Header logo is


2023


Fairness in Machine Learning: Limitations and Opportunities
Fairness in Machine Learning: Limitations and Opportunities

Barocas, S., Hardt, M., Narayanan, A.

MIT Press, December 2023 (book)

Abstract
An introduction to the intellectual foundations and practical utility of the recent work on fairness and machine learning. Fairness and Machine Learning introduces advanced undergraduate and graduate students to the intellectual foundations of this recently emergent field, drawing on a diverse range of disciplinary perspectives to identify the opportunities and hazards of automated decision-making. It surveys the risks in many applications of machine learning and provides a review of an emerging set of proposed solutions, showing how even well-intentioned applications may give rise to objectionable results. It covers the statistical and causal measures used to evaluate the fairness of machine learning models as well as the procedural and substantive aspects of decision-making that are core to debates about fairness, including a review of legal and philosophical perspectives on discrimination. This incisive textbook prepares students of machine learning to do quantitative work on fairness while reflecting critically on its foundations and its practical utility.• Introduces the technical and normative foundations of fairness in automated decision-making• Covers the formal and computational methods for characterizing and addressing problems• Provides a critical assessment of their intellectual foundations and practical utility• Features rich pedagogy and extensive instructor resources

sf

link (url) [BibTex]

2023


link (url) [BibTex]


no image
Navigating the Ocean of Biases: Political Bias Attribution in Language Models via Causal Structures

Jenny, D.

ETH Zurich, Switzerland, November 2023, external supervision (thesis)

ei

[BibTex]

[BibTex]

2022


no image
Proceedings of the Second Workshop on NLP for Positive Impact (NLP4PI)

Biester, L., Demszky, D., Jin, Z., Sachan, M., Tetreault, J., Wilson, S., Xiao, L., Zhao, J.

Association for Computational Linguistics, December 2022 (proceedings)

ei

link (url) [BibTex]

2022


link (url) [BibTex]


no image
Patterns, Predictions, and Actions: Foundations of Machine Learning

Hardt, M., Recht, B.

Princeton University Press, August 2022 (book)

Abstract
An authoritative, up-to-date graduate textbook on machine learning that highlights its historical context and societal impacts Patterns, Predictions, and Actions introduces graduate students to the essentials of machine learning while offering invaluable perspective on its history and social implications. Beginning with the foundations of decision making, Moritz Hardt and Benjamin Recht explain how representation, optimization, and generalization are the constituents of supervised learning. They go on to provide self-contained discussions of causality, the practice of causal inference, sequential decision making, and reinforcement learning, equipping readers with the concepts and tools they need to assess the consequences that may arise from acting on statistical decisions. Provides a modern introduction to machine learning, showing how data patterns support predictions and consequential actions Pays special attention to societal impacts and fairness in decision making Traces the development of machine learning from its origins to today Features a novel chapter on machine learning benchmarks and datasets Invites readers from all backgrounds, requiring some experience with probability, calculus, and linear algebra An essential textbook for students and a guide for researchers

sf

link (url) [BibTex]

link (url) [BibTex]


no image
Proceedings of the First Conference on Causal Learning and Reasoning (CLeaR 2022)

Schölkopf, B., Uhler, C., Zhang, K.

177, Proceedings of Machine Learning Research, PMLR, April 2022 (proceedings)

ei

link (url) [BibTex]

link (url) [BibTex]

2021


no image
Proceedings of the 1st Workshop on NLP for Positive Impact

Field, A., Prabhumoye, S., Sap, M., Jin, Z., Zhao, J., Brockett, C.

Association for Computational Linguistics, August 2021 (proceedings)

ei

link (url) [BibTex]

2021


link (url) [BibTex]


no image
Reinforcement Learning Algorithms: Analysis and Applications

Belousov, B., H., A., Klink, P., Parisi, S., Peters, J.

883, Studies in Computational Intelligence, Springer International Publishing, 2021 (book)

ei

DOI [BibTex]

DOI [BibTex]


Scientific Report 2016 - 2021
Scientific Report 2016 - 2021
2021 (mpi_year_book)

Abstract
This report presents research done at the Max Planck Institute for Intelligent Systems from January2016 to November 2021. It is our fourth report since the founding of the institute in 2011. Dueto the fact that the upcoming evaluation is an extended one, the report covers a longer reportingperiod.This scientific report is organized as follows: we begin with an overview of the institute, includingan outline of its structure, an introduction of our latest research departments, and a presentationof our main collaborative initiatives and activities (Chapter1). The central part of the scientificreport consists of chapters on the research conducted by the institute’s departments (Chapters2to6) and its independent research groups (Chapters7 to24), as well as the work of the institute’scentral scientific facilities (Chapter25). For entities founded after January 2016, the respectivereport sections cover work done from the date of the establishment of the department, group, orfacility. These chapters are followed by a summary of selected outreach activities and scientificevents hosted by the institute (Chapter26). The scientific publications of the featured departmentsand research groups published during the 6-year review period complete this scientific report.

ei hi ps pi rm

Scientific Report 2016 - 2021 [BibTex]

2020


no image
Voltage dependent interfacial magnetism in multilayer systems

Nacke, R.

Universität Stuttgart, Stuttgart, December 2020 (thesis)

mms

[BibTex]

2020


[BibTex]


Excursion Search for Constrained Bayesian Optimization under a Limited Budget of Failures
Excursion Search for Constrained Bayesian Optimization under a Limited Budget of Failures

Marco, A., Rohr, A. V., Baumann, D., Hernández-Lobato, J. M., Trimpe, S.

2020 (proceedings) In revision

Abstract
When learning to ride a bike, a child falls down a number of times before achieving the first success. As falling down usually has only mild consequences, it can be seen as a tolerable failure in exchange for a faster learning process, as it provides rich information about an undesired behavior. In the context of Bayesian optimization under unknown constraints (BOC), typical strategies for safe learning explore conservatively and avoid failures by all means. On the other side of the spectrum, non conservative BOC algorithms that allow failing may fail an unbounded number of times before reaching the optimum. In this work, we propose a novel decision maker grounded in control theory that controls the amount of risk we allow in the search as a function of a given budget of failures. Empirical validation shows that our algorithm uses the failures budget more efficiently in a variety of optimization experiments, and generally achieves lower regret, than state-of-the-art methods. In addition, we propose an original algorithm for unconstrained Bayesian optimization inspired by the notion of excursion sets in stochastic processes, upon which the failures-aware algorithm is built.

am ics

arXiv code (python) PDF [BibTex]


Computer Vision for Autonomous Vehicles: Problems, Datasets and State-of-the-Art
Computer Vision for Autonomous Vehicles: Problems, Datasets and State-of-the-Art

Janai, J., Güney, F., Behl, A., Geiger, A.

12(1-3), Foundations and Trends® in Computer Graphics and Vision, now Publishers Inc., Hanover, MA, 2020 (book)

Abstract
Recent years have witnessed enormous progress in AI-related fields such as computer vision, machine learning, and autonomous vehicles. As with any rapidly growing field, it becomes increasingly difficult to stay up-to-date or enter the field as a beginner. While several survey papers on particular sub-problems have appeared, no comprehensive survey on problems, datasets, and methods in computer vision for autonomous vehicles has been published. This monograph attempts to narrow this gap by providing a survey on the state-of-the-art datasets and techniques. Our survey includes both the historically most relevant literature as well as the current state of the art on several specific topics, including recognition, reconstruction, motion estimation, tracking, scene understanding, and end-to-end learning for autonomous driving. Towards this goal, we analyze the performance of the state of the art on several challenging benchmarking datasets, including KITTI, MOT, and Cityscapes. Besides, we discuss open problems and current research challenges. To ease accessibility and accommodate missing references, we also provide a website that allows navigating topics as well as methods and provides additional information.

avg

pdf Project Page link DOI Project Page [BibTex]

pdf Project Page link DOI Project Page [BibTex]

2019


no image
Automatic Segmentation and Labelling for Robot Table Tennis Time Series

Lutz, P.

Technical University Darmstadt, Germany, August 2019 (thesis)

ei

[BibTex]

2019


[BibTex]


no image
Fluctuating interface with a pinning potential

Pranjić, Daniel

Universität Stuttgart, Stuttgart, 2019 (thesis)

icm

[BibTex]

[BibTex]


Scientific Report 2016 - 2018
Scientific Report 2016 - 2018
2019 (mpi_year_book)

Abstract
This report presents research done at the Max Planck Institute for Intelligent Systems from January 2016 to December 2018. It is our third report since the founding of the institute in 2011. This status report is organized as follows: we begin with an overview of the institute, including its organizational structure (Chapter 1). The central part of the scientific report consists of chapters on the research conducted by the institute’s departments (Chapters 2 to 5) and its independent research groups (Chapters 6 to 18), as well as the work of the institute’s central scientific facilities (Chapter 19). For entities founded after January 2016, the respective report sections cover work done from the date of the establishment of the department, group, or facility.

ei hi ps pi

Scientific Report 2016 - 2018 [BibTex]


no image
Prototyping Micro- and Nano-Optics with Focused Ion Beam Lithography

Keskinbora, K.

SL48, pages: 46, SPIE.Spotlight, SPIE Press, Bellingham, WA, 2019 (book)

mms

DOI [BibTex]

DOI [BibTex]


no image
Controlling pattern formation in the confined Schnakenberg model

Beyer, David Bernhard

Universität Stuttgart, Stuttgart, 2019 (thesis)

icm

[BibTex]

[BibTex]


HPLC separation of ligand-exchanged gold clusters with atomic precision
HPLC separation of ligand-exchanged gold clusters with atomic precision

Itzigehl, Selina

Univ. of Stuttgart, 2019 (thesis)

pf

[BibTex]

[BibTex]


no image
Pattern forming systems under confinement

Maihöfer, Michael

Universität Stuttgart, Stuttgart, 2018 (thesis)

icm

[BibTex]

[BibTex]


no image
Electrostatic interaction between colloids with constant surface potentials at fluid interfaces

Bebon, Rick

Universität Stuttgart, Stuttgart, 2018 (thesis)

icm

[BibTex]


no image
Non-equilibrium dynamics of a binary solvent around heated colloidal particles

Wilke, Moritz

Universität Stuttgart, Stuttgart, 2018 (thesis)

icm

[BibTex]

[BibTex]


no image
Monte Carlo study of colloidal structure formation at fluid interfaces

Meiler, Tim

Universität Stuttgart, Stuttgart, 2018 (thesis)

icm

[BibTex]

[BibTex]


DNA-linked gold nanoclusters
DNA-linked gold nanoclusters

Hornberger, Lea-Sophie

Univ. of Stuttgart, 2018 (thesis)

pf

[BibTex]

[BibTex]


no image
Nanorobots propel through the eye

Wu, Z., Troll, J., Jeong, H., Qiang, W., Stang, M., Ziemssen, F., Wang, Z., Dong, M., Schnichels, S., Qiu, T., Fischer, P.

Max Planck Society, 2018 (mpi_year_book)

Abstract
Scientists at the Max Planck Institute for Intelligent Systems in Stuttgart developed specially coated nanometer-sized robots that could be moved actively through dense tissue like the vitreous of the eye. So far, the transport of such nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. Our work constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

pf

link (url) [BibTex]

link (url) [BibTex]


no image
Surface structure of liquid crystals

Sattler, Alexander

Universität Stuttgart, Stuttgart, 2018 (thesis)

icm

[BibTex]

[BibTex]


HPLC-Trennung von Gold-clustern
HPLC-Trennung von Gold-clustern

Vogt, Pascal

Univ. of Stuttgart, 2018 (thesis)

pf

[BibTex]

[BibTex]

2017


no image
Elements of Causal Inference - Foundations and Learning Algorithms

Peters, J., Janzing, D., Schölkopf, B.

Adaptive Computation and Machine Learning Series, The MIT Press, Cambridge, MA, USA, 2017 (book)

ei

PDF link (url) [BibTex]

2017


PDF link (url) [BibTex]


no image
Non-equilibrium forces after temperature quenches in ideal fluids with conserved density

Hölzl, Christian

Universität Stuttgart, Stuttgart, 2017 (thesis)

icm

[BibTex]

[BibTex]


Enzyme activity and transport in biological media
Enzyme activity and transport in biological media

Troll, Jonas

Univ. of Stuttgart, 2017 (thesis)

pf

[BibTex]

[BibTex]


Mobile Microrobotics
Mobile Microrobotics

Sitti, M.

Mobile Microrobotics, The MIT Press, Cambridge, MA, 2017 (book)

Abstract
Progress in micro- and nano-scale science and technology has created a demand for new microsystems for high-impact applications in healthcare, biotechnology, manufacturing, and mobile sensor networks. The new robotics field of microrobotics has emerged to extend our interactions and explorations to sub-millimeter scales. This is the first textbook on micron-scale mobile robotics, introducing the fundamentals of design, analysis, fabrication, and control, and drawing on case studies of existing approaches. The book covers the scaling laws that can be used to determine the dominant forces and effects at the micron scale; models forces acting on microrobots, including surface forces, friction, and viscous drag; and describes such possible microfabrication techniques as photo-lithography, bulk micromachining, and deep reactive ion etching. It presents on-board and remote sensing methods, noting that remote sensors are currently more feasible; studies possible on-board microactuators; discusses self-propulsion methods that use self-generated local gradients and fields or biological cells in liquid environments; and describes remote microrobot actuation methods for use in limited spaces such as inside the human body. It covers possible on-board powering methods, indispensable in future medical and other applications; locomotion methods for robots on surfaces, in liquids, in air, and on fluid-air interfaces; and the challenges of microrobot localization and control, in particular multi-robot control methods for magnetic microrobots. Finally, the book addresses current and future applications, including noninvasive medical diagnosis and treatment, environmental remediation, and scientific tools.

pi

Mobile Microrobotics By Metin Sitti - Chapter 1 (PDF) link (url) [BibTex]

Mobile Microrobotics By Metin Sitti - Chapter 1 (PDF) link (url) [BibTex]


Propulsion of magnetic colloids at low Reynolds number
Propulsion of magnetic colloids at low Reynolds number

Segreto, Nico

Univ. of Stuttgart, 2017 (thesis)

pf

[BibTex]

[BibTex]


Design of a visualization scheme for functional connectivity data of Human Brain
Design of a visualization scheme for functional connectivity data of Human Brain

Bramlage, L.

Hochschule Osnabrück - University of Applied Sciences, 2017 (thesis)

zwe-sw

Bramlage_BSc_2017.pdf [BibTex]


no image
Electrostatic interaction between non-identical charged particles at an electrolyte interface

Schmetzer, Timo

Universität Stuttgart, Stuttgart, 2017 (thesis)

icm

[BibTex]

[BibTex]

2016


no image
Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI)

Ihler, A. T., Janzing, D.

pages: 869 pages, AUAI Press, June 2016 (proceedings)

ei

link (url) [BibTex]

2016


link (url) [BibTex]

2015


Proceedings of the 37th German Conference on Pattern Recognition
Proceedings of the 37th German Conference on Pattern Recognition

Gall, J., Gehler, P., Leibe, B.

Springer, German Conference on Pattern Recognition, October 2015 (proceedings)

ps

GCPR conference website [BibTex]

2015


GCPR conference website [BibTex]


no image
Policy Search for Imitation Learning

Doerr, A.

University of Stuttgart, January 2015 (thesis)

am ics

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]

2014


Advanced Structured Prediction
Advanced Structured Prediction

Nowozin, S., Gehler, P. V., Jancsary, J., Lampert, C. H.

Advanced Structured Prediction, pages: 432, Neural Information Processing Series, MIT Press, November 2014 (book)

Abstract
The goal of structured prediction is to build machine learning models that predict relational information that itself has structure, such as being composed of multiple interrelated parts. These models, which reflect prior knowledge, task-specific relations, and constraints, are used in fields including computer vision, speech recognition, natural language processing, and computational biology. They can carry out such tasks as predicting a natural language sentence, or segmenting an image into meaningful components. These models are expressive and powerful, but exact computation is often intractable. A broad research effort in recent years has aimed at designing structured prediction models and approximate inference and learning procedures that are computationally efficient. This volume offers an overview of this recent research in order to make the work accessible to a broader research community. The chapters, by leading researchers in the field, cover a range of topics, including research trends, the linear programming relaxation approach, innovations in probabilistic modeling, recent theoretical progress, and resource-aware learning.

ps

publisher link (url) [BibTex]

2014


publisher link (url) [BibTex]


no image
Learning Motor Skills: From Algorithms to Robot Experiments

Kober, J., Peters, J.

97, pages: 191, Springer Tracts in Advanced Robotics, Springer, 2014 (book)

ei

DOI [BibTex]

DOI [BibTex]


no image
Development of advanced methods for improving astronomical images

Schmeißer, N.

Eberhard Karls Universität Tübingen, Germany, Eberhard Karls Universität Tübingen, Germany, 2014 (diplomathesis)

ei

[BibTex]

[BibTex]

2013


no image
Camera-specific Image Denoising

Schober, M.

Eberhard Karls Universität Tübingen, Germany, October 2013 (diplomathesis)

ei pn

PDF [BibTex]

2013


PDF [BibTex]


no image
Proceedings of the 10th European Workshop on Reinforcement Learning, Volume 24

Deisenroth, M., Szepesvári, C., Peters, J.

pages: 173, JMLR, European Workshop On Reinforcement Learning, EWRL, 2013 (proceedings)

ei

Web [BibTex]

Web [BibTex]

2012


no image
Machine Learning and Interpretation in Neuroimaging - Revised Selected and Invited Contributions

Langs, G., Rish, I., Grosse-Wentrup, M., Murphy, B.

pages: 266, Springer, Heidelberg, Germany, International Workshop, MLINI, Held at NIPS, 2012, Lecture Notes in Computer Science, Vol. 7263 (proceedings)

ei

DOI [BibTex]

2012


DOI [BibTex]


no image
MICCAI, Workshop on Computational Diffusion MRI, 2012 (electronic publication)

Panagiotaki, E., O’Donnell, L., Schultz, T., Zhang, G.

15th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Workshop on Computational Diffusion MRI , 2012 (proceedings)

ei

PDF [BibTex]

PDF [BibTex]


Consumer Depth Cameras for Computer Vision - Research Topics and Applications
Consumer Depth Cameras for Computer Vision - Research Topics and Applications

Fossati, A., Gall, J., Grabner, H., Ren, X., Konolige, K.

Advances in Computer Vision and Pattern Recognition, Springer, 2012 (book)

ps

publisher's site [BibTex]

publisher's site [BibTex]


no image
The Playful Machine - Theoretical Foundation and Practical Realization of Self-Organizing Robots

Der, R., Martius, G.

Springer, Berlin Heidelberg, 2012 (book)

Abstract
Autonomous robots may become our closest companions in the near future. While the technology for physically building such machines is already available today, a problem lies in the generation of the behavior for such complex machines. Nature proposes a solution: young children and higher animals learn to master their complex brain-body systems by playing. Can this be an option for robots? How can a machine be playful? The book provides answers by developing a general principle---homeokinesis, the dynamical symbiosis between brain, body, and environment---that is shown to drive robots to self-determined, individual development in a playful and obviously embodiment-related way: a dog-like robot starts playing with a barrier, eventually jumping or climbing over it; a snakebot develops coiling and jumping modes; humanoids develop climbing behaviors when fallen into a pit, or engage in wrestling-like scenarios when encountering an opponent. The book also develops guided self-organization, a new method that helps to make the playful machines fit for fulfilling tasks in the real world.

al

link (url) [BibTex]