b̂1, σ2

1

]
| b̂0, σ2

0

]]
.

(7.14)

Since u∗
1 from Equation (7.13) is already a rational function of fourth

order in b, and shows up quadratically in Equation (7.14), the relevant
expectations can not be computed in closed form. [4, §III.3] For this [4] Aoki, Optimization of Stochastic Sys-

tems, 1967simple case, it is possible to compute the optimal dual control by
performing the expectation through sampling b, ξ0, ξ1 from the prior.
Figure 47 shows such samples of L(u0) (; one sample highlighted

), and the empirical expectation J(u0) (). Each sample is a
rational function of even leading order. The average dual cost has
its minima not at zero, but to either side of it, reflecting the optimal
amount of exploration in this particular belief state.

While it is not out of the question that the Monte Carlo solution can
remain feasible for larger horizons, we are not aware of successful so-
lutions for continuous state spaces (however, see the paper by Poupart
et al. [112] for a sampling solution to Bayesian reinforcement learning [112] Poupart et al., “An Analytic Solu-

tion to Discrete Bayesian Reinforcement
Learning,” 2006

in discrete spaces, including notes on the considerable computational
complexity of this approach). The next section describes a tractable
analytic approximation that does not involve samples.

90 | INTRODUCTION TO DUAL CONTROL

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

u0

co
st

Figure 47: Computing the T = 2 dual
cost for the simple system of Equa-
tion (7.8). Costs L(u0) under optimal
control on u1 for sampled parameter
b (; one sample highlighted)
and the expected dual cost J(u0) ().
The optimal u∗

0 lies at the minimum of
the dashed green line.

7.2 Approximate Dual Control for Linear Systems
In 1973, Tse, Bar-Shalom, and Meier proposed a method [142] and an [142] Tse, Bar-Shalom, and Meier, “Wide-

sense Adaptive Dual Control for Nonlin-
ear Stochastic Systems,” 1973

algorithm [141] for approximate dual (AD) control, based on the se-

[141] Tse and Bar-Shalom, “An Actively
Adaptive Control for Linear Systems
with Random Parameters via the Dual
Control Approach,” 1973

ries expansion of the cost-to-go. This is related to differential dynamic
programming for the control of nonlinear dynamic systems [96]. It

[96] Mayne, “A Second-order Gradient
Method for Determining Optimal Tra-
jectories of Non-linear Discrete-time Sys-
tems,” 1966

separates into three conceptual steps, where the first step represents
the outer loop of the algorithm. Together they yield what, from a
contemporary perspective, amounts to a structured Gaussian approx-
imation to Bayesian RL:

① Perform a one-step prediction for an arbitrary control input ut (as
opposed to the analytically computed control inputs for later steps).
Optimize ut numerically by repeated computation of steps ② and
③ at varying ut to minimize the approximate cost.

② Find an optimal trajectory for the deterministic part of the system
under the mean model: the nominal trajectory under certainty equiv-
alent control. For linear systems this is easy (see details below), for
nonlinear ones it poses a nontrivial, but feasible nonlinear model
predictive control problem [3, 34]. [3] Allgöwer et al., “Nonlinear Predic-

tive Control and Moving Horizon Esti-
mation – An Introductory Overview,”
1999

[34] Diehl, Ferreau, and Haverbeke, “Effi-
cient Numerical Methods for Nonlinear
MPC and Moving Horizon Estimation,”
2009

③ Around the nominal trajectory obtained in step ②, construct a local
quadratic expansion that approximates the effects of future obser-
vations. Because the expansion is quadratic, an optimal control
law relative to the deterministic system—the perturbation control—
can be constructed by dynamic programming. Plugging this per-
turbation control into the residual dynamics of the approximate
quadratic system gives an approximation for the cost-to-go. This
step adds the cost of uncertainty to the deterministic control cost.

APPROXIMATE DUAL CONTROL FOR LINEAR SYSTEMS | 91

These three steps will be explained in detail in the subsequent sections.
The interplay between the different parts of the algorithm is shown in
Figure 48.

Initialize
Compute

CE control

① predict state
and covariance

for given ut

② Compute
CE trajectory

and its covariances

③ Evaluate
cost-to-go

search over?
① Compute next value

ut for the search
Apply the

control

Simulate or run
the system

Make new
measurement

yesno

Figure 48: Flowchart of the approximate
dual control algorithm to show the over-
all structure. Adapted from [141]. The
left cycle is the outer loop of the algo-
rithm, performing the nonlinear opti-
mization.

The main purpose of this algorithm is to reduce the highly non-
linear optimization algorithm in multiple dimensions (control inputs
over the horizon) to nonlinear optimization of only the first control
input, by approximating the cost-to go, in an iterative fashion. While
retaining the possibility to explore, this approach alleviates the curse
of dimensionality. This procedure also circumvents the difficulties of
the receding horizon approach in the dual control setting, as noted
by Marafioti, Bitmead, and Hovd [94]: If the excitation is planned [94] Marafioti, Bitmead, and Hovd, “Per-

sistently Exciting Model Predictive Con-
trol,” 2014

for future time steps, in closed-loop the excitation can be delayed at
every time instance, leading to non-explorative behavior. Forcing the
excitation to occur in the first step, this problem does not arise.

7.2.1 The Nominal Reference Trajectory
The certainty equivalent model uses the assumption that the uncertain
parameters θ coincide with their most likely value, the mean θ̂ of p(θ),
and that the system propagates deterministically without noise. This
means that the nominal parameters θ̄ are the current mean values θ̂,
which decouples θ entirely from x in Equation (7.2), and the optimal
control for the finite horizon problem can be computed by dynamic
programming (DP) [20], yielding an optimal linear control law [20] Bertsekas, Dynamic Programming and

Optimal Control, 2005

92 | INTRODUCTION TO DUAL CONTROL

ū∗
i = − (B̄⊺V̄i+1B̄ + Ri)

−1 B̄⊺ [V̄i+1 Āx̄i + v̄i+1] , (7.15)

where we have momentarily simplified notation to Ā = A(θ̄i), B̄ =

B(θ̄i), ∀i because the θ̄i are constant. The V̄i and v̄i for i = t + 2, . . . , T
are defined and computed recursively by the Riccati equation

V̄i = Ā⊺
(

V̄i+1 − V̄i+1B̄ (B̄⊺V̄i+1B̄ + Ri)
−1 B̄⊺V̄i+1

)
Ā + Qi V̄T = QT (7.16a)

v̄i = Ā⊺
(

v̄i+1 − V̄i+1B̄ (B̄⊺V̄i+1B̄ + Ri)
−1 B̄⊺v̄i+1

)
− Qixref

i v̄T = −QTxref
T , (7.16b)

where xref is the reference trajectory to be followed. This CE controller
gives the nominal trajectory of inputs ūt+1:T−1 and states x̄t+2:T , from
the time after the first prediction until the end of the horizon. The
true future trajectory is subject to stochasticity and uncertainty, but
the deterministic nominal trajectory x̄, with its optimal control ū∗ and
associated nominal cost J̄∗t = L(x̄t:T , ū∗

t:T−1) provides a base, relative
to which an approximation will be constructed.

7.2.2 Quadratic Expansion Around the Nominal Trajectory
The central idea of AD control is to project the nonlinear objective
Jt(ut:T−1, p(zt)) of Equation (7.5) onto a quadratic, by locally lineariz-
ing around the nominal trajectory x̄ and maintaining a joint Gaussian
belief.

To do so, we introduce small perturbations around nominal cost,
states, and control: ∆Ji = Ji − J̄i, ∆zi = zi − z̄i, and ∆ui = ui − ūi.
These perturbations arise from both the stochasticity of the state and
the parameter uncertainty. Note that a change in the state results
in a change of the control signal because the optimal control signal
in each step depends on the state. Even though the origin of the
uncertainties is different (∆x arises from stochasticity and ∆θ from
the lack of knowledge), both can be modeled in a joint probability
distribution.

Approximate Gaussian filtering ensures that beliefs over ∆z remain
Gaussian:

p(∆zi) = N
⎡⎣⎛⎝∆xi

∆θi

⎞⎠ ;

⎛⎝∆x̂i

0

⎞⎠ ,

⎛⎝Σxx
i Σxθ

i

Σθx
i Σθθ

i

⎞⎠⎤⎦ . (7.17)

Note that shifting the mean to the nominal trajectory does not change
the uncertainty. Note further that the expected perturbation in the
parameters is nil. This is because the parameters are assumed to be
deterministic and are not affected by any state or input.

Calculating the Gaussian filtering updates is in principle not possi-
ble for future measurements, since it violates the causality principle
[49, §1.4]. Nonetheless, it is possible to use the expected measurements [49] Glad and Ljung, Control Theory: Mul-

tivariable and Nonlinear Methods, 2000

APPROXIMATE DUAL CONTROL FOR LINEAR SYSTEMS | 93

to simulate the effects of the future measurements on the uncertainty,
since these effects are deterministic. This is sometimes referred to as
preposterior analysis [114, §5A.3]. [114] Raiffa and Schlaifer, Applied Statis-

tical Decision Theory, 1961The cost is approximated, to second order around the nominal
trajectory, by

Jt(ut:T−1, p(zt)) = J̄∗t + ∆Jt ≈ J̄∗t + ∆ J̃t, (7.18)

where J̄∗t is the optimal cost for the nominal system and ∆ J̃t is the
approximate additional cost from the perturbation:

∆ J̃t := Ezt:T

[
T

∑
i=t

{
(x̄i − xref

i)⊺Qi∆xi +
1
2

∆x⊺i Qi∆xi

}
+

T−1

∑
i=t

{
ū⊺

i Ri∆ui +
1
2

∆u⊺
i Ri∆ui

}]
. (7.19)

Although the uncertain parameters θ do not show up explicitly in the
above equation, this step captures dual effects: The uncertainty of the
trajectory ∆x depends on θ via the dynamics. Higher uncertainty over
θ at time i − 1 causes higher predictive uncertainty over ∆xi (for each
i), and thus increases the expectation of the quadratic term ∆x⊺i Qi∆xi.
Control that decreases uncertainty in θ can lower this approximate
cost, modeling the benefit of exploration. For the same reason, Equa-
tion (7.19) is in fact still not a quadratic function and has no closed
form solution. To make it tractable, Tse and Bar-Shalom [141] make the [141] Tse and Bar-Shalom, “An Actively

Adaptive Control for Linear Systems
with Random Parameters via the Dual
Control Approach,” 1973

ansatz that all terms in the expectation of Equation (7.19) can be writ-
ten as νi + v⊺i ∆zi + 1/2∆z⊺i Vi∆zi. This amounts to applying dynamic
programming on the perturbed system. Expectations over the cost
under Gaussian beliefs on ∆z can then be computed analytically. Be-
cause all ∆θ have zero mean, linear terms in these quantities vanish in
the expectation. This allows analytic minimization of the approximate
optimal cost for each time step

∆ J̃∗i (p(zi)) = min
∆ui

{
(xi − xref

i)⊺Qi∆x̂i|i +
1
2

∆x̂⊺i|iQi∆x̂i|i + u⊺
i Ri∆ui +

1
2

∆u⊺
i Ri∆ui

+
1
2

tr
[

QiΣxx
i|i
]
+ E

∆zi+1

[
∆ J̃∗i+1(y1:i+1) | p(zi)

]}
, (7.20)

which is feasible given an explicit description of the Gaussian filter-
ing update. It is important to note that, assuming extended Kalman
filtering, the update to the mean from expected future observations
yi+1 is nil. This is because we expect to see measurements consistent
with the current mean estimate. Nonetheless, the covariance changes
depending on the control input ui, which is the dual effect.

Following the dynamic programming equations for the perturbed
problem (see Section 2.3.4), including the additional cost from uncer-

94 | INTRODUCTION TO DUAL CONTROL

tainty (see Section 2.3.5), the resulting cost amounts to [142] [142] Tse, Bar-Shalom, and Meier, “Wide-
sense Adaptive Dual Control for Nonlin-
ear Stochastic Systems,” 1973

∆ J̃∗t (p(zt)) = ν̃t+1 + ṽ⊺t+1∆ẑt +
1
2

∆ẑ⊺t Ṽt+1∆ẑt

+
1
2

tr

{
QTΣxx

T|T +
T−1

∑
i=t

[
QiΣxx

i|i + (Σi+1|i − Σi+1|i+1)Ṽi+1

]}
. (7.21)

Recalling that ∆θ = 0 and dropping the constant part, the dual cost
can be approximated to be

Jd
t =

1
2

tr

{
QTΣxx

T|T +
T−1

∑
i=t

[
QiΣxx

i|i + (Σi+1|i − Σi+1|i+1)Ṽi+1

]} (
= ∆ J̃∗t − const

)
(7.22)

where the recursive equation

Ṽi = Ã⊺
i

(
Ṽi+1 − Ṽi+1B̃i

(
B⊺

i Ṽxx
i+1Bi + Ui

)−1 B̃⊺
i Ṽi+1

)
Ãi + Q̃i ṼT = Q̃T (7.23)

is defined for the augmented system (7.2), with Ãi = ∂
∂z f̃

⏐⏐
z̄i

, B̃i =
∂

∂u f̃
⏐⏐
z̄i

and Q̃i = blkdiag(Qi, 0). The approximation to the overall
cost is then J̄∗t + Jd

t , which is used as a cost function in the subsequent
optimization procedure.

7.2.3 The Value of Information
The value of information refers to the fact that not all parameters of
an uncertain model are equally important. If a certain parameter is
important for the future control performance, it can be beneficial to
identify this parameter and it might pay off to invest some energy in
its identification. If a parameter does not have an important impact
on the future cost, its identification can be neglected.

The second-order approximation defines a quadratic reference track-
ing problem based on the CE trajectory. The resulting cost-to-go con-
tains the dual term (7.22), which adds a cost that results from the
uncertainty. The term Qi+1Σxx

i+1 represents the cost of the state un-
certainty in future time steps. Since the source of this uncertainty is
mostly control actions with uncertain outcome (such as an unknown
gain), adding this term results in cautious behavior of the control sys-
tem. The final term

[
Σi+1|i − Σi+1

]
Vi+1 is the most interesting part,

as it represents an approximate measure for the value of information:
It introduces a cost that weighs the covariance update

[
Σi+1|i − Σi+1

]
by the value matrix Vi+1. This results in high cost for important pa-
rameters, indicated by large values in Vi+1, that are learned during
the process, indicated by large values in the covariance update. If
the parameters are either unimportant, precisely known, or can not
be learned, this additional cost term vanishes. Thus, this term in the
dual cost is an approximation to the value of information.

A SIMPLISTIC EXPERIMENT | 95

7.2.4 Approximate Dual Control by Optimizing the Next Input
The first step ① amounts to the outer loop of the overall algorithm.
A gradient-free black-box optimization algorithm4 is used to find the 4 We use Matlab’s fminsearch in our

implementation.minimum of the overall cost function, including the dual cost. In every
step, this algorithm proposes a control input ut for which the cost is
evaluated.

Depending on ut, approximate filtering is carried out until the
end of the horizon. The perturbation control is plugged into Equa-
tion (7.20) to give an analytic, recursive definition for Ṽi, and an ap-
proximation for the dual cost Jd

t , as a function of the current control
input ut.

Nonlinear optimization—through repetitions of steps ② and ③ for
proposed locations ut—then yields an approximation to the optimal
dual control u∗

t . Conceptually the simplest part of the algorithm, this
outer loop dominates computational cost because for every location
ut the whole machinery of ② and ③ has to be evaluated.

7.3 A Simplistic Experiment
The educational example from Section 7.1.1 can be used to show qual-
itative differences between cost functions for different approximation
techniques, highlighting some of the dual control features. We com-
pare the approximate dual controller introduced in Section 7.2 and
two other controllers: The certainty equivalent (CE) controller and a
controller minimizing the sum of CE cost and a Bayesian exploration
bonus (EB) [149], which in this particular example amounts to [149] Wittenmark, “An Active Subopti-

mal Dual Controller for Systems with
Stochastic Parameters,” 1975leb = τσ2, (7.24)

where τ is a scalar exploration weight and σ is the uncertainty of
the parameter b. The additional cost term leb is evaluated for the
predicted parameter covariance. This type of controller is sometimes
also counted towards dual control, while being referred to as explicit
dual control, where the dual features are obtained by a modified cost
function [44]. [44] Filatov and Unbehauen, “Survey of

Adaptive Dual Control Methods,” 2000For the noise-free linear system of Section 7.1.1, (a = 1 (known),
b = 2, p(b) = N (b; 1, 10), D = 10−1, W = 0, Q = 1, R = 1, T =

2), Figure 49 compares the cost functions of the different controllers
and the sampling solution, which is close to the exact one, but only
available for this very simple setup. All cost functions are shifted
by an irrelevant constant. The CE cost is quadratic and indifferent
about zero, i. e. the location of zero has no influence on the shape of
this cost. The EB (τ = 0.1) gives additional structure near zero that
encourages learning. While qualitatively similar to the dual cost, its

96 | INTRODUCTION TO DUAL CONTROL

global minimum is almost at the same location as that of CE. The dual
control approximates the sampling solution much closer.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

u0

co
st

Figure 49: Comparison of sampling
() to three approximations: CE
(), CE with Bayesian exploration
bonus (), and the approximate dual
control constructed in Section 7.2 ().

7.4 Conclusion
In this chapter, we discussed the basic idea of dual control and the fun-
damental problem of intractability arising from nested expectations
and minimizations. We presented an existing dual control approxi-
mation that is based on series-expansion of the cost-to-go function,
and we analyzed the resulting cost function to highlight the value of
information. In a simple experiment, we showed the effect of the ap-
proximate dual control algorithm on the cost function and compared
it to other approaches as well as an almost exact sampling solution.

The presented approximation to dual control is promising, but the
original method only was applied to linear systems. This motivates
the extension to nonlinear systems in the following chapter.

8Nonlinear Dual Control

Optimal identification and control of uncertain dynamical sys-
tems can only be achieved approximately. The preceding chap-

ter gave an introduction to the topic of dual control and the approx-
imation originally used by Tse, Bar-Shalom, and Meier [142]. While [142] Tse, Bar-Shalom, and Meier, “Wide-

sense Adaptive Dual Control for Nonlin-
ear Stochastic Systems,” 1973

this introductory work is relatively general, the explicit formulation
[141] only applies to linear systems.

[141] Tse and Bar-Shalom, “An Actively
Adaptive Control for Linear Systems
with Random Parameters via the Dual
Control Approach,” 1973

In this chapter, we extend the framework with ideas from contem-
porary machine learning. Specifically, we show the necessary changes
to apply dual control to parametric linear regression in nonlinear fea-
ture spaces (Section 8.1.1), and how this idea can be carried further to
work non-parametrically in a Gaussian process context (Section 8.1.2).
We also give a simple, small-scale example for the use of this algorithm
if the environment model is constructed with a feed-forward neural
network rather than a Gaussian process (Section 8.1.3). Finally, we
show experimental results from simulations to visualize the impor-
tant features of the dual control framework (Section 8.2).

8.1 Extension to NonlinearModels
Again, we consider a discrete-time, finite-horizon stochastic optimal
control problem. In contrast to Section 7.1, we consider a nonlinear
system of the form

xt+1 = ft(xt, ut; θt) + ξt (state dynamics) (8.1a)

yt = Cxt + γt (observation model), (8.1b)

with state xt ∈ Rnx and input ut ∈ R. The state is disturbed by
zero-mean Gaussian noise ξt of covariance D and the measurement
by γt of covariance W. The generative model is p(xt+1 | xt, ut) =

N (xt+1; ft(xt, ut; θt), D) and p(yt | xt) = N (yt; Cxt, W), with a linear
map C ∈ Rny×nx .

The extension to nonlinear models is guided by the desire to use a
number of regression frameworks popular in machine learning, such
as, parametric general least-squares regression, nonparametric Gaus-
sian process regression, or feed-forward neural networks (including
the base case of logistic regression).

98 | NONLINEAR DUAL CONTROL

8.1.1 Parametric NonlinearModels
We begin with a generalized linear regression model of the form

xt+1 = A(θt)ϕ(xt) + B(θt)ut + ξt, (8.2)

where we use the same definition for the dynamics matrices A(θt) and
B(θt) as for the linear system in Section 7.1. The difference is that the
states xt are now mapped into a nonlinear feature space. The nonlinear
features ϕ(x) can in principle be any function (popular choices include
sines and cosines, radial basis functions, sigmoids, polynomials and
others), with the caveat that their structure crucially influences the
properties of the model. From a modeling perspective, this approach
is quite standard for machine learning. However, the dynamical learn-
ing setting requires an adaptation: To allow the modeling of higher-
order dynamical systems, the original states must be included. This
results in feature vectors of the form ϕ(x)⊺ = [x⊺, φ(x)⊺], consisting of
the linear representation, augmented by general features φ(x). While
we chose to model the input response linearly, it can of course also be
included in the nonlinear feature space as ϕ(x, u), which complicates
the equations below but otherwise will work as expected.

The main challenge to apply the approximate dual control scheme
introduced in Section 7.2 is that the optimal control for nonlinear dy-
namical systems can not be optimized in closed form using dynamic
programming, not even for the deterministic nominal system. Instead,
we find the nominal reference trajectory using nonlinear model predic-
tive control [3, 34]. This adds computational cost, and requires some [3] Allgöwer et al., “Nonlinear Predic-

tive Control and Moving Horizon Esti-
mation – An Introductory Overview,”
1999

[34] Diehl, Ferreau, and Haverbeke, “Effi-
cient Numerical Methods for Nonlinear
MPC and Moving Horizon Estimation,”
2009

care to achieve stable optimization performance for specific system
setups.

State filtering from observations is also more involved in the case
of nonlinear dynamics. In the experiments reported below, we stayed
within the extended Kalman filtering framework [122, §5.2] to retain

[122] Särkkä, Bayesian Filtering and
Smoothing, 2013

Gaussian beliefs over states and parameters. Other methods with
this property will work similarly, this includes relatively standard
options like unscented Kalman filtering [143], but also more recent

[143] Uhlmann, “Dynamic Map Build-
ing and Localization: New Theoretical
Foundations,” 1995

developments in machine learning and probabilistic control, such as
analytic moment propagation if the features φ are selected accordingly
[33]. [33] Deisenroth and Rasmussen,

“PILCO: A Model-Based and Data-
Efficient Approach to Policy Search,”
2011

The final problem is the generalization of the dual cost formulation
to the nonlinear dynamics. We take a relatively simplistic approach,
which nevertheless turns out to work well. A linearization gives locally
linear dynamics whose structure closely matches Equation (7.2):

EXTENSION TO NONLINEAR MODELS | 99

zt+1 =

⎛⎝x̄t+1 + ∆xt+1

θ̄t+1 + ∆θt+1

⎞⎠ =

⎛⎝A(θt) 0

0 I

⎞⎠⎛⎝ϕ(x̄t + ∆xt)

θ̄t + ∆θt

⎞⎠+

⎛⎝B(θt)

0

⎞⎠ ut +

⎛⎝ξt

0

⎞⎠
≈
⎛⎝A(θ̄t) 0

0 I

⎞⎠⎛⎝ϕ(x̄t)

θ̄t

⎞⎠+

⎛⎝B(θ̄t)

0

⎞⎠ ut +

⎛⎝ξt

0

⎞⎠
+

⎛⎝A(θ̄t)
∂

∂xt
ϕ(x̄t)

∂
∂θt

(
A(θ̄t)ϕ(x̄t) + B(θ̄t)ut

)
0 I

⎞⎠⎛⎝∆xt

∆θt

⎞⎠ .

(8.3)

This essentially amounts to extended Kalman filtering on the aug-
mented state. Using this linearization, the approximation described
in Section 7.2 can be applied analogously, which results in an approx-
imation for the dual cost.

8.1.2 Nonparametric Gaussian ProcessModels
The above treatment of parametric nonlinear models makes it compa-
rably easy to extend the description from finitely many feature func-
tions to an infinite-dimensional feature space defining a Gaussian
process (GP) dynamics model:

xt+1 = f (xt) + B(θt)ut + ξt (8.4)

Assume that the true dynamics function f is a draw from a Gaus-
sian process prior p(f) = GP(f ; m̄, k̄) with prior mean function
m̄ : Rnx _ Rnx , and prior covariance function (kernel) k̄ : Rnx ×
Rnx _ Rnx×nx . This is using the widely used notion of “multi-output
regression” [115, § 9.1], i. e. formulating the covariance as [115] Rasmussen and Williams, Gaussian

Processes for Machine Learning, 2006

cov(fi(x), f j(x′)) = k̄ij(x, x′). (8.5)

To simplify the treatment, we assume that the covariance factorizes
between inputs and outputs, i. e. k̄ij(x, x′) = Uijk(x, x′) with a uni-
variate kernel k : Rnx × Rnx _ R and a positive semidefinite matrix
U ∈ Rnx×nx of output covariances.

Using Mercer’s theorem [73, §3.a], we can decompose the kernel [73] König, Eigenvalue Distribution of
Compact Operators, 1986into a converging series over eigenfunctions ϕl(x), as

k(x, x′) =
∞

∑
l=1

λlϕl(x)ϕ∗
l (x′) := ΦΛΦ⊺, (8.6)

where we have defined the infinite-dimensional inner product ΦΛΦ⊺

for the feature vectors Φ and the infinite-dimensional diagonal matrix
Λ with elements Λll = λl .

100 | NONLINEAR DUAL CONTROL

Using this notation, we can use the suggestive notation ft(xt) =

LΩΦ(xt) for the generative model

f i(xt) =
n

∑
j=1

Lij

∞

∑
l=1

Ωjlϕl(xt), (8.7)

where L is a matrix satisfying LL⊺ = U (e. g., the Cholesky decompo-
sition), and the elements of Ω are draws from the “white” Gaussian
process Ωjl ∼ N (0, λl). Because of Mercer’s theorem above, Equa-
tion (8.7) exists in mean-square expectation, and is well-defined in this
sense. [1, 115] This notation allows writing the current GP belief as a [1] Adler, The Geometry of Random Fields,

1981

[115] Rasmussen and Williams, Gaussian
Processes for Machine Learning, 2006

nonparametric prior with mean θ̂0 and covariance Σθθ
0 = U ⊗ (ΦΛΦ⊺).

Using this notation, a tedious but straightforward linear algebra
derivation (see Appendix A.3) shows that the posterior over z⊺ =

[x⊺, θ⊺] after a number t of EKF-linearized Gaussian observations is a
tractable Gaussian process, for which the Gram matrix

G = P +D +K+A−1WA−⊺ (8.8)

consists of the parts

P =

⎡⎣A0Σxx
0 A⊺

0 0

0 0

⎤⎦ D = (D ⊗ I) K = k(y0:t−1, y0:t−1) W = (W ⊗ I) (8.9)

of appropriate size, depending on the current time t. The multi-step
state transition matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 · · · 0

A1 I 0 · · · 0

A2 A1 A2 I · · · 0
...

. . .

At−1 · · · A1 At−1 · · · A2 · · · I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8.10)

is needed to account for the effect of the measurement noise W over
time. The dynamics matrices At are the Jacobians ∇x f (x)|xt

.
The posterior mean now evaluates to⎡⎣x̂t

θ̂t

⎤⎦ =

⎡⎣x̂t−1

0

⎤⎦+

⎡⎣Φ(x̂t−1)ΛΦ(y0:t−1)
⊺

ΛΦ(y0:t−1)
⊺

⎤⎦ G−1(y1:t − CA:,0 A0 x̂0),

(8.11)

with C = (C ⊗ I) of appropriate size.

EXTENSION TO NONLINEAR MODELS | 101

The posterior covariance is comprised of

Σ̄xx
t = At−1Σxx

t−1 A⊺
t−1 + D + Φ(x̂t−1)Σθx

t−1 A⊺
t−1 + At−1Σxθ

t−1Φ(x̂t−1)
⊺ + Φ(x̂t−1)Σθθ

t−1Φ(x̂t−1)
⊺ (8.12a)

Σxx
t = Σ̄xx

t − Σ̄xx
t [Σ̄xx

t + W]
−1 Σ̄xx

t (8.12b)

Σxθ
t = At−1,:Φ(y0:t−1)Λ −At−1,: [P +K+D] G−1Φ(y0:t−1)Λ (8.12c)

Σθx
t = (Σxθ

t)⊺ (8.12d)

Σθθ
t = Λ − ΛΦ(y0:t−1)

⊺G−1Φ(y0:t−1)Λ. (8.12e)

This formulation, together with the expositions in the preceding
sections, defines a nonparametric dual control algorithm for Gaussian
process priors. It is important to stress that this posterior is indeed
“tractable” in so far as it depends only on a Gram matrix of size
nxt × nxt, and the posterior over any f (x) can be computed in time
O((nxt)3), despite the infinite-dimensional state space.

An Approximation of Constant Computational Cost

In practical control applications, continuously rising inference cost is
rarely acceptable. It is thus necessary to project the GP belief onto a
finite representation, replacing the infinite sum in Equation (8.6) with
a finite one, to bound the computational cost of the matrix inversion in
Equations (8.11), (8.12c) and (8.12e). We use a finite representation to
approximate the kernel function, similar to the ones recently presented
by Rahimi and Recht [113], and by Lázaro-Gredilla et al. [82]. The [113] Rahimi and Recht, “Random Fea-

tures for Large-Scale Kernel Machines,”
2008

[82] Lázaro-Gredilla et al., “Sparse Spec-
trum Gaussian Process Regression,”
2010

approximation is described in Section 1.6.2.

8.1.3 Feedforward Neural NetworkModels
Another extension of the parametric linear models of Section 8.1.1 is
to allow for a nonlinear parametrization of the dynamics function

f (x; θ) = ∑
i

θlin
i ϕi(x; θnonlin

i). (8.13)

A particularly interesting example of this structure are multilayer per-
ceptrons. Consider a two-layer network with logistic link function σ,
defined for each state xi

xi
t+1 = f i(xt) = ∑

l
θout

il σ

(
∑

j
θin

l j xj
t + θbias

l

)
, (8.14)

where θout are the weights from the latent to the output layer, θin are [102] Nguyen and Widrow, “Neural
Networks for Self-learning Control Sys-
tems,” 1990

[121] Rumelhart, Hinton, and Williams,
“Learning Representations by Back-
propagating Errors,” 1986

[118] Robbins and Monro, “A Stochastic
Approximation Method,” 1951

the weights from input to hidden units, and θbias are the biases of the
hidden units (see Figure 50). Superscripts denote vector elements.

Neural networks for control applications were proposed multiple
times, see e. g., [102]. Instead of using backpropagation and stochastic
gradient descent as in most applications of neural networks [121, 118],

102 | NONLINEAR DUAL CONTROL

x1
t+1 x2

t+1 x3
t+1 x4

t+1

s1
t s2

t s3
t s4

t s5
t s6

t

θbiasx1
t x2

t x3
t x4

t xi
t

θin

si
t = σ

(
∑j θin

ij xj
t + θbias

i

)θout

xi
t+1 = f i(xt) = ∑j θout

ij sj
t

Figure 50: Two-layer feed-forward neu-
ral network. Sketch to illustrate the struc-
ture of Equation (8.14).the EKF inference procedure can be used to train the weights as well

[130]. This is possible because the EKF linearization can be applied [130] Singhal and Wu, “Training Mul-
tilayer Perceptrons with the Extended
Kalman Algorithm,” 1989

for the nonlinear link function, e. g., the logistic function. Speaking
in terms of feature functions, not only the weight of each feature
but also the shape (steepness) can be inferred. A limiting factor for
this inference is the number of data points: the more features and
parameters are introduced, the more data points are necessary to
learn.

Using the state augmentation z⊺ = (x⊺ θout⊺ θin⊺ θbias⊺), and lin-
earizing w. r. t. all parameters in each step, the EKF inference on the
neural network parameters allows us not only to apply relatively cheap
inference on them, but also to use the dual control framework to plan
control signals, accounting for the effect of future observations and
the subsequent change in the belief. This means the approximate
dual controller described in Section 7.2 can identify those parts of
the neural net that are relevant for applying optimal control to the
problem at hand. In Section 8.2.2, we show an experiment with these
properties.

8.2 Experiments
We show the features of dual control on a set of different simulated
control problems. Relative to a lower bound (LB), which represents
the minimal cost a fully informed system can obtain, we compare three
different controllers: A simple certainty equivalent (CE) controller, a
CE controller with exploration bonus (EB) and the approximate dual
(AD) controller.

The exploration bonus [149] for multiple parameters is defined as [149] Wittenmark, “An Active Subopti-
mal Dual Controller for Systems with
Stochastic Parameters,” 1975leb = τ tr

[
Σθθ
]

, (8.15)

where τ is a scalar exploration weight and Σθθ is the uncertainty on
the parameters. The exploration bonus is evaluated for the predicted

EXPERIMENTS | 103

parameter covariance where the prediction time is chosen according to
the order of the system so that the effect of the current control signal
shows up in the belief over the parameters. Every experiment was
repeated 50 times with different random seeds, which were shared
across controllers for better comparability.

All systems presented below are very simple setups. Their primary
point is to show qualitative differences of the controllers’ behaviors.
The experiments were done with different approximations from the
preceding section to show experimental feasibility for each of them.

The feature set used for a specific application is part of the prior
assumptions for that application. Large uncertainty requires flexible
models, which take longer to converge and require more exploration.
Feature selection is important, but since it is independent of the dual
control framework itself and a broad topic on its own, it is beyond the
scope of this thesis. In the following experiments, different feature
sets are used both as examples for the flexibility of the framework, but
also to model different structural knowledge about the problems at
hand.

8.2.1 Time-dependent Exploration
A cart on a rail is a simple example for a dynamical system. Combined
with a nonlinearly varying slope, a simple nonlinear system can be
constructed. The dynamics, prior beliefs, and true values for the
parameters are chosen to be

xt+1 =

⎡⎣1 0.4

0 1

⎤⎦ xt +

⎡⎣ 0 0

θ1 θ2

⎤⎦⎡⎣φ1(x1
t)

φ2(x1
t)

⎤⎦+

⎡⎣0

1

⎤⎦ ut, (8.16)

with

θ ∼ N
⎛⎝⎡⎣0

0

⎤⎦ ,

⎡⎣1 0

0 1

⎤⎦⎞⎠ θtrue =

⎡⎣0.8

0.4

⎤⎦ , (8.17)

where superscripts denote vector elements. The nonlinear functions
φ are shifted logistic functions of the form

φ1(x) = − 1
1 + e(x+5)

φ2(x) =
1

1 + e−(x−5)
, (8.18)

and disturbance/noise is chosen to be D = W = 10−2 I. We use this
setup as a testbed for a time-structured exploration problem. The
actual system and its dynamics are relatively irrelevant here, as we
focus on a complication caused by the cost function: The reference to
be tracked is

104 | NONLINEAR DUAL CONTROL

xref
0:11 =

⎡⎣0

0

⎤⎦ xref
12:14 =

⎡⎣10

0

⎤⎦ xref
15 =

⎡⎣0

0

⎤⎦ xref
16:18 =

⎡⎣−10

0

⎤⎦ xref
19:20 =

⎡⎣0

0

⎤⎦ , (8.19)

which is also shown in each plot of Figure 51 (). The state weight-
ing is time-dependent with

Q0:4 =

⎡⎣10 0

0 0

⎤⎦ Q5:10 =

⎡⎣0 0

0 0

⎤⎦ Q11:20 =

⎡⎣100 0

0 0

⎤⎦ , (8.20)

and control cost is relatively low: R = 10−3. The task, thus, is to
first keep the cart fixed at the origin, for the first 4 time steps. This is
followed by a “loose” period between time steps 5 and 10. Then, the
cart has to be moved to one side, back to the center, to the other side,
and back again, all at high cost. A good exploration strategy in this
setting is to act cautiously for the first 4 time steps, then aggressively
explore in the “loose” phase, to finally be able to control the motion
with high precision.

The inference model is a GP with approximated SE kernel, as de-
scribed in Section 1.6.2. We use 30 alternating sine and cosine features
that are distributed according to the power spectrum of the full SE ker-
nel. Since the true nonlinearity of Equation (8.18) is not of this form,
the approximation is out of model and the lower bound controller
only represents a perfectly learned, but still not exact, model.

Figure 51 shows a density estimated from 50 state trajectories for
the four different controllers. The lower bound controller (top) con-
trols precisely at times of high cost, and does nothing for times with
zero cost, controlling perfectly up to the measurement and state distur-
bances. The certainty equivalent controller (second from top) never
explores actively, it only learns “accidentally” from observations aris-
ing during the run. Since the initial trajectory requires little action, it is
left with a bad model when the reference starts to move at time step 12.
The exploration bonus controller (second from bottom) continuously
explores, because it has no way of knowing about the “loose” phase
ahead. Of course, this strategy incurs a higher cost initially. The dual
controller (bottom) effectively holds off exploration until it reaches the
“loose” phase, where it explores aggressively.

EXPERIMENTS | 105

−10
0

10

x1

0 2 4 6 8 10 12 14 16 18 20
0
2
4
6

time step

co
st

−10
0

10

x1

−10
0

10

x1

−10
0

10

x1

state cost no state cost high state cost

Figure 51: Controller comparison for
time-dependent exploration. Top four:
Density estimate for 50 trajectories (sec-
ond state). From top to bottom: lower
bound (), certainty equivalent con-
trol (), CE with Bayesian explo-
ration bonus (), approximate dual
control (). Reference trajectory
(). Bottom: The mean cost per time
step is shown in the bottom plot, with
colors matching the controllers noted
above.

8.2.2 Relevance-dependent Exploration
The system, including nonlinearities, for this experiment is the same
as before, although with noise parameters D = W = 10−3 I. The
reference trajectory and state weighting are much simpler:

xref
0:11 =

⎡⎣0

0

⎤⎦ xref
12:18 =

⎡⎣10

0

⎤⎦ xref
18:20 =

⎡⎣0

0

⎤⎦ , (8.21)

with the time-dependent weighting

Q0:10 =

⎡⎣0 0

0 0

⎤⎦ Q11:20 =

⎡⎣10 0

0 0

⎤⎦ , (8.22)

allowing for identification in the beginning, while penalizing devia-
tions of the first state in later time steps.

Important to note here is that the reference trajectory only passes
areas of the state space where φ1 is strong, and φ2 is negligible. Good
exploration thus will ignore the second parameter θ2, but this can only
be found through reasoning about future trajectories.

In this experiment, the learned model is of the neural network
form described in Section 8.1.3. We use 4 logistic features (see Equa-
tion (8.14)) with two free parameters each (θin and θout) and equally
spaced θbias between −5 and 5, the locations of the true nonlinear

106 | NONLINEAR DUAL CONTROL

features. This means it is possible to learn the perfect model in this
case.

Figure 52 shows a density estimated from 50 state trajectories for the
four different controllers. Because of symmetry in the cost function
and feature functions, EB (with τ = 1) can not “decide” between the
relevant θ1 and the irrelevant θ2, identifying both under high control
cost. It thus reduces the uncertainty on θ2, which does not help the
subsequent control. The AD controller ignores θ2 completely, and only
identifies θ1 in early phases, leading to good control performance.

−10
0

10

x1

−10
0

10

x1

−10
0

10

x1

−10
0

10

x1

0 2 4 6 8 10 12 14 16 18 20
0

0.2
0.4
0.6
0.8

time step

co
st

no state cost state cost

Figure 52: Controller comparison for
relevance-dependent exploration. Top
four: Density estimate for 50 trajecto-
ries (second state). From top to bottom:
lower bound (), certainty equiva-
lent control (), CE with Bayesian
exploration bonus (), approximate
dual control (). Reference trajectory
(). Bottom: The mean cost per time
step is shown in the bottom plot, with
colors matching the controllers noted
above.

8.2.3 InformationMaintenance
The last experiment is again similar to Section 8.2.1, but uses a dif-
ferent set of nonlinear functions: shifted, non-normalized Gaussian
functions

φ1(x) = e−
(x−2)2

2 φ2(x) = e−
(x+2)2

2 θtrue =

⎡⎣1.0

0.8

⎤⎦ . (8.23)

For this experiment, the model is learned with parametric linear re-
gression, according to Section 8.1.1. The fundamental difference to the
other experimental setups is that the model now assumes parameter
drift. This results in growing uncertainty for the parameters over time.
The true parameters are kept constant for simplicity.

EXPERIMENTS | 107

The reference to be tracked passes through both nonlinear features
but then stays at one of them:

xref
0:6 =

⎡⎣−5

0

⎤⎦ xref
7 =

⎡⎣−4

0

⎤⎦ xref
8 =

⎡⎣−2

0

⎤⎦ xref
9 =

⎡⎣0

0

⎤⎦ xref
10:20 =

⎡⎣2

0

⎤⎦ . (8.24)

The cost structure is

Q0:5 =

⎡⎣0 0

0 0

⎤⎦ Q6:20 =

⎡⎣10 0

0 0

⎤⎦ , (8.25)

such that state deviations from the reference are penalized starting
from time instant 6.

−2

0

2

θ1

−2

0

2

θ2

−5

0

x1

−2

0

2

−2

0

2

0 5 10 15 20

−2

0

2

time step
0 5 10 15 20

−5

0

time step

−5

0

0 5 10 15 20

−2

0

2

time step

Figure 53: Controller comparison un-
der fading beliefs. Parameter knowl-
edge (left, middle) and state trajectory
(right) for different controllers. From top
to bottom: certainty equivalent control
(), CE with Bayesian exploration
bonus (), approximate dual control
(). The true parameters are the
black lines.

Figure 53 shows the parameter belief and relevant state of a single
run of this experiment over time. It shows that the in the beginning
necessary parameter θ1 is learned early by EB and the AD controller,
while CE learns only “accidentally”. The EB controller also learns
the second parameter in the beginning, even though the knowledge
will be lost over time. When the trajectory reaches the zone of the
second parameter, the EB controller tries to lower the growing un-
certainty over the first parameter θ1 every now and then (visible by
the change in state x1), incurring high cost. AD control completely
ignores the growing uncertainty on θ1 after reaching the area of θ2,
thus preventing unnecessary exploration.

8.2.4 Quantitative Comparison
The above experiments aim at emphasizing qualitative strengths of AD
control over simpler approximations. It is desirable for a controller

108 | NONLINEAR DUAL CONTROL

to deal with flexible models of many parameters, many of which will
invariably be superfluous for a given trajectory. For reference, Table 3
also shows quantitative results: Averages and standard deviations of
the cost, from the 50 runs for each controller. The AD controller shows
good performance overall; interestingly, it also has low variance. CE
and EB were more prone to instabilities.

Exp. 8.2.1 Exp. 8.2.2 Exp. 8.2.3
mean std mean std mean std

LB 7.15 3.85 1.75 0.33 0.66 0.51
CE 15.72 5.20 2.49 0.74 1.76 0.90
EB 20.88 6.74 2.64 0.37 84.91 6.77
AD 14.33 5.40 1.96 0.34 1.62 0.56

Table 3: Quantitative comparison of dif-
ferent controllers. Average and standard
deviation of costs in the experiments for
50 runs.

8.3 Conclusion
The dual control framework developed by Tse and Bar-Shalom [141] is [141] Tse and Bar-Shalom, “An Actively

Adaptive Control for Linear Systems
with Random Parameters via the Dual
Control Approach,” 1973

a promising approach to the intractable dual control problem because
the approximation to the dual cost retains the value of information. In
this chapter, we showed how this method can be applied to contempo-
rary nonlinear inference methods from machine learning, including
approximate Gaussian process regression and multi-layer networks.
The result is a tractable approximation that captures notions of struc-
tured exploration, like the value of waiting for future exploration
opportunities, and distinguishing relevant from irrelevant model pa-
rameters.

On several simulated systems we showed the potential of this frame-
work in the nonlinear setting. Retaining the value of information is
crucial for applying dual control for rich model classes because sim-
pler approaches—like exploration bonuses or constant excitation—
can show limited performance in these cases.

9Dual Control for Buildings

Building climate control is a problem that has raised significant
attention in recent years, due to its potential impact on the world-

wide energy consumption: A large amount of the globally consumed
energy is used for buildings. [80] This has sparked recent interest in [80] Lausten, Energy Efficiency Require-

ments In Building Codes, Energy Efficiency
Policies For New Buildings, 2008

model predictive control (MPC) for buildings [54, 106, 87, 11], making

[54] Gwerder and Tödtli, “Predictive
Control for Integrated Room Automa-
tion,” 2005

[106] Oldewurtel et al., “Energy Effi-
cient Building Climate Control Using
Stochastic Model Predictive Control and
Weather Predictions,” 2010

[87] Ma, Matusko, and Borrelli, “Stochas-
tic Model Predictive Control for Build-
ing HVAC Systems: Complexity and
Conservatism,” 2015

[11] Aswani et al., “Reducing Transient
and Steady State Electricity Consump-
tion in HVAC Using Learning-Based
Model-Predictive Control,” 2012

use of predictions of the model as well as external error sources, such
as weather conditions and occupancy. However, these techniques
require a sufficiently accurate system model. As the parameters of
the model generally vary with the building and potentially with time,
parameter identification has to be performed individually for each
building during operation, which can be expensive.

Adaptive controllers offer the potential to obtain accurate models
for a low energy footprint over the whole lifetime of the building.
While passively learning adaptive control systems can only learn by
evaluating past measurements, dual controllers, as presented in Chap-
ters 7 and 8, can enhance the learning procedure by also reasoning
about the effect of current actions on the future control performance.
This way, dual control can make use of certain parts of the problem
structure to identify the model more efficiently than purely passive
control systems. For example, a dual controller can identify at times
where the energy cost or demand is low (making use of real-time-
pricing or day/night tariffs) to obtain more precise control at times of
high control cost.

Dual control has regained attention over the past few years, not only
in combination with MPC [27], but also in the use for building control [27] Cheng, Haghighat, and Di Cairano,

“Robust Dual Control MPC with Appli-
cation to Soft-landing Control,” 2015

[151]. However, most of these methods are relying on explicit dual

[151] Zacekova et al., “Dual Control Ap-
proach for Zone Model Predictive Con-
trol,” 2013

control techniques [44], where the cost function is modified in a way

[44] Filatov and Unbehauen, “Survey of
Adaptive Dual Control Methods,” 2000

to enforce exploration. In contrast, we favor an implicit dual control
formulation [141], where the value of information emerges from the

[141] Tse and Bar-Shalom, “An Actively
Adaptive Control for Linear Systems
with Random Parameters via the Dual
Control Approach,” 1973

approximation to optimal dual control on the augmented system (see
Chapter 7 for an overview of the overall method).

In its classic form, the framework by Tse and Bar-Shalom [141] is
not able to address aspects central to many modern control problems:
nonlinear dynamics, constraints, and non-quadratic cost functions. In
Chapter 8, we extended the approximate dual control framework to
nonlinear systems. In this chapter, we additionally address systems
with constraints and non-quadratic cost functions. Dual control is
particularly beneficial for systems with economic (linear) cost, since

110 | DUAL CONTROL FOR BUILDINGS

it can exploit time-varying cost structures to optimally identify the
latent parameters of dynamical systems.

After introducing the problem setting (Section 9.1), we provide a
procedure for using the method for economic cost and constrained sys-
tems using hierarchical tracking MPC and soft constraints (Section 9.2).
We apply the proposed technique to a simple building control prob-
lem and analyze the performance with respect to passively learning
methods as well as simplistic dual control (Section 9.3).

9.1 Problem Statement
We consider the continuous-time system

ẋ(tk) = f (x(tk), u(tk), w(tk)) + ξ(tk), (9.1)

with state x ∈ Rnx , input u ∈ Rnu , disturbance w ∈ Rnw and white
noise ξ ∈ Rnx . We assume that the dynamics f are not known, but
can be described up to Gaussian uncertainty by a general linear model
with linear and nonlinear features ϕ, and an unknown matrix M of
appropriate size:

ẋ(tk) = Mϕ(x(tk), u(tk), w(tk)) + ξ(tk). (9.2)

The linear part of the system can be discretized in numerous ways,
but for maximal accuracy while retaining the possibility to directly
calculate the Jacobian w. r. t. the parameters, we use element-wise zero-
order-hold linearization: Each state dynamics is discretized as scalar
differential equation, considering the other states as inputs. Using
this method, we arrive at the discretized system

xt+1 = Atxt + Btut + Etwt + Mtϕ
n(xt, ut, wt) + ξt, (9.3)

with time index t, matrices At, Bt, Et of appropriate sizes and Gaussian
disturbance ξt ∼ N (0, D). The matrix Mt is the result of a first-order
Euler forward exponential integrator [57] of the nonlinear features [57] Hochbruck and Ostermann, “Expo-

nential Integrators,” 2010ϕn. For simplicity of notation, we subsume the non-zero elements of
At, Bt, Et and Mt into a parameter vector θt. The system is subject to
possibly time-varying state and input constraints xt ∈ Xt and ut ∈ Ut,
where Xt ⊂ Rnx and Ut ⊂ Rnu are polytopes.

9.2 Non-Quadratic Cost and Constraints
Classic approximate dual control algorithms were posed in the LQG
setting, assuming linear dynamics, quadratic cost and Gaussian noise.
In this setting, the optimal CE trajectory and the subsequent pertur-
bation control can be obtained in closed form with dynamic program-

NON-QUADRATIC COST AND CONSTRAINTS | 111

ming because there is a recursive solution for the optimal controller
at each time step.

However, many control problems where dual control may have an
important impact involve economic costs. An example is the consid-
ered application to building control, where the cost is linear (energy
prices) and the inputs and states are constrained (bounds on the tem-
perature, heating/cooling limits). In this setting, dynamic program-
ming is computationally expensive, since there is no simple recursive
solution to obtain a second-order approximation to the cost.

In order to deal with more general cost structures and constraints,
we therefore propose to use a common hierarchical tracking scheme:
1) An economic reference satisfying the constraints is computed us-
ing the CE system and standard MPC techniques; 2) the reference is
tracked using an approximate dual controller, where state constraints
are considered in the form of soft constraints. The details of this
scheme are outlined in the following sections.

9.2.1 Economic Reference
The economic reference for the controller is generated by solving a
discrete-time MPC problem for the CE system

(xref,uref) := arg min
x,u

lN(xN) +
N−1

∑
i=0

li(xi, ui) (9.4a)

s.t. xi=0 = xt (9.4b)

xi+1 = Aixi + Biui + Eiwi + Miϕ(xi, ui, wi) (9.4c)

xi ∈ Xi (9.4d)

ui ∈ Ui, (9.4e)

where li is the stage cost. This nonlinear MPC problem is solved with
standard algorithms, depending on the cost structure, e. g., sequential
linear programming1 [17, §10.3]. 1 Originally termed successive linear pro-

gramming, we use “sequential” for con-
sistency.

[17] Bazaraa, Sherali, and Shetty, Nonlin-
ear Programming: Theory and Algorithms,
2006

9.2.2 Soft Constraints and Uncertainty
Assuming Gaussian uncertainty, hard constraint satisfaction can not
be guaranteed. In order to capture the state constraints when tracking
the reference, we introduce soft constraints. For constraints of the
form Xt := {xt | Ptxt ≤ pt}, these take the form

εt(xt) = max(Ptxt − pt, 0) (9.5a)

lct (xt) = εt(xt)
⊺Qtεt(xt). (9.5b)

112 | DUAL CONTROL FOR BUILDINGS

With the max-operator defined element-wise, εt captures the amount
of constraint violation, while Qt penalizes the constraint violation in
an cost term that is added to the stage cost considered by the dual
controller.

In order to apply the approximate dual control scheme (Section 7.2.4),
it would be desirable to marginalize the Gaussian distributed state
against the soft constraint penalty function. This calculation is of the
form

∞∫
−∞

εt(xt)
⊺Qtεt(xt) · N (xt; x̂t, Σt)dxt, (9.6)

which has generally no closed-form solution because of the max-
operator in the definition of εt(xt). Only when the mean x̂t coincides
with the constraint boundary there is a closed-form solution, amount-
ing to

∞∫
x̂t

(Ptxt − pt)
⊺Qt(Ptxt − pt) · N (xt; x̂t, Σt)dxt =

1
2
[(Pt x̂t − pt)

⊺Qt(Pt x̂t − pt) + tr {QtΣt}] . (9.7)

For all states on the constraint boundary, this means that Gaussian
marginalization of the soft constraints is equivalent to an additional
quadratic tracking cost

l̃ct (xt) = (xt − xref
t)⊺Q̃t(xt − xref

t) (9.8)

with Q̃t = 1
2 Qt. This can now be used to modify the second order

approximation of the cost-to-go, which is based on the CE reference
trajectory: For states lying on the constraint boundary, the cost term
(9.8) is added. For states inside of the constraint boundaries, the
additional cost can be reduced to zero, or to a small fraction of Qt to
keep the cost positive definite if no other state cost is applied. This
procedure essentially amounts to building a quadratic approximation
of the soft constraint function around the deterministic trajectory.

With this approximation, we can capture some of the nonlinear
effects of the state constraints and add them to the stage cost of the
dual tracking controller

ldc
t = (xt − xref

t)⊺Qd
t (xt − xref

t) + (ut − uref
t)⊺Rd

t (ut − uref
t) + l̃ct (xt), (9.9)

where Qd
t and Rd

t are the cost matrices for states and inputs.

9.2.3 Maintaining the Value of Information
With the aforementioned modifications, the series-expansion based
approximate dual control scheme presented in Chapters 7 and 8 can
be applied to constrained linear programming problems. The basic

EXPERIMENTS | 113

idea is to obtain an approximation of the cost-to-go by tracking a
CE trajectory satisfying constraints and minimizing an economic cost
with a stochastic optimal controller. The rest of the procedure remains
the same. The additional cost induced by parameter uncertainty and
the value of information can thereby be maintained for more general
cost functions and polytopic state constraints.

9.3 Experiments
The automatic control of building temperature is a promising applica-
tion for adaptive control systems. There is high potential for energy
savings, hence efficient use of control inputs, such as heating and
cooling, is desirable. However, in order to make use of building con-
trollers, a good model is required. With the changes introduced in
Section 9.2, we can apply approximate dual control to the building
climate control problem, which allows for identifying relevant parts
of the model during closed-loop control.

9.3.1 The BuildingModel
We consider the simplified case of temperature control for a building [54] Gwerder and Tödtli, “Predictive

Control for Integrated Room Automa-
tion,” 2005

[51] Gondhalekar, Oldewurtel, and
Jones, “Least-restrictive Robust MPC of
Periodic Affine Systems With Applica-
tion to Building Climate Control,” 2010

[88] Maasoumy et al., “Handling Model
Uncertainty in Model Predictive Control
for Energy Efficient Buildings,” 2014

equipped with a heat pump, a setup motivated by the increasing use
of heat pumps in buildings. In this case, electrical energy is the energy
source for both heating and cooling. The simplified building model
is shown in Figure 54. The model is adapted from [54], [51], [88], and
models the temperature in a single room inside a larger building.

uh

ucδ3

C1

C3C2

x2 x1

x3

K4

ηh

ηc

K2 K3

K
1

τ1

τ2

δ2

δ2

δ1

δ1

inner wall

outer
wall

room

window

Figure 54: Schematic overview of the
building model. The room of which
the temperature is to be controlled
exchanges heat with the outside air
through the window and the outer wall,
and with the rest of the building through
the inner wall. All symbols are ex-
plained in Table 4.

114 | DUAL CONTROL FOR BUILDINGS

symbol meaning unit

x1 room air temperature [°C]
x2 exterior wall temperature [°C]
x3 interior wall temperature [°C]

δ1 outside air temperature [°C]
δ2 solar radiation [kW]
δ3 internal heat sources [kW]

u electrical input power [kW]
uh electrical heating power (u > 0) [kW]
uc electrical cooling power (u < 0) [kW]
ηh heating efficiency -
ηc cooling efficiency -

τ1 window radiation coefficient -
τ2 outer wall radiation coefficient -

K1−4 heat conductivities [kW/°C]
C1−3 heat capacities [kJ/°C]

Table 4: Overview of the model states,
disturbances and parameters.

Table 5: Numerical values of the model
parameters.

C1 = 0.256 · 105 kJ/°C
C2 = 0.970 · 106 kJ/°C
C3 = 1.695 · 105 kJ/°C
ηh = 4 ± 2

ηc = 2 ± 2

τ1 = 0.25

τ2 = 0.75

K1 = 5 kW/°C
K2 = 23.04 kW/°C
K3 = 30.5 kW/°C
K4 = 122.5 kW/°C

The linear part of the system is usually relatively easy to identify
and is therefore assumed to be known. The input efficiencies ηh and
ηc, in contrast, are generally not known, but highly important and
only identifiable while the respective inputs are active. For the simu-
lation we consider 50 different buildings with parameters drawn from
Gaussian distributions, ηh ∼ N (4, 2) and ηc ∼ N (2, 2), where we use
rejection sampling to limit the range to ηh ∈ [1, 10] and ηc ∈ [0.35, 5].

The continuous-time dynamics of this building model are

ẋ1 =
1

C1
[K3(x2 − x1) + K1(δ1 − x1) + K4(x3 − x1) +τ1δ2 + ηhuh + ηcuc + δ3] (9.10a)

ẋ2 =
1

C2
[K2(δ1 − x2) + K3(x1 − x2) + τ2δ2] (9.10b)

ẋ3 =
1

C3
[K4(x1 − x3)] , (9.10c)

where all variables and parameters are explained in Table 4, with their
numerical value in Table 5. The model is simulated continuously, but
state and control cost are defined for the discretized system. The
model is simulated for a whole day with a discretization interval of
∆t = 600 s.

The input constraints

−1000 ≤ ut ≤ 1000 (9.11)

EXPERIMENTS | 115

are imposed at all times, representing the power limitations of the heat
pump system. These constraints are chosen to retain feasibility also in
the case of poor efficiency (low ηh and/or ηc). The input constraints
are enforced through the MPC for generating the nominal trajectory.
If the approximate dual controller violates the input constraints, the
constraints are enforced by saturation. The state constraints are time-
dependent to account for different temperature demands during and
outside working hours

Xt =

⎧⎪⎨⎪⎩21 ≤ x1 ≤ 26 from 08:00 to 18:00

19 ≤ x1 ≤ 30 otherwise.
(9.12a)

The cost on constraint violation is also defined to be time-varying to
account for the reduced importance of constraint satisfaction during
the night

Qt =

⎧⎪⎨⎪⎩103 from 08:00 to 18:00

10−1 otherwise.
(9.13)

The energy cost is linear

lu
t (ut) = r⊺t |ut|, (9.14)

where the prices rt are based on a day/night pricing, which is a com-
mon scheme for electricity used for heating

rt =

⎧⎪⎨⎪⎩0.025 from 06:00 to 22:00

0.010 otherwise.
(9.15)

The overall cost is the sum of energy and constraint cost

lt(xt, ut) = lu
t (ut) + lct (xt). (9.16)

For the purpose of comparing the different controllers, we assume
that accurate predictions of outside air temperature, solar radiation
and internal heat gains are known. The disturbance trajectories are
shown in Figure 55. Nonetheless, not all simulated days are identical:
The mean temperature is drawn from a Gaussian distribution δ0 ∼
N (20, 5) for each of the 50 building scenarios to provide a comparison
of the controller types at days with different weather conditions.

9.3.2 Controller Types
In order to analyze the performance of the approximate dual con-
troller, we compare it to four other controllers. First of all, an optimal

116 | DUAL CONTROL FOR BUILDINGS

0
5

10
15

δ 1
[°

C
]

0
10
20

δ 2
[k

W
]

0 2 4 6 8 10 12 14 16 18 20 22 24
0

10
20
30

time of day [h]

δ 3
[k

W
]

Figure 55: Disturbance trajectories over
24 hours. Top: The outside air temper-
ature (), around the mean temper-
ature δ0 = 10°C (). Middle: The
solar radiation. Bottom: The internal
heat gains.

controller having access to the true parameter values is employed to
serve as a lower bound (LB) to the cost for a specific instance of the
problem.

The second approach is the CE controller [16], simply using the [16] Bar-Shalom and Tse, “Dual Effect,
Certainty Equivalence, and Separation
in Stochastic Sontrol,” 1974

expectation of the uncertain parameters.
One of the more elaborate options when dealing with parameter

uncertainties in MPC is the scenario approach (SA) [24]: Instead of [24] Calafiore and Campi, “The Scenario
Approach to Robust Control Design,”
2006

relying on the mean value only, samples from the parameter distribu-
tion are used for marginalization. We use a simplified version of the
scenario approach, where the MPC is solved for all sampled dynamics
individually, averaging the optimal control afterwards. In order to ob-
tain fast and reliable sampling, we use the Latin hypercube sampling
technique [99] for this process. [99] McKay, Beckman, and Conover, “A

Comparison of Three Methods for Select-
ing Values of Input Variables in the Anal-
ysis of Output from a Computer Code,”
1979

Since dual control is about the benefits of exploration, we also
compare to a controller with modified cost function that favors explo-
ration, also known as exploration bonus (EB) [149, 31, 93, 12]. This

[149] Wittenmark, “An Active Subopti-
mal Dual Controller for Systems with
Stochastic Parameters,” 1975

[31] Dayan and Sejnowski, “Exploration
Bonuses and Dual Control,” 1996

[93] Macready and Wolpert, “Bandit
Problems and the Exploration/Exploita-
tion Tradeoff,” 1998

[12] Audibert, Munos, and Szepesvári,
“Exploration-exploitation Tradeoff Us-
ing Variance Estimates in Multi-armed
Bandits,” 2009

approach is often referred to as dual control, but it lacks the selective
identification feature. Exploration bonus based controllers can not
automatically decide which features of the dynamics are important.
As a result, they aim at identifying as much as possible, defined by
the trade-off between the arbitrary uncertainty cost and the actual cost.
We use an exploration bonus with an additional cost term of the form

diag(Σθθ)⊺Qeb diag(Σθθ). (9.17)

The matrix Qeb has to be chosen to encourage exploration, but also
not to dominate the certainty equivalent cost structure entirely. In the
experiments, we reached this behavior by selecting

Qeb =

⎛⎝1 0

0 1

⎞⎠ . (9.18)

The last controller in the comparison is the approximate dual con-
troller (AD) as presented in this chapter.

EXPERIMENTS | 117

All controllers, except for the LB, use the element-wise zero-order
hold discretization as described in Section 9.1 and all use a horizon
length of one day (T = 144).

9.3.3 Experimental Results
In order to provide a fair comparison of the different controllers un-
der uncertainty, we sampled 50 different buildings with 50 different
weather conditions, as described in Section 9.3.1. For each of these
setups, the performance of all five controllers was evaluated. Since
the optimal performance even under full knowledge varies tremen-
dously based on the temperature and the heat pump efficiencies, the
performances of the tested controllers are also evaluated relative to
the lower bound performance. The aggregated results are shown in
Table 6. Since the variability due to the different scenarios is high, it
is difficult to draw strong general conclusions. Nonetheless it is no-
ticeable that the approximate dual controller shows the best average
performance. Relative to the lower bound, the AD shows more than
50% improvement compared to the standard CE approach and about
28% compared to EB.

Figure 56 shows the performance of the different controller types as
color-coded entries of the result matrix, visualizing the performance
differences. In most cases AD outperforms EB, but in some cases it is
the other way round. This is due to the fact that, based on the weather,
for certain days only the heating is necessary, for certain days only the
cooling, and for some days both.

5 10 15 20 25 30 35 40 45 50

LB
CE
SA
EB

AD

problem instance

3

4

5

lo
g(

co
st

)

Figure 56: Visual overview of the con-
trol performance for 50 different prob-
lem instances. The overall cost after
one day is color-coded on a log scale.
From top to bottom: Lower bound (LB),
certainty equivalent (CE), scenario ap-
proach (SA), exploration bonus (EB), ap-
proximate dual (AD).

absolute relative to LB
mean std sem mean std sem

LB 34.45 27.24 3.85 0.00 0.00 0.00
CE 49.44 50.24 7.11 14.99 26.65 3.77
SA 45.15 40.76 5.76 10.70 18.09 2.56
EB 44.60 37.70 5.33 10.15 14.27 2.02
AD 41.75 33.45 4.73 7.30 10.61 1.50

Table 6: Overall performance compari-
son. Aggregated costs over 50 different
problem instances. Controllers as in Fig-
ure 56. Provided are the sample mean,
sample standard deviation and the stan-
dard error of the mean (sem).

118 | DUAL CONTROL FOR BUILDINGS

Note that for days where both cooling and heating are used, the
EB and AD controllers perform almost equally well, since both input
parameters have to be identified. Remaining differences are due to
the used approximation and tuning. Figure 57 illustrates such a case
(problem instance 23), where the AD has no benefit over the EB. Fig-
ure 58, on the other hand, shows a day where only heating, but no
cooling, is needed (problem instance 20). This is an example of a situa-
tion where it is profitable to use AD instead of EB. Any controller with
exploration bonus tries to identify all uncertain parameters, whereas
the approximate dual controller only identifies the parameters that
are important, or valuable, in this scenario.

15

20

25

30

x

0 5 10 15 20

−40

−20

0

20

time [h]

u

0 5 10 15 20
time [h]

Figure 57: Problem instance where both
heating and cooling are used (problem
instance 23). Top: Room temperature
(), outer wall temperature ()
and inner wall temperature (). The
constraints are imposed on the room
temperature (). Bottom: Control
inputs for heating () and cooling
(). Left: Exploration bonus con-
troller. Right: Dual controller.

15

20

25

30

x

0 5 10 15 20
0

100

200

time [h]

u

0 5 10 15 20
time [h]

Figure 58: Problem instance where only
heating is necessary (problem instance
20). Colors and controllers as in Fig-
ure 57. The pre-heating around 5 am
is due to the lower energy price at this
time.

CONCLUSION | 119

9.4 Conclusion
The value of information is a feature of dual control often neglected.
Using an approximation to the optimal dual control formulation in
terms of a series expansion of the cost function, we constructed a con-
troller that maintains an approximation of the value of information in
systems with linear cost structure. This controller favors the identifi-
cation of relevant features and ignores features that are not necessary
for future control.

We developed a method based on the construction of a tracking
reference found by solving the optimal control problem for the cur-
rent mean estimate of the parameters. This reference is subsequently
tracked by a quadratic low-level dual controller based on dynamic
programming.

Since constraint satisfaction can not be guaranteed by the low-level
controller under Gaussian assumptions, we used soft constraints with
high cost to penalize constraint violation. Further, we proposed a
formulation that allows for marginalization of the augmented cost in
closed form.

The proposed method combining reference tracking and soft con-
straint marginalization allows for the approximate evaluation of the
value of information. This can be used to increase the average control
performance under high initial parameter uncertainty.

In simulation experiments with a simple building model, we illus-
trate that this method improves performance over simpler alternative
approximations to dual control that are based on changes of the cost
function.

Epilogue

10Conclusions andOutlook

The goal of this thesis was to combine regression models from
machine learning with discrete-time optimal control methods.

More specifically, the work focused on two areas: Using quasiperiodic
Gaussian process models for disturbance forecasting and correction,
and extending the approximate dual control framework to nonlinear
regression methods.

Nonparametric Disturbance Correction

Unlike many other control methods, model-based optimal control
enables us to easily use predictions of the environment alongside
predictions of the system dynamics to enhance control performance.
As accurate models are often difficult to obtain, it is useful to train
regression models on the disturbance and use their predictions as dis-
turbance forecast in this setting. Especially promising in this regard
are periodic disturbances because the knowledge about their periodic-
ity makes it possible to predict them for a sufficiently long time period
into the future.

We developed a framework for the use of quasiperiodic Gaussian
processes in model predictive control (Chapter 4). The imperfection
of the real world makes it necessary to relax the assumption of a
strictly periodic model to a quasiperiodic one. Making use of results
from reference tracking model predictive control, the predictions of
the periodic disturbance can be incorporated into the controller. This
turns extrapolation power into control performance.

We applied the quasiperiodic reference tracking controller to the
telescope guiding problem for astronomical imaging (Chapter 5). Pe-
riodic prediction models are promising for obtaining high pointing
precision in telescopes, since many of them suffer from periodic errors
due to revolving gears. We showed on different experiments, both in
simulation and on hardware, how the telescope system benefits from
the use of a quasiperiodic Gaussian process model.

Building on the promising results from the telescope experiments,
we implemented a software solution for the periodic error correction
as part of an existing telescope guiding software (Chapter 6). As
a robust implementation, capable of working on different telescope
setups, has different requirements than a laboratory setup on a single
telescope, the algorithm was substantially improved to cope with these
requirements.

124 | CONCLUSIONS AND OUTLOOK

Nonlinear Dual Control

Dual control can be seen as the ultimate goal of reinforcement learning,
since it solves the famous exploration-exploration trade-off optimally—
in theory. While many approximate solutions were developed over
time, only a few maintain all important aspects of the original idea.
One promising example is the approximate dual control approach
by quadratic expansion of the cost function, considering uncertainty
[141]. However, this method so far was only used for linear systems. [141] Tse and Bar-Shalom, “An Actively

Adaptive Control for Linear Systems
with Random Parameters via the Dual
Control Approach,” 1973

After giving a modern review of the original method (Chapter 7),
we expanded the framework to nonlinear regression frameworks that
are frequently used in modern machine learning (Chapter 8). With the
help of nonlinear model predictive control and iterative linearization,
we developed a nonlinear version of the approximate dual control
algorithm that is now capable of acting near-optimally in nonlinear
dynamical systems. All features of dual control, especially the value
of information, are preserved. This becomes more and more impor-
tant the larger the model gets. On simulated experiments, we showed
that the described method works in different regression settings: para-
metric nonlinear regression, Gaussian process regression and neural
network regression.

When facing practical problems, the quadratic cost structure most
dual control approaches are built on is often limiting. Therefore, we
developed a method to apply dual control to systems of economic cost
structure (Chapter 9). Since the original dual control approximation
works for quadratic systems only, we introduced a quadratic reference
tracking scheme on top of a linear-cost reference. With this extension,
we were able to apply dual control to a classic building control prob-
lem, showing a significant improvement in average performance in a
simulated, uncertain environment.

Future Directions of Nonlinear Dual Control

With the growing complexity of modern regression models, it is im-
portant to be selective about which parts of the model to identify.
At a certain level of complexity, it is not sufficient to enforce identi-
fication by penalizing uncertainty in the cost function because this
approach is likely to invest significant control effort in the identifica-
tion of irrelevant features of the system. Instead, dual control can
guide exploration to those parts of the model that are important.

However, with the existing methods this is only possible to a limited
degree. The high computational demand approximate dual control
methods are facing poses a challenge—which is prohibitive in many
settings. It is desirable to develop methods that can be run at faster
time-scales than existing ones, enabling dual control for systems with
fast dynamics and challenging sampling times.

CONCLUSIONS AND OUTLOOK | 125

While parallelization and increasing computing power will likely
alleviate this challenge, they will not necessarily solve it. Therefore,
it is important to think of ways to make approximate dual control
applicable without sacrificing the important features. One potential
way to go is time-scale separation: Long horizons are important for
preemptive learning, but they also increase the computational cost.
Therefore, the different aspects of dual control could be treated sepa-
rately, according to their time-scales: While acting cautiously under
high uncertainty is important for the low-level execution, the explo-
rative features are not. At the same time, in order to retain the value of
information, the exploration needs to be planned ahead much further.
This could be accomplished by using larger time steps for exploration
planning than for low-level control, so that planning ahead remains
computationally feasible.

Another interesting direction is the investigation of alternative ap-
proximations derived from different principles than dynamic pro-
gramming. In the current formulation, the approximate dual con-
trol method for nonlinear systems consists of a combination of model
predictive control to find a nominal trajectory and dynamic program-
ming to evaluate the cost. This complicates the algorithm and makes
it computationally expensive. An improved method based on model
predictive control only could potentially simplify and improve the
presented approach.

Appendix

AAdditional Material

A.1 Reference Tracking Dynamic Programming
We start with the standard discrete-time system

xt+1 = Axt + But (A.1)

with system matrices A and B of appropriate size, and the quadratic
reference tracking cost function

J(x0, u, xref) =
1
2
(xT − xref

T)⊺QT(xT − xref
T) +

1
2

T−1

∑
i=0

(xi − ri)
⊺Qi(xi − ri) + u⊺

i Riui, (A.2)

where xref := [xref
0 , . . . , xref

T] is the state reference trajectory. Trajectories
in input can be added in a similar way, but are not relevant for this
thesis.

For the Riccati recursion, the quadratic ansatz has to include the
linear terms as well:

Ji(xi) =
1
2

x⊺i Vixi + v⊺i xi + const, (A.3)

where the remaining parts (depending neither on xi nor on ui) are
dropped, since they are not relevant for the optimization.

The recursion starts at the last time step T:

JT(xT) = J∗T(xT) =
1
2

x⊺TQTxT − xref
T

⊺
QTxT + const =

1
2

x⊺TVTxT + v⊺TxT + const . (A.4)

In each subsequent recursion step, the stage cost is evaluated and
the quadratic optimal cost-to-go is expanded according to the state-
transition function xi+1 = Axi + Bui. This amounts to

Ji(xi, ui) =
1
2

x⊺i Qixi − xref
i

⊺
Qixi +

1
2

u⊺
i Riui +

1
2

x⊺i A⊺Vi+1 Axi

+
1
2

u⊺
i B⊺Vi+1Bui + x⊺i A⊺Vi+1Bui + v⊺i+1 Axi + v⊺i+1Bui + const, (A.5)

where we take the derivative to find the optimal input u∗
i :

∂

∂ui
Ji(xi, ui) = u⊺

i Ri + u⊺
i B⊺Vi+1B + x⊺i A⊺Vi+1B + v⊺i+1B. (A.6)

Equating to zero and solving for ui results in the optimal solution

u∗
i (xi) = − (Ri + B⊺Vi+1B)−1 (B⊺Vi+1 Axi + B⊺vi+1) , (A.7)

130 | ADDITIONAL MATERIAL

which is the optimal control policy. Inserting (A.7) back into the cost
(A.5) to obtain the optimal cost results in

J∗i (xi) =
1
2

x⊺i (A⊺Vi+1 A − A⊺Vi+1B (B⊺Vi+1B + Ri)
−1 B⊺Vi+1 A + Qi)xi

+
(

v⊺i+1 A − xref
i

⊺
Qi − v⊺i+1B (B⊺Vi+1B + Ri)

−1 B⊺Vi+1 A
)

xi + const, (A.8)

where we can already read off the recursion for Vi and vi:

Vi = A⊺
(

Vi+1 − Vi+1B (B⊺Vi+1B + Ri)
−1 B⊺Vi+1

)
A + Qi VT = QT (A.9a)

vi = A⊺
(

vi+1 − Vi+1B (B⊺Vi+1B + Ri)
−1 B⊺vi+1

)
− Qixref

i vT = −QTxref
T , (A.9b)

A.2 Stochastic Dynamic Programming
In order to assess the overall value of a given state under uncertain
dynamics, it is important to keep the terms that are usually dropped
in the DP calculations. We start with the discrete stochastic system

xt+1 = Axt + But + ξt ξt ∼ N (0, D) (A.10a)

yt = Cxt + γt γt ∼ N (0, W), (A.10b)

with system matrices A, B, and C of appropriate size, and the quadratic
cost function

J(p(x0), u, xref) = Ex

[
1
2

x⊺TQTxT +
1
2

T−1

∑
i=0

x⊺i Qixi + u⊺
i Riui

]
, (A.11)

with state cost matrices Qi and control cost matrices Ri.
For the Riccati recursion we use the standard quadratic ansatz

Ji(p(xi)) = J∗i (p(xi)) = Exi

[
1
2

x⊺i Vixi

]
+ νi, (A.12)

where we choose collect the constant terms outside of the expectation.
The recursion starts at the last time step T:

J∗T(p(xT)) = ExT

[
1
2

x⊺TQTxT

]
= ExT

[
1
2

x⊺TVTxT

]
(A.13)

In each recursion step, the stage cost is evaluated and the quadratic
optimal cost-to-go is expanded according to the state-transition func-
tion xi+1 = Axi + Bui + ξi. This amounts to

Ji(p(xi), ui) = Exi ,ξi

[
1
2

x⊺i Qixi +
1
2

u⊺
i Riui +

1
2

x⊺i A⊺Vi+1 Axi +
1
2

u⊺
i B⊺Vi+1Bui +

1
2

ξ⊺i Vi+1ξi

+x⊺i A⊺Vi+1Bui + x⊺i A⊺Vi+1ξi + u⊺
i B⊺Vi+1ξi

]
, (A.14)

which we can simplify by using ξi ∼ N (0, D) and p(xi) = N (xi; x̂i, Σi|i),
where the belief over xi is generated by a Kalman filter, to

STOCHASTIC DYNAMIC PROGRAMMING | 131

Ji(p(xi), ui) =
1
2

x̂⊺i Qi x̂i +
1
2

u⊺
i Riui +

1
2

x̂⊺i A⊺Vi+1 Ax̂i +
1
2

u⊺
i B⊺Vi+1Bui + x̂⊺i A⊺Vi+1Bui

+
1
2

tr
[

QiΣi|i
]
+

1
2

tr
[

A⊺Vi+1 AΣi|i
]
+

1
2

tr [Vi+1D] , (A.15)

where the last two summands can be reformulated to tr[(AΣi|i A⊺ +

D)Vi+1] = tr[Σi+1|iVi+1] by noting that cyclic permutations are al-
lowed inside of the trace.

Taking the derivative to find the optimal input u∗
i results in the

same calculations as for the non-stochastic case because the cost of
uncertainty does not depend on the input ui:

∂

∂ui
Ji(p(xi), ui) = u⊺

i Ri + u⊺
i B⊺Vi+1B + x̂⊺i A⊺Vi+1B (A.16)

Equating to zero and solving for ui results in the optimal solution

u∗
i (p(xi)) = − (Ri + B⊺Vi+1B)−1 B⊺Vi+1 Ax̂i, (A.17)

which is the optimal control policy. Inserting the optimal policy back
into the cost gives

J∗i (p(xi)) =
1
2

x̂⊺i
(

Qi + A⊺Vi+1 A − A⊺Vi+1B (Ri + B⊺Vi+1B)−1 B⊺Vi+1 A
)

x̂i

+
1
2

tr
[

QiΣi|i
]
+

1
2

tr
[
Σi+1|iVi+1

]
, (A.18)

which we can simplify to

J∗i (p(xi)) =
1
2

x̂⊺i Vi x̂i +
1
2

tr
[

QiΣi|i
]
+

1
2

tr
[
Σi+1|iVi+1

]
(A.19)

= Exi

[
1
2

x⊺i Vixi

]
− 1

2
tr
[
Σi|iVi

]
+

1
2

tr
[

QiΣi|i
]
+

1
2

tr
[
Σi+1|iVi+1

]
, (A.20)

using the usual Riccati recursion

Vi = Qi + A⊺Vi+1 A − A⊺Vi+1B (Ri + B⊺Vi+1B)−1 B⊺Vi+1 A. (A.21)

If we initialize the Riccati recursion with a modified, but equivalent,
cost for the last time step

J∗T(p(xT)) = ExT

[
1
2

x⊺TVTxT

]
+

1
2

tr
[
ΣT|TVT

]
− 1

2
tr
[
ΣT|TVT

]
, (A.22)

we obtain the value function as

J∗0 (p(x0)) = Ex0

[
1
2

x⊺0 V0x0

]
+

1
2

tr

{
T−1

∑
j=0

[
Σj+1|j − Σj+1|j+1

]
Vj+1

}
+

1
2

tr

{
T

∑
j=0

QjΣj|j

}
. (A.23)

132 | ADDITIONAL MATERIAL

A.3 Derivation of the Nonparametric EKF
The standard Kalman filter (KF) [64] can be found in many textbooks, [64] Kálmán, “A New Approach to Lin-

ear Filtering and Prediction Problems,”
1960

e. g., [122, §4.3]. We consider a linear autonomous system

[122] Särkkä, Bayesian Filtering and
Smoothing, 2013

xt+1 = Atxt + ξt (A.24)

yt = Cxt + γt (A.25)

where we assume time-varying dynamics At, time-invariant measure-
ment C, Gaussian disturbance ξt ∼ N (0, D) and noise γt ∼ N (0, W).
In the standard formulation, the Kalman filter maintains a belief over
the state p(xt) = N (xt; mt, Pt) by prediction and update steps as fol-
lows:

m̄t+1 = Atmt (A.26)

P̄t+1 = AtPt A⊺
t + D (A.27)

mt+1 = m̄t+1 + P̄t+1C⊺ (CP̄t+1C⊺ + R)−1 (yt+1 − Cm̄t+1) (A.28)

Pt+1 = P̄t+1 − P̄t+1C⊺ (CP̄t+1C⊺ + R)−1 CP̄t+1, (A.29)

where m̄t+1, P̄t+1 denote the predicted belief, and mt+1, Pt+1 denote
the updated belief after measuring yt+1.

Starting from the standard equations, we derive a general multi-
step formulation of the classic KF. From there, state augmentation
with an infinite-dimensional weight vector gives the expected result.

A.3.1 Derivation of theMulti-Step KF Formulation
Assuming that the result of the KF and the Gaussian process frame-
work should be identical under certain circumstances, we wish to
transform the KF to a formulation with full Gram matrix. Therefore,
the prediction and update steps have to be combined to

P1 =
(

A0P0 A⊺
0 + D

)
−
(

A0P0 A⊺
0 + D

)
C⊺S−1

1 C
(

A0P0 A⊺
0 + D

)
(A.30a)

S1 = C
(

A0P0 A⊺
0 + D

)
C⊺ + W. (A.30b)

The same can be done for the second time step, but it is beneficial to
introduce a compact notation for the predictive covariance first:

(
A1P1 A⊺

1 + D
)

=
(

A1

[(
A0P0 A⊺

0 + D
)
−
(

A0P0 A⊺
0 + D

)
C⊺S−1

1 C
(

A0P0 A⊺
0 + D

)⊺] A⊺
1 + D

)
= A1

(
A0P0 A⊺

0 + D
)

A⊺
1 + D

:=g11

− A1
(

A0P0 A⊺
0 + D

)
:=g10

C⊺(C
(

A0P0 A⊺
0 + D

)
:=g00

C⊺ + W)−1C
(

A0P0 A⊺
0 + D

)
A⊺

1
:=g01

= g11 − g10C⊺ (Cg00C⊺ + W)−1 Cg01. (A.31)

DERIVATION OF THE NONPARAMETRIC EKF | 133

Using the compact notation and defining S2 analogously to S1, we can
write the two-step update as

P2 =
(

g11 − g10C⊺S−1
1 Cg01

)
−
(

g11 − g10C⊺S−1
1 Cg01

)
C⊺S−1

2 C
(

g11 − g10C⊺S−1
1 Cg01

)
(A.32)

= g11 − g10C⊺S−1
1 Cg01 − g11C⊺S−1

2 Cg11 − g10C⊺S−1
1 Cg01C⊺S−1

2 Cg10C⊺S−1
1 Cg01

+ g11C⊺S−1
2 Cg10C⊺S−1

1 Cg01 + g10C⊺S−1
1 Cg01C⊺S−1

2 Cg11 (A.33)

= g11 −
[

g10C⊺ g11C⊺
] ⎡⎣S−1

1 + S−1
1 Cg01C⊺S−1

2 Cg10C⊺S−1
1 −S−1

1 Cg01C⊺S−1
2

−S−1
2 Cg10C⊺S−1

1 S−1
2

⎤⎦

:=G−1

⎡⎣Cg01

Cg11

⎤⎦ . (A.34)

Application of Schur’s lemma gives

G =

⎡⎣Cg00C⊺ + W Cg01C⊺

Cg10C⊺ Cg11C⊺ + W

⎤⎦ . (A.35)

Assuming full state measurement (C = I) for compactness of nota-
tion, the two-step update is

P2 = g11 −
[

g⊺10 g⊺11

] ⎡⎣g00 + W g01

g10 g11 + W

⎤⎦−1 ⎡⎣g01

g11

⎤⎦
= A1

(
A0P0 A⊺

0 + D
)

A⊺
1 + D −

[
A1
(

A0P0 A⊺
0 + D

) (
A1
(

A0P0 A⊺
0 + D

)
A⊺

1 + D
)]

·
⎡⎣(A0P0 A⊺

0 + D
)
+ W

(
A0P0 A⊺

0 + D
)

A⊺
1

A1
(

A0P0 A⊺
0 + D

) (
A1
(

A0P0 A⊺
0 + D

)
A⊺

1 + D
)
+ W

⎤⎦−1 ⎡⎣ (
A0P0 A⊺

0 + D
)

A⊺
1(

A1
(

A0P0 A⊺
0 + D

)
A⊺

1 + D
)
⎤⎦ , (A.36)

which already looks similar to GP inference. We can now generalize
this two-step result to the general form by building the Gram matrix
according to

G = APA⊺ +ADA⊺ +W , (A.37)

where the individual parts are

P =

⎡⎣A0P0 A⊺
0 0

0 0

⎤⎦ D = (D ⊗ I) W = (W ⊗ I) (A.38)

134 | ADDITIONAL MATERIAL

of appropriate size, depending on the current time t. The multi-step
state transition matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 · · · 0

A1 I 0 · · · 0

A2 A1 A2 I · · · 0
...

. . .

At−1 · · · A1 At−1 · · · A2 · · · I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.39)

is needed to shift the initial covariance and drift covariances through
time. Put together, this results in

Pt = At−1,:(P +D)A⊺
t−1,: −At−1,:(P +D)A(APA⊺ +ADA⊺ +W)−1A⊺(P +D)A⊺

t−1,:. (A.40)

A more compact notation can be achieved by using A−1 to obtain

Pt = At−1,:(P +D)A⊺
t−1,: −At−1,:(P +D)(P +D +A−1WA−⊺)−1(P +D)A⊺

t−1,:. (A.41)

Calculating the mean prediction is done analogously:

mt = At−1,0 A0m0 +At−1,:(P +D)(P +D +A−1WA−⊺)−1(y1:t − CA:,0 A0m0), (A.42)

with C = (C ⊗ I) of appropriate size.

A.3.2 Augmenting the State
Instead of tracking only the state covariance, in the GP setting also the
dynamics function has to be inferred. The system equations of the
nonlinear system are now

xt = f (xt−1) + ξt−1 ξt−1 ∼ N (0, D) (A.43a)

yt = Cxt + γt γt ∼ N (0, W), (A.43b)

where f ∼ GP(0, k). The inference in this model can be done through
the EKF with augmented state. We adopt the weight-space view
with f (x) = Φ(x)θ [115, §2.1] to augment the state with the infinite- [115] Rasmussen and Williams, Gaussian

Processes for Machine Learning, 2006dimensional weight vector θ:

z =

⎛⎝x

θ

⎞⎠ Σ =

⎛⎝ P Σxθ

Σθx Σθθ

⎞⎠ JA =

⎛⎝ ∂ f̄
∂x

∂ f̄
∂θ

0 I

⎞⎠ =

⎛⎝A Φ

0 I

⎞⎠ , (A.44)

where, in (A.36), the original x is replaced by the augmented z, P by
Σ and A by JA.

Choosing C = [I, 0], so that C recovers the original states from
the augmented state vector, we obtain, after calculations similar to
those above, a Gram matrix with additional terms including feature
functions and the prior on them:

DERIVATION OF THE NONPARAMETRIC EKF | 135

G⋆ = G +

⎛⎝ Φ0Σθθ
0 Φ⊺

0 Φ0Σθθ
0
(
Φ⊺

0 A⊺
1 + Φ⊺

1
)

(A1Φ0 + Φ1)Σθθ
0 Φ⊺

0 (A1Φ0 + Φ1)Σθθ
0
(
Φ⊺

0 A⊺
1 + Φ⊺

1
)
⎞⎠ , (A.45)

where Φ0 = Φ(y0), etc. At this point it is important to note that the
infinite inner product ΦtΣθθ

0 Φ⊺
t′ corresponds to an evaluation of the

kernel

Φ(yt)Σθθ
0 Φ(yt′)

⊺ =
∞

∑
i

ϕi(yt)Σθθ
0,iiϕi(yt′) = k(yt, yt′). (A.46)

This means we can write the Gram matrix as

G⋆ = G +

⎛⎝ k00 k00 A⊺
1 + k01

A1k00 + k10 A1k00 A⊺
1 + k10 A⊺

1 + A1k01 + k11

⎞⎠ , (A.47)

where we have written k·· for k(y·, y·) to save space. In total, the Gram
matrix is then

G⋆ = APA⊺ +ADA⊺ +AKA⊺ +W , (A.48)

with K = k(y0:t−1, y0:t−1). Since inference is more compact and nu-
merically stable if we absorb A into the Gram matrix as in Equa-
tion (A.41), we define

G = P +D +K+A−1WA−⊺. (A.49)

Inference is done according to

Pt = At−1,:(P +D +K)A⊺
t−1,: −At,:(P +D +K)G−1(P +D +K)A⊺

t,: (A.50a)

Σxθ
t =

(
Σθx

t

)⊺
= At−1,:Φ(y0:t−1)Σθθ

0 −At−1,: (P +K+D) G−1Φ(y0:t−1)Σθθ
0 (A.50b)

Σθθ
t = Σθθ

0 − Σθθ
0 Φ(y0:t−1)

⊺G−1Φ(y0:t−1)Σθθ
0 (A.50c)

for the covariance and

mt = At−1,0m0 +At−1,:(P +D +K)G−1(y1:t − CA:,0 A0m0)

(A.51a)

θ̂t = Σθθ
0 Φ(y0:t−1)

⊺G−1(y1:t − CA:,0 A0m0) (A.51b)

for the mean.

136 | ADDITIONAL MATERIAL

A.4 Gradients and Hessians of Dynamics Functions

A.4.1 Neural Network Basis Functions
The neural network dynamics function is

f (x) =
F

∑
i=1

viσ(wi(x − bi)), σ(a) =
1

1 + e−a , (A.52)

with the well-known derivatives of the logistic

∂

∂a
σ(a) = σ(a)(1 − σ(a)),

∂2

∂a2 σ(a) = σ(a) (1 − σ(a) (3 − 2σ(a))) . (A.53)

The gradient of f (x) is

∇ f (x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑F
i=1 viwiσ(wi(x − bi))(1 − σ(wi(x − bi)))

σ(w1(x − b1))
...

σ(wF(x − bF))

v1(x − b1)σ(w1(x − b1))(1 − σ(w1(x − b1)))
...

vF(x − bF)σ(wF(x − bF))(1 − σ(wF(x − bF)))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.54)

The Hessian, written in parts, using ai = wix + bi, is:

∇2
x f (x) =

F

∑
i=1

viw2
i σ(ai)(1 − σ(ai)(3 − 2σ(ai))) (A.55a)

∇x∇vi f (x) = wiσ(ai)(1 − σ(ai)) (A.55b)

∇x∇wi f (x) = viσ(ai)(1 − σ(ai)) + (x − bi)wiviσ(ai)(1 − σ(ai))((1 − 2σ(ai)) (A.55c)

∇vi∇vi f (x) = 0 (A.55d)

∇vi∇wi f (x) = (x − bi)σ(ai)(1 − σ(ai)) (A.55e)

∇wi∇wi f (x) = vi(x − bi)
2σ(ai)(1 − σ(ai)(3 − 2σ(ai))). (A.55f)

A.4.2 Fourier Basis Functions
The Fourier approximation to the dynamics function has the form

f (x) =

√
2
F

F/2

∑
i=1

v2i−1 sin(ω2i−1x) + v2i cos(ω2ix). (A.56)

The gradient of f (x) is

GRADIENTS AND HESSIANS OF DYNAMICS FUNCTIONS | 137

∇ f (x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
2
F ∑

F/2
i=1 v2i−1ω2i−1 cos(ω2i−1x)− v2iω2i sin(ω2ix)√

2
F sin(ω1x)√
2
F cos(ω2x)

...√
2
F sin(ωF−1x)√

2
F cos(ωFx)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.57)

The Hessian, written in parts, using c =
√

2/F for normalization, is:

∇2
x f (x) = c

F/2

∑
i=1

−v2i−1ω2
2i−1 sin(ω2i−1x)− v2iω

2
2i cos(ω2ix) (A.58a)

∇x∇vi f (x) =

⎧⎪⎨⎪⎩cωi cos(ωix) i odd

−cωi sin(ωix) i even
(A.58b)

∇vi∇vi f (x) = 0. (A.58c)

A.4.3 Radial Basis Functions
With radial basis function features, the dynamics function is

f (x) =
F

∑
i=1

vi exp
(
− (x − ci)

2

2λ2

)
. (A.59)

The gradient of f (x) is

∇ f (x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∑F
i=1 vi exp

(
− (x−ci)

2

2λ2

)
(ci−x)

2λ2

exp
(
− (x−c1)

2

2λ2

)
...

exp
(
− (x−cF)

2

2λ2

)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (A.60)

The Hessian, written in parts, is:

∇2
x f (x) =

F

∑
i=1

vi exp
(
− (x − ci)

2

2λ2

)[(
ci − x
2λ2

)2
− 1

λ2

]
(A.61a)

∇x∇vi f (x) = exp
(
− (x − ci)

2

2λ2

)
ci − x
2λ2 (A.61b)

∇vi∇vi f (x) = 0 (A.61c)

BBibliography

[1] R. J. Adler. The Geometry of Random Fields. Wiley, 1981 (cit. on p. 100).

[2] C. W. Allen and A. N. Cox. Allen’s Astrophysical Quantities. Springer, 2000 (cit. on p. 61).

[3] F. Allgöwer, T. A. Badgwell, J. S. Qin, J. B. Rawlings, and S. J. Wright. “Nonlinear Predictive Control
and Moving Horizon Estimation – An Introductory Overview.” In: Advances in Control. Springer,
1999, pp. 391–449 (cit. on pp. 37, 48, 90, 98).

[4] M. Aoki. Optimization of Stochastic Systems. Academic Press, 1967 (cit. on pp. 84, 87, 89).

[5] K. B. Ariyur and M. Krstić. Real-time Optimization by Extremum-Seeking Control. Wiley, 2003 (cit. on
p. 39).

[6] K. J. Åström. Introduction to Stochastic Control Theory. Academic Press, 1970 (cit. on p. 83).

[7] K. J. Åström and B. Wittenmark. Adaptive Control. Addison-Wesley, 1994 (cit. on pp. 39, 41).

[8] K. J. Åström and T. Hägglund. PID Controllers: Theory, Design and Tuning. Instrumentation, Systems
and Automatic Society, 1995 (cit. on p. 78).

[9] K. J. Åström and B. Wittenmark. “On Self-tuning Regulators.” In: Automatica 9.2 (1973), pp. 185–199
(cit. on p. 40).

[10] A. Aswani, H. González, S. S. Sastry, and C. Tomlin. “Provably Safe and Robust Learning-Based
Model Predictive Control.” In: Automatica 49.5 (2013), pp. 1216–1226 (cit. on pp. 47, 48).

[11] A. Aswani, N. Master, J. Taneja, D. Culler, and C. Tomlin. “Reducing Transient and Steady State
Electricity Consumption in HVAC Using Learning-Based Model-Predictive Control.” In: Proceedings
of the IEEE 100.1 (2012), pp. 240–253 (cit. on p. 109).

[12] J. Y. Audibert, R. Munos, and C. Szepesvári. “Exploration-exploitation Tradeoff Using Variance
Estimates in Multi-armed Bandits.” In: Theoretical Computer Science 410.19 (2009), pp. 1876–1902 (cit.
on p. 116).

[13] D. Barber. Bayesian Reasoning and Machine Learning. Cambridge University Press, 2011 (cit. on p. 19).

[14] Y. Bar-Shalom. “Stochastic Dynamic Programming: Caution and Probing.” In: IEEE Transactions on
Automatic Control 26.5 (1981), pp. 1184–1195 (cit. on p. 89).

[15] Y. Bar-Shalom and E. Tse. “Caution, Probing, and the Value of Information in the Control of Uncertain
Systems.” In: Annals of Economic and Social Measurement 5.3 (1976), pp. 323–337 (cit. on pp. 84, 89).

[16] Y. Bar-Shalom and E. Tse. “Dual Effect, Certainty Equivalence, and Separation in Stochastic Sontrol.”
In: IEEE Transactions on Automatic Control 19.5 (1974), pp. 494–500 (cit. on pp. 88, 116).

[17] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear Programming: Theory and Algorithms. 3rd.
Wiley, 2006 (cit. on p. 111).

[18] J. Beish. Design a German Equatorial Mount for the Planetary Telescope. Tech. rep. Defense Technical
Information Center, 2001 (cit. on p. 61).

[19] R. E. Bellman. Dynamic Programming. Princeton University Press, 1957 (cit. on pp. 27, 87).

140 | BIBLIOGRAPHY

[20] D. P. Bertsekas. Dynamic Programming and Optimal Control. 3rd. Athena Scientific, 2005 (cit. on pp. 27–
29, 32, 36, 87, 89, 91).

[21] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006 (cit. on p. 11).

[22] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004 (cit. on p. 34).

[23] C. G. Broyden. “A New Double-rank Minimization Algorithm.” In: Notices of the American Mathe-
matical Society 16 (1969), p. 670 (cit. on p. 67).

[24] G. C. Calafiore and M. C. Campi. “The Scenario Approach to Robust Control Design.” In: IEEE
Transactions on Automatic Control 51.5 (2006), pp. 742–753 (cit. on pp. 42, 116).

[25] M. C. Campi, S. Garatti, and M. Prandini. “The Scenario Approach for Systems and Control Design.”
In: Annual Reviews in Control 33.2 (2009), pp. 149–157 (cit. on p. 57).

[26] O. Chapelle and L. Li. “An Empirical Evaluation of Thompson Sampling.” In: Advances in Neural
Information Processing Systems (NIPS). 2011, pp. 2249–2257 (cit. on p. 83).

[27] Y. Cheng, S. Haghighat, and S. Di Cairano. “Robust Dual Control MPC with Application to Soft-
landing Control.” In: American Control Conference (ACC). 2015, pp. 3862–3867 (cit. on p. 109).

[28] J. W. Cooley and J. W. Tukey. “An Algorithm for the Machine Calculation of Complex Fourier
Series.” In: Mathematics of Computation 19 (1965), pp. 297–301 (cit. on p. 76).

[29] J. L. Crassidis and F. L. Markley. “Predictive Filtering for Nonlinear Systems.” In: Journal of Guidance,
Control, and Dynamics 20.3 (1997), pp. 566–572 (cit. on p. 47).

[30] G. B. Dantzig. “Linear Programming.” In: Operations Research 50.1 (2002), pp. 42–47 (cit. on p. 27).

[31] P. Dayan and T. J. Sejnowski. “Exploration Bonuses and Dual Control.” In: Machine Learning 25.1
(1996), pp. 5–22 (cit. on p. 116).

[32] R. Dearden, N. Friedman, and D. Andre. “Model Based Bayesian Exploration.” In: Uncertainty in
Artificial Intelligence (UAI). 1999, pp. 150–159 (cit. on p. 83).

[33] M. P. Deisenroth and C. E. Rasmussen. “PILCO: A Model-Based and Data-Efficient Approach to
Policy Search.” In: International Conference on Machine Learning (ICML). 2011, pp. 465–472 (cit. on
p. 98).

[34] M. Diehl, H. J. Ferreau, and N. Haverbeke. “Efficient Numerical Methods for Nonlinear MPC and
Moving Horizon Estimation.” In: Nonlinear Model Predictive Control. Springer, 2009, pp. 391–417 (cit.
on pp. 90, 98).

[35] M. Diehl, H. G. Bock, and J. P. Schlöder. “A Real-time Iteration Scheme for Nonlinear Optimization
in Optimal Feedback Control.” In: SIAM Journal on control and optimization 43.5 (2005), pp. 1714–1736
(cit. on p. 37).

[36] A. Domahidi. FORCES: Fast Optimization for Real-time Control on Embedded Systems. http://forces.
ethz.ch. 2012. (Visited on 2016-09-28) (cit. on p. 57).

[37] J. R. Dormand and P. J. Prince. “A Family of Embedded Runge-Kutta Formulae.” In: Journal of
Computational and Applied Mathematics 6.1 (1980), pp. 19–26 (cit. on p. 58).

[38] S. E. Dreyfus. “Some Types of Optimal Control of Stochastic Systems.” In: Journal of the Society for
Industrial & Applied Mathematics, Series A: Control 2.1 (1964), pp. 120–134 (cit. on p. 88).

http://forces.ethz.ch
http://forces.ethz.ch

BIBLIOGRAPHY | 141

[39] D. Duvenaud, J. R. Lloyd, R. Grosse, J. B. Tenenbaum, and Z. Ghahramani. “Structure Discovery
in Nonparametric Regression through Compositional Kernel Search.” In: International Conference on
Machine Learning (ICML). 2013, pp. 1166–1174 (cit. on pp. 51, 74).

[40] D. Duvenaud. “Automatic Model Construction with Gaussian Processes.” PhD thesis. University of
Cambridge, 2014 (cit. on p. 16).

[41] T. Erm and S. Sandrock. “Adaptive Periodic Error Correction for the VLT.” In: Large Ground-based
Telescopes. 2003, pp. 900–909 (cit. on p. 47).

[42] A. A. Fel’dbaum. “Dual Control Theory I-IV.” In: Avtomatika i Telemekhanika 21.9, 21.11, 22.1, 22.2
(1960–1961), pp. 1240–1249, 1453–1464, 3–16, 129–142 (cit. on pp. 83–85, 87).

[43] N. M. Filatov and H. Unbehauen. Adaptive Dual Control. Springer, 2004 (cit. on pp. 39, 84).

[44] N. M. Filatov and H. Unbehauen. “Survey of Adaptive Dual Control Methods.” In: IEEE Proceedings
on Control Theory and Applications 147.1 (2000), pp. 118–128 (cit. on pp. 95, 109).

[45] R. Fletcher. “A New Approach to Variable Metric Algorithms.” In: The Computer Journal 13.3 (1970),
pp. 317–322 (cit. on p. 67).

[46] B. Friedland. Control System Design: An Introduction to State-space Methods. Dover, 2005 (cit. on p. 25).

[47] C. F. Gauss. “Nachlass: Theoria Interpolationis Methodo Nova Tractata.” In: Werke. Vol. 3. Königliche
Gesellschaft der Wissenschaften, Göttingen, 1866, pp. 265–330 (cit. on p. 76).

[48] H. Genceli and M. Nikolaou. “New Approach to Constrained Predictive Control with Simultaneous
Model Identification.” In: AIChE Journal 42.10 (1996), pp. 2857–2868 (cit. on p. 84).

[49] T. Glad and L. Ljung. Control Theory: Multivariable and Nonlinear Methods. Taylor & Francis, 2000
(cit. on p. 92).

[50] D. Goldfarb. “A Family of Variable Metric Updates Derived by Variational Means.” In: Mathematics
of Computation 24.109 (1970), pp. 23–26 (cit. on p. 67).

[51] R. Gondhalekar, F. Oldewurtel, and C. N. Jones. “Least-restrictive Robust MPC of Periodic Affine
Systems With Application to Building Climate Control.” In: IEEE Conference on Decision and Control
(CDC). 2010, pp. 5257–5263 (cit. on pp. 49, 113).

[52] M. Grant and S. Boyd. CVX: Matlab Software for Disciplined Convex Programming, Version 2.1. http:
//cvxr.com/cvx. 2014. (Visited on 2016-09-28) (cit. on pp. 33, 57).

[53] G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org. 2010. (Visited on 2016-09-
28) (cit. on p. 72).

[54] M. Gwerder and J. Tödtli. “Predictive Control for Integrated Room Automation.” In: REHVA World
Congress for Building Technologies. 2005 (cit. on pp. 109, 113).

[55] J. Hall, C. E. Rasmussen, and J. M. Maciejowski. “Modelling and Control of Nonlinear Systems
Using Gaussian Processes with Partial Model Information.” In: IEEE Conference on Decision and
Control (CDC). 2012, pp. 5266–5271 (cit. on p. 48).

[56] P. Hennig. “Optimal Reinforcement Learning for Gaussian Systems.” In: Advances in Neural Informa-
tion Processing Systems (NIPS). 2011, pp. 325–333 (cit. on pp. 47, 84, 87).

[57] M. Hochbruck and A. Ostermann. “Exponential Integrators.” In: Acta Numerica 19 (2010), pp. 209–
286 (cit. on p. 110).

http://cvxr.com/cvx
http://cvxr.com/cvx
http://eigen.tuxfamily.org

142 | BIBLIOGRAPHY

[58] D. W. Hogg, M. Blanton, D. Lang, K. Mierle, and S. Roweis. “Automated Astrometry.” In: Astronomical
Data Analysis Software and Systems. 2008, pp. 27–34 (cit. on p. 66).

[59] P. J. Huber. “Robust Estimation of a Location Parameter.” In: The Annals of Mathematical Statistics
35.1 (1964), pp. 73–101 (cit. on p. 78).

[60] D. J. Hughes and O. L. R. Jacobs. “Turn-off, Escape and Probing in Nonlinear Stochastic Control.”
In: IFAC Symposium on Adaptive Control. 1974 (cit. on p. 83).

[61] IBM. ILOG CPLEX Optimizer.http://www.ibm.com/software/integration/optimization/cplex-
optimizer/. 2016. (Visited on 2016-09-28) (cit. on p. 33).

[62] P. Ioannou and J. Sun. Robust Adaptive Control. Prentice Hall, 1996 (cit. on p. 43).

[63] O. L. R. Jacobs and J. W. Patchell. “Caution and Probing in Stochastic Control.” In: International
Journal of Control 16.1 (1972), pp. 189–199 (cit. on p. 84).

[64] R. E. Kálmán. “A New Approach to Linear Filtering and Prediction Problems.” In: Journal of Basic
Engineering 82.1 (1960), pp. 35–45 (cit. on pp. 31, 47, 58, 132).

[65] H. J. Kappen. “Optimal Control Theory and the Linear Bellman Equation.” In: Bayesian Time Series
Models. Ed. by D. Barber, A. T. Cemgil, and S. Chiappa. Cambridge University Press, 2011, pp. 363–
387 (cit. on p. 87).

[66] E. D. Klenske and P. Hennig. “Dual Control for Approximate Bayesian Reinforcement Learning.”
In: Journal of Machine Learning Research 17.127 (2016). Ed. by M. Opper, pp. 1–30. url: http://jmlr.
org/papers/v17/15-162.html (cit. on pp. 6, 149).

[67] E. D. Klenske, P. Hennig, B. Schölkopf, and M. N. Zeilinger. “Approximate Dual Control Maintaining
the Value of Information with an Application to Building Control.” In: European Control Conference
(ECC). 2016, pp. 800–806. doi: 10.1109/ECC.2016.7810387 (cit. on pp. 6, 149).

[68] E. D. Klenske, M. N. Zeilinger, B. Schölkopf, and P. Hennig. “Gaussian Process-Based Predictive
Control for Periodic Error Correction.” In: IEEE Transactions on Control Systems Technology 24.1 (2016),
pp. 110–121. doi: 10.1109/TCST.2015.2420629 (cit. on pp. 5, 149).

[69] E. D. Klenske, M. N. Zeilinger, B. Schölkopf, and P. Hennig. “Nonparametric Dynamics Estimation
for Time Periodic Systems.” In: Annual Allerton Conference on Communication, Control, and Computing.
2013, pp. 486–493. doi: 10.1109/Allerton.2013.6736564 (cit. on pp. 5, 149).

[70] J. Ko and D. Fox. “GP-BayesFilters: Bayesian Filtering Using Gaussian Process Prediction and Ob-
servation Models.” In: Autonomous Robots 27.1 (2009), pp. 75–90 (cit. on p. 47).

[71] J. Kocĳan, R. Murray-Smith, C. E. Rasmussen, and A. Girard. “Gaussian Process Model Based
Predictive Control.” In: American Control Conference (ACC). 2004, pp. 2214–2219 (cit. on pp. 47, 48).

[72] J. Z. Kolter and A. Y. Ng. “Near-Bayesian Exploration in Polynomial Time.” In: International Conference
on Machine Learning (ICML). 2009, pp. 513–520 (cit. on p. 83).

[73] H. König. Eigenvalue Distribution of Compact Operators. Birkhäuser, 1986 (cit. on pp. 20, 99).

[74] B. Kouvaritakis and M. Cannon. “Stochastic Model Predictive Control.” In: Encyclopedia of Systems
and Control. Springer, 2014, pp. 1–9 (cit. on p. 55).

[75] B. Kouvaritakis and M. Cannon. Non-linear Predictive Control: Theory and Practice. Institution of
Engineering and Technology, 2001 (cit. on p. 37).

http://www.ibm.com/software/integration/optimization/cplex-optimizer/
http://www.ibm.com/software/integration/optimization/cplex-optimizer/
http://jmlr.org/papers/v17/15-162.html
http://jmlr.org/papers/v17/15-162.html
http://dx.doi.org/10.1109/ECC.2016.7810387
http://dx.doi.org/10.1109/TCST.2015.2420629
http://dx.doi.org/10.1109/Allerton.2013.6736564

BIBLIOGRAPHY | 143

[76] P. R. Kumar and P. Varaiya. Stochastic Systems: Estimation, Identification and Adaptive Control. Prentice
Hall, 1986 (cit. on pp. 3, 83, 86).

[77] I. D. Landau. “A Survey of Model Reference Adaptive Techniques–Theory and Applications.” In:
Automatica 10.4 (1974), pp. 353–379 (cit. on p. 40).

[78] C. A. Larsson. “Application-oriented Experiment Design for Industrial Model Predictive Control.”
PhD thesis. KTH Royal Institute of Technology, 2014 (cit. on p. 84).

[79] A. Laub. “A Schur Method for Solving Algebraic Riccati Equations.” In: IEEE Transactions on Auto-
matic Control 24.6 (1979), pp. 913–921 (cit. on p. 30).

[80] J. Lausten. Energy Efficiency Requirements In Building Codes, Energy Efficiency Policies For New Buildings.
Tech. rep. International Energy Agency, 2008 (cit. on p. 109).

[81] N. D. Lawrence, M. Seeger, and R. Herbrich. “Fast Sparse Gaussian Process Methods: The Informa-
tive Vector Machine.” In: Advances in Neural Information Processing Systems (NIPS). 2003, pp. 609–616
(cit. on p. 20).

[82] M. Lázaro-Gredilla, J. Quiñonero-Candela, C. E. Rasmussen, and A. R. Figueiras-Vidal. “Sparse
Spectrum Gaussian Process Regression.” In: Journal of Machine Learning Research 11 (2010), pp. 1865–
1881 (cit. on pp. 21, 101).

[83] M. Leblanc. “Sur l’électrification des chemins de fer au moyen de courants alternatifs de fréquence
élevée.” In: Revue générale de l’électricité 12 (1922), pp. 275–277 (cit. on p. 39).

[84] D. J. Leith and W. E. Leithead. “Survey of Gain-scheduling Analysis and Design.” In: International
journal of control 73.11 (2000), pp. 1001–1025 (cit. on p. 40).

[85] D. Limon, T. Alamo, D. Muñoz de la Peña, M. N. Zeilinger, C. N. Jones, and M. Pereira. “MPC for
Tracking Periodic Reference Signals.” In: IFAC Nonlinear Model Predictive Control Conference. 2012,
pp. 490–495 (cit. on p. 57).

[86] L. Ljung. System Identification: Theory for the User. 2nd. Prentice Hall, 1999 (cit. on pp. 3, 42).

[87] Y. Ma, J. Matusko, and F. Borrelli. “Stochastic Model Predictive Control for Building HVAC Systems:
Complexity and Conservatism.” In: IEEE Transactions on Control Systems Technology 23.1 (2015),
pp. 101–116 (cit. on p. 109).

[88] M. Maasoumy, M. Razmara, M. Shahbakhti, and A. S. Vincentelli. “Handling Model Uncertainty in
Model Predictive Control for Energy Efficient Buildings.” In: Energy and Buildings 77 (2014), pp. 377–
392 (cit. on p. 113).

[89] J. M. Maciejowski and X. Yang. “Fault Tolerant Control Using Gaussian Processes and Model
Predictive Control.” In: Conference on Control and Fault-Tolerant Systems. 2013, pp. 1–12 (cit. on p. 48).

[90] J. M. Maciejowski. Predictive Control with Constraints. Pearson, 2002 (cit. on pp. 32, 35, 36).

[91] D. J. C. MacKay. “Comparison of Approximate Methods for Handling Hyperparameters.” In: Neural
Computation 11.5 (1999), pp. 1035–1068 (cit. on p. 19).

[92] D. J. C. MacKay. “Introduction to Gaussian Processes.” In: NATO ASI Series F Computer and Systems
Sciences 168 (1998), pp. 133–166 (cit. on pp. 14, 50).

[93] W. G. Macready and D. H. Wolpert. “Bandit Problems and the Exploration/Exploitation Tradeoff.”
In: IEEE Transactions on Evolutionary Computation 2.1 (1998), pp. 2–22 (cit. on p. 116).

144 | BIBLIOGRAPHY

[94] G. Marafioti, R. R. Bitmead, and M. Hovd. “Persistently Exciting Model Predictive Control.” In:
International Journal of Adaptive Control and Signal Processing 28.6 (2014), pp. 536–552 (cit. on pp. 84,
91).

[95] J. C. Maxwell. “On Governors.” In: Proceedings of the Royal Society of London 16 (1867), pp. 270–283
(cit. on p. 3).

[96] D. Q. Mayne. “A Second-order Gradient Method for Determining Optimal Trajectories of Non-linear
Discrete-time Systems.” In: International Journal of Control 3.1 (1966), pp. 85–95 (cit. on pp. 85, 90).

[97] D. Q. Mayne. “Model Predictive Control: Recent Developments and Future Promises.” In: Automatica
50.12 (2014), pp. 2967–2986 (cit. on p. 55).

[98] O. Mayr. The Origins of Feedback Control. MIT Press, 1970 (cit. on p. 3).

[99] M. D. McKay, R. J. Beckman, and W. J. Conover. “A Comparison of Three Methods for Selecting
Values of Input Variables in the Analysis of Output from a Computer Code.” In: Technometrics 21.2
(1979), pp. 239–245 (cit. on pp. 21, 116).

[100] L. Meier. Combined Optimal Control and Estimation Theory. Tech. rep. NASA Ames Research Center,
1966 (cit. on p. 84).

[101] C. A. Micchelli, Y. Xu, and H. Zhang. “Universal Kernels.” In: Journal of Machine Learning Research 7
(2006), pp. 2651–2667 (cit. on pp. 16, 48).

[102] D. H. Nguyen and B. Widrow. “Neural Networks for Self-learning Control Systems.” In: IEEE Control
Systems Magazine 10.3 (1990), pp. 18–23 (cit. on p. 101).

[103] J. Nocedal and S. J. Wright. Numerical Optimization. 2nd. Springer, 2006 (cit. on pp. 18, 34).

[104] K. Ogata. Discrete-time Control Systems. Prentice Hall, 1995 (cit. on pp. 26, 55).

[105] K. Ogata. Modern Control Engineering. Prentice Hall, 2010 (cit. on p. 25).

[106] F. Oldewurtel, A. Parisio, C. N. Jones, M. Morari, D. Gyalistras, M. Gwerder, V. Stauch, B. Lehmann,
and K. Wirth. “Energy Efficient Building Climate Control Using Stochastic Model Predictive Control
and Weather Predictions.” In: American Control Conference (ACC). 2010, pp. 5100–5105 (cit. on p. 109).

[107] F. Oldewurtel, A. Ulbig, A. Parisio, G. Andersson, and M. Morari. “Reducing Peak Electricity De-
mand in Building Climate Control Using Real-time Pricing and Model Predictive Control.” In: IEEE
Conference on Decision and Control (CDC). 2010, pp. 1927–1932 (cit. on p. 37).

[108] M. Ono and B. C. Williams. “Iterative Risk Allocation: A New Approach to Robust Model Predictive
Control with a Joint Chance Constraint.” In: IEEE Conference on Decision and Control (CDC). 2008,
pp. 3427–3432 (cit. on p. 57).

[109] A. V. Oppenheim, R. W. Schafer, and J. R. Buck. Discrete-time Signal Processing. Prentice Hall, 1999
(cit. on p. 76).

[110] G. Parker. Making Beautiful Deep-sky Images: Astrophotography with Affordable Equipment and Software.
Springer, 2007 (cit. on pp. 61, 62).

[111] G. Pillonetto, F. Dinuzzo, T. Chen, G. De Nicolao, and L. Ljung. “Kernel Methods in System Identi-
fication, Machine Learning and Function Estimation: A Survey.” In: Automatica 50.3 (2014), pp. 657–
682 (cit. on p. 48).

BIBLIOGRAPHY | 145

[112] P. Poupart, N. Vlassis, J. Hoey, and K. Regan. “An Analytic Solution to Discrete Bayesian Reinforce-
ment Learning.” In: International Conference on Machine Learning (ICML). 2006, pp. 679–704 (cit. on
pp. 83, 84, 89).

[113] A. Rahimi and B. Recht. “Random Features for Large-Scale Kernel Machines.” In: Advances in Neural
Information Processing Systems (NIPS). 2008, pp. 1177–1184 (cit. on pp. 21, 101).

[114] H. Raiffa and R. Schlaifer. Applied Statistical Decision Theory. Harvard University, 1961 (cit. on p. 93).

[115] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006
(cit. on pp. 11, 12, 15, 18, 19, 23, 51, 53, 74, 99, 100, 134).

[116] J. Rathouský and V. Havlena. “MPC-Based Approximation of Dual Control by Information Maxi-
mization.” In: International Conference on Process Control. 2011, pp. 247–252 (cit. on p. 84).

[117] J. B. Rawlings and D. Q. Mayne. Model Predictive Control: Theory and Design. Nob Hill Publishing,
2009 (cit. on pp. 32, 55).

[118] H. Robbins and S. Monro. “A Stochastic Approximation Method.” In: The Annals of Mathematical
Statistics 22.3 (1951), pp. 400–407 (cit. on p. 101).

[119] J. A. Rossiter. Model-based Predictive Control: A Practical Approach. CRC Press, 2003 (cit. on p. 32).

[120] R. Routledge. Discoveries and Inventions of the Nineteenth Century. 13th. G. Routledge and Sons, 1900
(cit. on p. 3).

[121] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning Representations by Back-propagating
Errors.” In: Nature 323 (1986), pp. 533–536 (cit. on p. 101).

[122] S. Särkkä. Bayesian Filtering and Smoothing. Cambridge University Press, 2013 (cit. on pp. 31, 47, 87,
98, 132).

[123] S. Sastry and M. Bodson. Adaptive Control: Stability, Convergence and Robustness. Courier Corporation,
2011 (cit. on p. 39).

[124] G. Schildbach, L. Fagiano, C. Frei, and M. Morari. “The Scenario Approach for Stochastic Model
Predictive Control with Bounds on Closed-Loop Constraint Violations.” In: Automatica 50.12 (2014),
pp. 3009–3018 (cit. on p. 57).

[125] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regularization, Optimiza-
tion, and Beyond. MIT Press, 2002 (cit. on pp. 13, 20).

[126] J. Schur. “Bemerkungen zur Theorie der Beschränkten Bilinearformen mit Unendlich Vielen Verän-
derlichen.” In: Journal für die Reine und Angewandte Mathematik 140 (1911), pp. 1–28 (cit. on p. 15).

[127] A. T. Schwarm and M. Nikolaou. “Chance-constrained Model Predictive Control.” In: AIChE Journal
45.8 (1999), pp. 1743–1752 (cit. on p. 57).

[128] D. F. Shanno. “Conditioning of Quasi-Newton Methods for Function Minimization.” In: Mathematics
of Computation 24.111 (1970), pp. 647–656 (cit. on p. 67).

[129] J. H. Simonetti. Measuring the Signal to Noise Ratio of the CCD Image of a Star or Nebula. Tech. rep. 2004
(cit. on p. 73).

[130] S. Singhal and L. Wu. “Training Multilayer Perceptrons with the Extended Kalman Algorithm.” In:
Advances in Neural Information Processing Systems (NIPS). 1989, pp. 133–140 (cit. on p. 102).

146 | BIBLIOGRAPHY

[131] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. “Gaussian Process Optimization in the Bandit
Setting: No Regret and Experimental Design.” In: International Conference on Machine Learning (ICML).
2010, pp. 1015–1022 (cit. on p. 83).

[132] C. Stark, B. McKee, A. Galasso, et al. PHD2 Guiding. http://openphdguiding.org. 2016. (Visited
on 2016-09-28) (cit. on p. 71).

[133] M. L. Stein. Interpolation of Spatial Data: Some Theory for Kriging. Springer, 1999 (cit. on p. 21).

[134] I. Steinwart. “On the Influence of the Kernel on the Consistency of Support Vector Machines.” In:
Journal of Machine Learning Research 2 (2002), pp. 67–93 (cit. on p. 48).

[135] J. Sternby. “A Simple Dual Control Problem with an Analytical Solution.” In: IEEE Transactions on
Automatic Control 21.6 (1976), pp. 840–844 (cit. on p. 84).

[136] V. Strassen. “Gaussian Elimination is Not Optimal.” In: Numerische Mathematik 13.4 (1969), pp. 354–
356 (cit. on p. 19).

[137] M. Tanaskovic, L. Fagiano, R. Smith, P. J. Goulart, and M. Morari. “Adaptive Model Predictive
Control for Constrained Linear Systems.” In: European Control Conference (ECC). 2013, pp. 382–387
(cit. on p. 47).

[138] J. W. Taylor and P. E. McSharry. “Short-term Load Forecasting Methods: An Evaluation Based on
European Data.” In: IEEE Transactions on Power Systems 22.4 (2007), pp. 2213–2219 (cit. on p. 49).

[139] M. B. Thompson and R. M. Neal. “Slice Sampling with Adaptive Multivariate Steps: The Shrinking-
Rank Method.” In: preprint at arXiv:1011.4722 (2010) (cit. on p. 53).

[140] E. Todorov and W. Li. “A Generalized Iterative LQG Method for Locally-optimal Feedback Control
of Constrained Nonlinear Stochastic Systems.” In: American Control Conference (ACC). 2005, pp. 300–
306 (cit. on p. 85).

[141] E. Tse and Y. Bar-Shalom. “An Actively Adaptive Control for Linear Systems with Random Parame-
ters via the Dual Control Approach.” In: IEEE Transactions on Automatic Control 18.2 (1973), pp. 109–
117 (cit. on pp. 84, 90, 91, 93, 97, 108, 109, 124).

[142] E. Tse, Y. Bar-Shalom, and L. Meier. “Wide-sense Adaptive Dual Control for Nonlinear Stochastic
Systems.” In: IEEE Transactions on Automatic Control 18.2 (1973), pp. 98–108 (cit. on pp. 84, 90, 94, 97).

[143] J. Uhlmann. “Dynamic Map Building and Localization: New Theoretical Foundations.” PhD thesis.
University of Oxford, 1995 (cit. on p. 98).

[144] A. W. van der Vaart and J. H. van Zanten. “Information Rates of Nonparametric Gaussian Process
Methods.” In: Journal of Machine Learning Research 12 (2011), pp. 2095–2119 (cit. on pp. 16, 48).

[145] A. W. van der Vaart and J. H. van Zanten. “Rates of Contraction of Posterior Distributions Based on
Gaussian Process Priors.” In: The Annals of Statistics 36.3 (2008), pp. 1435–1463 (cit. on p. 48).

[146] R. J. Vanderbei et al. Roque de los Muchachos Observatory. https://www.princeton.edu/~rvdb/
images/other/LaPalma.html. 2012. (Visited on 2016-09-28) (cit. on p. 61).

[147] L. Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer, 2010 (cit. on p. 18).

[148] B. Wittenmark. “Adaptive Dual Control Methods: An Overview.” In: IFAC Symposium on Adaptive
Systems in Control and Signal Processing. 1995, pp. 67–72 (cit. on pp. 4, 40, 84).

[149] B. Wittenmark. “An Active Suboptimal Dual Controller for Systems with Stochastic Parameters.” In:
Automatic Control Theory and Application 3 (1975), pp. 13–19 (cit. on pp. 83, 84, 95, 102, 116).

http://openphdguiding.org
https://www.princeton.edu/~rvdb/images/other/LaPalma.html
https://www.princeton.edu/~rvdb/images/other/LaPalma.html

BIBLIOGRAPHY | 147

[150] S. G. Yuen, P. M. Novotny, and R. D. Howe. “Quasiperiodic Predictive Filtering for Robot-assisted
Beating Heart Surgery.” In: IEEE International Conference on Robotics and Automation. 2008, pp. 3875–
3880 (cit. on pp. 47, 49).

[151] E. Zacekova, S. Privara, Z. Vana, J. Cigler, and L. Ferkl. “Dual Control Approach for Zone Model
Predictive Control.” In: European Control Conference (ECC). 2013, pp. 1398–1403 (cit. on p. 109).

[152] K. Zhou and J. C. Doyle. Essentials of Robust Control. Prentice Hall, 1998 (cit. on pp. 42, 83).

PPublications

E. D. Klenske, M. N. Zeilinger, B. Schölkopf, and P. Hennig.
“Gaussian Process-Based Predictive Control for Periodic Error
Correction.” In: IEEE Transactions on Control Systems Technology
24.1 (2016), pp. 110–121. doi: 10.1109/TCST.2015.2420629

E. D. Klenske, M. N. Zeilinger, B. Schölkopf, and P. Hennig.
“Nonparametric Dynamics Estimation for Time Periodic Sys-
tems.” In: Annual Allerton Conference on Communication, Control,
and Computing. 2013, pp. 486–493. doi: 10.1109/Allerton.
2013.6736564

E. D. Klenske and P. Hennig. “Dual Control for Approximate
Bayesian Reinforcement Learning.” In: Journal of Machine Learn-
ing Research 17.127 (2016). Ed. by M. Opper, pp. 1–30. url: http:
//jmlr.org/papers/v17/15-162.html

E. D. Klenske, P. Hennig, B. Schölkopf, and M. N. Zeilinger.
“Approximate Dual Control Maintaining the Value of Informa-
tion with an Application to Building Control.” In: European
Control Conference (ECC). 2016, pp. 800–806. doi: 10.1109/ECC.
2016.7810387

http://dx.doi.org/10.1109/TCST.2015.2420629
http://dx.doi.org/10.1109/Allerton.2013.6736564
http://dx.doi.org/10.1109/Allerton.2013.6736564
http://jmlr.org/papers/v17/15-162.html
http://jmlr.org/papers/v17/15-162.html
http://dx.doi.org/10.1109/ECC.2016.7810387
http://dx.doi.org/10.1109/ECC.2016.7810387

Colophon
This document was typeset with LATEX, using a blend of classicthesis
developed by André Miede and tufte-latex, which is based on Ed-
ward Tufte’s Beautiful Evidence. The design was also inspired by the
PhD theses of Aaron Turon and Christian A. Larsson. Most of the
graphics in this thesis were generated using pgfplots and pgf/tikz.

	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Prologue
	0 Introduction

	I Preliminaries
	1 Gaussian Process Regression
	1.1 Model and Notation
	1.2 Inference in Gaussian Processes
	1.3 Sampling from Gaussian Processes
	1.4 Choosing a Covariance Function
	1.5 Setting the Kernel Parameters
	1.6 Numerical Effort and Approximations
	1.7 Extensions

	2 Discrete-Time Optimal Control
	2.1 Linear Time-Invariant Systems
	2.2 Optimal Control
	2.3 Dynamic Programming
	2.4 Model Predictive Control
	2.5 Receding Horizon Control
	2.6 Extensions

	3 Adaptive Control
	3.1 Types of Adaptive Controllers
	3.2 Model Identification Adaptive Control
	3.3 System Identification and Adaptive Control
	3.4 Adaptivity and Robustness

	II Nonparametric Disturbance Correction
	4 Gaussian Processes for Periodic Error Correction
	4.1 Problem Statement
	4.2 GPs for Quasiperiodic Functions
	4.3 GP Predictions in Model Predictive Control
	4.4 Numerical Results
	4.5 Conclusion

	5 Periodic Error Correction for Telescope Tracking
	5.1 The Telescope Problem
	5.2 Experiments
	5.3 Conclusion

	6 Software Implementation: PHD2 Guiding
	6.1 The PHD2 Guiding Framework
	6.2 Periodic Error Correction for PHD2 Guiding
	6.3 The Declination Axis
	6.4 Experiments
	6.5 Conclusion

	III Nonlinear Dual Control
	7 Introduction to Dual Control
	7.1 Model and Notation
	7.2 Approximate Dual Control for Linear Systems
	7.3 A Simplistic Experiment
	7.4 Conclusion

	8 Nonlinear Dual Control
	8.1 Extension to Nonlinear Models
	8.2 Experiments
	8.3 Conclusion

	9 Dual Control for Buildings
	9.1 Problem Statement
	9.2 Non-Quadratic Cost and Constraints
	9.3 Experiments
	9.4 Conclusion

	Epilogue
	10 Conclusions and Outlook

	Appendix
	A Additional Material
	A.1 Reference Tracking Dynamic Programming
	A.2 Stochastic Dynamic Programming
	A.3 Derivation of the Nonparametric EKF
	A.4 Gradients and Hessians of Dynamics Functions

	B Bibliography
	P Publications

