
Understanding Human-Scene Interaction through Perception and Generation





Understanding Human-Scene
Interaction through Perception and

Generation

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen
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Abstract
Humans are in constant contact with the world as they move through it and interact with
it. Understanding Human-Scene Interactions (HSIs) is key to enhancing our perception
and manipulation of three-dimensional (3D) environments, which is crucial for various
applications such as gaming, architecture, and synthetic data creation. However, creating
realistic 3D scenes populated by moving humans is a challenging and labor-intensive
task. Existing human-scene interaction datasets are scarce and captured motion datasets
often lack scene information.

This thesis addresses these challenges by leveraging three specific types of HSI con-
straints: (1) depth ordering constraint: humans that move in a scene are occluded or
occlude objects, thus, defining the relative depth ordering of the objects, (2) collision
constraint: humans move through free space and do not interpenetrate objects, (3) in-
teraction constraint: when humans and objects are in contact, the contact surfaces oc-
cupy the same place in space. Building on these constraints, we propose three distinct
methodologies: capturing HSI from a monocular RGB video, generating HSI by gen-
erating scenes from input human motions (scenes from humans) and generating human
motion from scenes (humans from scenes).

Firstly, we introduce MOVER, which jointly reconstructs 3D human motion and the
interactive scenes from a RGB video. This optimization-based approach leverages these
three aforementioned constraints to enhance the consistency and plausibility of recon-
structed scene layouts and to refine the initial 3D human pose and shape estimations.

Secondly, we present MIME, which takes 3D humans and a floor map as input to create
realistic and interactive 3D environments. This method applies collision and interaction
constraints, and employs an auto-regressive transformer architecture that integrates ob-
jects into the scene based on existing human motion. The training data is enriched by
populating the 3D FRONT scene dataset with 3D humans. By treating human movement
as a “scanner” of the environment, this method results in furniture layouts that reflect
true human activities, increasing the diversity and authenticity of the environments.

Lastly, we introduce TeSMo, which generates 3D human motion from given 3D scenes
and text descriptions, adhering to the collision and interaction constraints. It utilizes a
text-controlled scene-aware motion generation framework based on denoising diffusion
models. Annotated navigation and interaction motions are embedded within scenes to
support the model’s training, allowing for the generation of diverse and realistic human-
scene interactions tailored to specific settings and object arrangements.

In conclusion, these methodologies significantly advance our understanding and syn-
thesis of human-scene interactions, offering realistic modeling of 3D environments.
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Kurzfassung
Menschen interagieren ständig mit ihrer Umgebung, was ein tiefes Verständnis für Mensch-
Umgebungs-Interaktionen (Human-Scene Interactions, HSIs) essenziell macht, insbe-
sondere zur Verbesserung unserer Wahrnehmung und Manipulation von 3D-Umgebungen.
Dies ist für zahlreiche Anwendungen wie Spiele, Architektur und die Erstellung synthe-
tischer Daten von großer Bedeutung. Die Erstellung realistischer 3D-Szenen mit Men-
schen ist jedoch anspruchsvoll und arbeitsintensiv. Vorhandene Datensätze zu Mensch-
Umgebungs-Interaktionen sind rar, und Bewegungsdatensätze enthalten oft keine Infor-
mationen über die Umgebung.

Diese Dissertation adressiert diese Herausforderungen durch drei spezifische Einschränkungen
bei HSI: (1) Tiefenordnung, bei der Objekte teilweise verdeckt oder verdecken und so ei-
ne relative Tiefenstruktur der Szene bilden, (2) Kollision, die verhindert, dass Menschen
Objekte durchdringen, und (3) Interaktion, bei der Kontaktflächen denselben Raum ein-
nehmen.

Basierend auf diesen Einschränkungen stellen wir drei Methodologien vor: die Erfas-
sung von HSI aus monokularen RGB-Videos, die Erzeugung von Szenen durch mensch-
liche Bewegungen und das Generieren menschlicher Bewegungen in bestehenden Sze-
nen. Zunächst präsentieren wir MOVER, das 3D-Menschenbewegungen und interaktive
Szenen aus einem RGB-Video rekonstruiert. Dieser optimierungsbasierte Ansatz nutzt
die genannten Einschränkungen, um Konsistenz und Plausibilität der rekonstruierten
Szenenlayouts zu verbessern.

Zweitens präsentieren wir MIME, das auf Basis von 3D-Menschen und Grundrissda-
ten interaktive 3D-Umgebungen erstellt. Durch eine autoregressive Transformer-Architektur
werden Objekte in die Szene integriert, sodass realistische Möbelanordnungen mensch-
liche Aktivitäten widerspiegeln.

Schließlich stellen wir TeSMO vor, das 3D-Menschenbewegungen für gegebene 3D-
Szenen und Textbeschreibungen generiert und dabei Kollisionen und Interaktionen berücksichtigt.
Mit einem textgesteuerten Framework auf Basis von Denoising-Diffusionsmodellen ermöglicht
TeSMO eine vielfältige und realistische Mensch-Umgebungs-Interaktion.

Insgesamt tragen diese Methoden zur realistischen Modellierung von 3D-Umgebungen
und einem vertieften Verständnis von Mensch-Umgebungs-Interaktionen bei.
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Chapter 1

Introduction

Understanding Human-Scene Interactions (HSIs) is pivotal for deciphering human be-
havior and enhancing our manipulation of three-dimensional (3D) environments. From
the earliest civilizations, humans have been in constant contact with their surroundings,
interacting with the world as they move through it. These interactions, whether walk-
ing through a room, touching objects, resting on a chair, or sleeping in a bed, contain
rich information about scene layout and object placement. Gibson’s seminal work in the
ecological approach to visual perception Gibson (2014) emphasizes the direct, adaptive
relationship between visual perception and action in the environment, where people per-
ceive scenes in terms of the opportunities for interaction they afford. Where and how
human interacts with a scene can be used to predict future motions and interactions for
human-centered AI and robots, or to synthesize these for AR/VR and other computer-
graphics applications.

1.1 What is Human-Scene Interaction?

Human-scene interaction refers to the complex relationship between humans and their
surrounding environment, encompassing various behaviors and dynamics. In computer
vision and scene understanding, it is essential to model and understand these interactions
to accurately reconstruct three-dimensional (3D) scenes and predict human behavior.
Here, we delineate three fundamental constraints that govern human-scene interaction,
as shown in Figure 1.1:

Depth Ordering Observation and Constraint: In natural scenes, when humans move,
they often occlude or are occluded by objects within the environment. This interaction
provides essential depth cues, helping to determine the relative positions of objects in the
scene. Observation: The occlusion patterns observed during human motion reveal the
depth ordering of objects. Constraint: To maintain accurate scene reconstruction, the
depth ordering inferred from these occlusion patterns must be respected, ensuring that
objects are positioned correctly relative to one another.
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Figure 1.1: The three fundamental human-scene interaction constraints: depth ordering
constraint, collision avoidance constraint, and interaction constraint.

Collision Avoidance Observation and Constraint: Humans typically navigate through
a scene by moving within free space and avoiding direct collisions with objects. Ob-
servation: The paths taken by humans naturally avoid interpenetration with objects,
highlighting the spatial boundaries within the scene. Constraint: To preserve physical
realism, scene reconstruction must enforce collision avoidance, ensuring that humans
and objects do not overlap or intersect unnaturally, guiding the generation of plausible
human trajectories.

Contact Consistency Observation and Constraint: When interacting with objects,
such as grasping, leaning, or sitting, humans establish physical contact that aligns the
surfaces of their bodies with those of the objects. Observation: The contact points

2



1.2 Perceiving and Generating Human-Scene Interaction

between humans and objects are consistent, occupying the same physical space. Con-
straint: Scene reconstruction must enforce this contact consistency to maintain spatial
coherence, accurately modeling the relationships between humans and objects to enhance
the realism of the generated scenes.

1.2 Perceiving and Generating Human-Scene Interaction

These human-scene interaction constraints serve as foundational principles to model and
understand the interactions between humans and their environment. By integrating these
constraints into computational frameworks, we aim to advance the synthesis of realistic
3D scenes and enable more accurate predictions of human behavior in various applica-
tions, including robotics, augmented reality, and computer graphics.

1.3 Capturing Human-scene Interactions

Tremendous progress has been achieved in reconstructing three-dimensional (3D) hu-
man bodies and scenes from monocular images or videos, as evidenced by a plethora
of recent works Kocabas et al. (2021); Guler and Kokkinos (2019); Joo et al. (2020);
Kanazawa et al. (2018); Kocabas et al. (2020); Kolotouros et al. (2019b); Pavlakos et al.
(2019a,c); Yuan et al. (2022, 2021); Luo et al. (2021); Huang et al. (2018a); Nie et al.
(2020); Zhang et al. (2021a); Dahnert et al. (2021); Božič et al. (2021). However, these
advancements have predominantly focused on reconstructing humans and scenes in iso-
lation, neglecting the inherent interaction between humans and scenes. In reality, humans
interact with their environment, causing partial occlusion of both the scene by humans
and humans by the scene. This interaction poses challenges for accurate reconstruction,
particularly in scenarios involving strong occlusion.

1.3.1 Capture Human-scene Interaction through Multiple Sensors

As depicted in Figure 1.2, PROX Hassan et al. (2019) addresses the challenge of cap-
turing human-scene interaction (HSI) in indoor environments using monocular RGB-D
input. By pre-scanning the scene and capturing dynamic RGB-D sequences of subjects,
PROX generates a dataset of 100K RGB-D frames with reconstructed human motion
serving as pseudo Ground Truth. However, this approach faces limitations, as recon-
structed HSI from a monocular RGB-D view is often unreliable due to frequent occlu-
sion. Capturing large-scale datasets requires cumbersome offline 3D reconstruction from
multiple viewpoints (Zollhöfer et al. (2018)). RICH Huang et al. (2022) extends this ca-
pability to outdoor scenarios, employing eight HDR multiple-view cameras and improv-
ing 3D scene reconstruction quality with an industrial laser scanner, Leica RTC360. On

3



Chapter 1 Introduction

the other hand, SLOPER4D Dai et al. (2023) records human activities in urban environ-
ments from an egocentric view using a head-mounted device integrated with LiDAR and
camera technology. It captures 15 sequences of human motion, each spanning trajectory
lengths from 200 to 1,300 meters and covering areas from 200 to 30,000 m2, including
extensive LiDAR, video, and IMU-based motion frames. While SLOPER4D is com-
prehensive in synchronization across multiple sensors, it requires considerable time to
capture data.

1.3.2 Independent Reconstruction of Human Motion and 3D Scenes
from Monocular Videos

Instead, there is a pressing need for methods capable of estimating both scene and hu-
mans solely from images, as the absence of depth information can lead to inconsistencies
in scale and object placement relative to interacting humans. This is challenging, as the
lack of depth information causes the scale and placement of objects to be inconsistent
with respect to the humans interacting with them. This leads to physically implausi-
ble results, like humans penetrating objects, or lacking physical contact when walking,
sitting, or lying down, causing bodies to “hover” in the air (see Figure 1.3). Methods
that reconstruct 3D humans from single views leverage statistical body models Joo et al.
(2018); Loper et al. (2015); Pavlakos et al. (2019a); Xu et al. (2020) as priors on the
body shape and pose. However, the same tools do not exist for the collective space of
3D scene layouts. This is due to the enormous space of possible object arrangements
in indoor 3D scenes, a large number of different object classes, and the huge inter-class
(e.g., chairs and desks) and intra-class (e.g., desk chair and club chair) shape variability.
Without considering human-scene interaction (HSI) cues, such as depth ordering, colli-
sion avoidance, and contact consistency, these methods struggle to produce coherent and
realistic reconstructions, leading to issues like misaligned objects and unnatural human
poses.

1.3.3 Joint Reconstruction of 3D Humans and Scenes from
Monocular Videos

The input to MOVER includes color frames from a static monocular camera, 3D human
meshes, and detected object shapes. The output is a refined 3D scene where objects are
repositioned to align with human interactions, avoiding unrealistic interpenetration. This
process is guided by several key observations about human-scene interactions, which in-
form specific constraints that ensure the physical plausibility of the reconstructed scenes.

First, when humans move within a scene, they often occlude or are occluded by ob-
jects, providing crucial depth cues. MOVER leverages this observation by enforcing a
depth ordering constraint that ensures objects are positioned correctly relative to one
another based on these occlusion patterns. This prevents inconsistencies in the spatial
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1.3 Capturing Human-scene Interactions

Reconstructed HumansInput RGBD & 3D Scans
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Figure 1.2: The illustration of capturing humans and scenes using multiple sensors.
PROX Hassan et al. (2019) uses RGB-D and pre-scanned scenes from Kinect to recon-
struct 3D humans within rooms. RICH Huang et al. (2022) utilizes multi-view cameras
and laser scanners to enhance motion and scene reconstruction quality. SLOPER4D Dai
et al. (2023) records human activities in urban settings from an egocentric perspective
with a head-mounted device that combines LiDAR and camera technology.

relationships within the scene.
Second, humans naturally navigate through a scene by avoiding collisions with ob-

jects, indicating where free space exists. This observation informs a collision avoidance
constraint in MOVER, which prevents human and object geometries from overlapping
or interpenetrating, maintaining the realism of the reconstructed scene.
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(a) 3D scene reconstruction and HPS in isolation

(b) HolisticMesh. L: single-image results. R: multiple-images result.

Figure 1.3: Where existing methods struggle: (a) humans in estimated scenes penetrate
objects or lack contact with objects and “hover” in the air when estimated in isolation Nie
et al. (2020); Pavlakos et al. (2019a) (b) humans interpenetrate objects, even, when
the 3D scenes and humans are jointly optimized with single (left) or sequential images
(right) Weng and Yeung (2020).
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1.4 Generating Human-scene Interactions through Scenes from Humans

Finally, when humans interact with objects, such as sitting or leaning, the contact
points between the human and object surfaces should align correctly. This leads to the
contact consistency constraint, where MOVER ensures that these interactions are spa-
tially coherent, preventing issues like floating or misaligned body parts.

These integrated HSI principles—depth ordering, collision avoidance, and contact
consistency—guide the optimization process in MOVER. The approach leverages both
explicit cues, like the alignment of contact points, and implicit cues, such as maintaining
free space and preventing penetrations, to achieve highly realistic scene reconstructions.

In contrast, existing methods often rely on oversimplified object shapes Chen et al.
(2019) or focus solely on static human poses interacting with a single object Zhang et al.
(2020a), without considering HSI across multiple interaction frames Weng and Yeung
(2020); Zhang et al. (2020a); Chen et al. (2019). This leads to less accurate and physi-
cally inconsistent results.

MOVER outperforms these existing methods on datasets such as PROX Hassan et al.
(2019) and PiGraphs Savva et al. (2016), producing more accurate 3D scene layouts
while minimizing penetrations with moving humans. Additionally, MOVER can refine
human poses using the estimated 3D scenes, similar to PROX-like methods Hassan et al.
(2019). This highlights the synergy between accurately estimating 3D scenes and hu-
man poses from monocular camera data, showcasing the effectiveness of integrating HSI
principles in the reconstruction process.

1.4 Generating Human-scene Interactions through
Scenes from Humans

Capturing human-scene interactions is labor-intensive, requiring extensive manual effort
to record and annotate data. This raises the question: can we generate human-scene inter-
actions instead? Humans constantly interact with their environment—walking through
rooms, touching objects, resting on chairs, or sleeping in beds. These interactions pro-
vide valuable information about the layout of scenes and the placement of objects within
them. For instance, mimes use our understanding of such interactions to convey a rich,
imaginary 3D world using only their body motions. Inspired by this, we explore whether
a computer can be trained to interpret human motion and similarly conjure the 3D scene
in which it belongs.

Generating plausible 3D scenes from human motion presents several challenges. Hu-
man motion alone does not provide explicit visual information about the surrounding
environment, making it difficult to accurately infer object types, positions, and scales.
Additionally, without clear cues, there is a risk of generating physically implausible
scenes, such as floating objects or overlapping geometries. Despite these challenges,
the potential applications of such a method are vast, including synthetic data generation,
architecture, gaming, and virtual reality. Existing large datasets of 3D human motion,
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like AMASS Mahmood et al. (2019), rarely include information about the 3D scenes
in which the motions were captured. If we can generate plausible 3D scenes for the
motions in AMASS, we could produce training data that contains realistic human-scene
interactions.

1.4.1 Generate Scenes in Isolation

Generative scene synthesis is a rapidly evolving field within computer graphics and artifi-
cial intelligence, focusing on the automatic creation of 3D environments. However, most
prior work in this area has predominantly ignored the human element, leading to scenes
that may not accommodate human presence or interaction. These techniques include
procedural modeling with grammars Müller et al. (2006); Parish and Müller (2001);
Prakash et al. (2019); Talton et al. (2011); Kar et al. (2019); Devaranjan et al. (2020);
Purkait et al. (2020), graph neural networks Li et al. (2019a); Wang et al. (2019a); Zhou
et al. (2019,?); Luo et al. (2020); Purkait et al. (2020); Zhang et al. (2020e,c); Keshavarzi
et al. (2020); Di et al. (2020), auto-regressive neural networks Ritchie et al. (2019); Wang
et al. (2018a), and transformers Wang et al. (2021c); Paschalidou et al. (2021); Para et al.
(2023). These methods often generate 3D scenes based on various modeling techniques
but fail to incorporate human motion as a guiding factor.

Some approaches utilize lexical text Chang et al. (2015) or sentences Chang et al.
(2017b) as input to guide the 3D scene synthesis. Fisher et al. Fisher et al. (2012) take
3D scans as input and synthesize the corresponding 3D object arrangements, extending to
include functionality aspects in the reconstruction Fisher et al. (2015). Recently, ATISS
Paschalidou et al. (2021) has advanced this field by performing scene synthesis using a
transformer-based architecture. ATISS takes a floorplan as input and auto-regressively
generates a 3D scene represented as an unordered set of objects. However, these methods
do not consider the dynamic element of human motion, which is critical for generating
scenes that are not only visually coherent but also functional for human interaction. The
challenge here lies in integrating human motion data to guide the 3D scene synthesis in
a way that maintains physical plausibility and realism.

1.4.2 Generate Scenes from Humans

To address the aforementioned challenges, we develop a method called MIME (Mining
Interaction and Movement to infer 3D Environments), which generates plausible indoor
3D scenes based on 3D human motion.

The feasibility of this approach rests on two key intuitions:

1. Human Motion Defines Free Space: A human’s motion through free space indi-
cates the absence of objects, carving out regions free of furniture.
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1.5 Generating Human-scene Interaction through Humans from Scenes

2. Human Interaction Constrains Object Placement: When humans interact with
the scene, their contact points constrain the type and placement of 3D objects. For
example, a sitting human might be on a chair, sofa, or bed.

Given an empty floor plan and a human motion sequence, MIME predicts furniture in
contact with the human and plausible objects that fit with other objects while respecting
the free-space constraints induced by human motion.

To condition the 3D scene generation, we estimate possible contact poses using POSA
Hassan et al. (2021a) and divide the motion into contact and non-contact snippets. Non-
contact poses define free space, encoded as 2D floor maps by projecting foot vertices
onto the ground plane. Contact poses and corresponding 3D human body models are
represented by 3D bounding boxes of the contact vertices predicted by POSA.

To train MIME, we built a new dataset called 3D-FRONT HUMAN, extending the
large-scale synthetic scene dataset 3D-FRONT Fu et al. (2021a). We populated 3D
scenes with humans, including non-contact humans (walking or standing) and contact
humans (sitting, touching, and lying). This process leverages motion sequences from
AMASS Mahmood et al. (2019) and static contact poses from RenderPeople Patel et al.
(2021) scans.

In summary, our contributions are:

• A novel motion-conditioned generative model for 3D room scenes that generates
objects in contact with the human auto-regressively and respects free-space con-
straints defined by motion.

• A new 3D scene dataset, 3D-FRONT HUMAN, with interacting humans and free-
space humans, constructed by populating 3D FRONT with static contact/standing
poses from RenderPeople and motion data from AMASS.

1.5 Generating Human-scene Interaction through
Humans from Scenes

Creating realistic human movements that interact with 3D scenes is essential for various
applications, such as gaming and embodied AI. For example, animators in games and
films need to craft motions that navigate through complex scenes and interact realistically
with objects while maintaining control over the movement’s style. One intuitive way to
control style is through text, e.g., “skip happily to the chair and sit down”.

Recent advancements in diffusion models have shown impressive capabilities in gen-
erating human motion from user inputs. Text prompts Tevet et al. (2023); Zhang et al.
(2022a) allow users to control the style, while spatial constraints enable detailed con-
trol, such as specifying joint positions and trajectories Xie et al. (2024); Shafir et al.
(2023); Karunratanakul et al. (2023). However, these methods often focus on characters
in isolation, without considering the surrounding environment or object interactions.
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What we want is to generate human motions in 3D scenes while the motion style can
be controlled with text input.

1.5.1 Generate Human Motions: Text Isolation and Scene Isolation

Text-Driven Motion Generation. Recent advancements in diffusion models have sig-
nificantly increased their capacity to generate high-quality human motions, particularly
when conditioned on textual prompts. Models like those documented in the litera-
ture Tevet et al. (2023); Zhang et al. (2022a); Petrovich et al. (2024) excel in render-
ing realistic motions that are tightly aligned with textual descriptions. This represents
a notable improvement over previous methods that aimed to synchronize text with mo-
tion Petrovich et al. (2022); Ahn et al. (2018), as well as those focused on spatial com-
position Athanasiou et al. (2022). However, these models primarily generate motions in
isolation, without considering interactions with the environment, limiting their useful-
ness in real-world applications where such interactions are essential.

Environment-Oriented Motion Generation. Traditionally, motion generation tech-
nologies have focused mainly on creating animations for characters in isolation, often
ignoring the important effects of environmental interactions. The AMASS dataset Mah-
mood et al. (2019) is a good example of this trend. It offers a comprehensive collection
of motion data but does not include any environmental interactions, which limits the di-
versity and realism of the generated motions in various scenes. Efforts to integrate more
complex environmental interactions have utilized specialized datasets, which are often
small and lack text annotations. These datasets have been used to train various models,
including VAEs Hassan et al. (2021b); Zhang et al. (2022b); Starke et al. (2019), diffu-
sion models like SceneDiffuser Huang et al. (2023a), and projects focused on specific
object interactions Pi et al. (2023). These methods, though innovative, still struggle to
accurately capture the nuanced dynamics of human-environment interactions due to the
limited and sometimes noisy data used. In contrast, our methodology seeks to overcome
these challenges by employing a pre-trained text-to-motion diffusion model Tevet et al.
(2023), augmented with a fine-tuned scene-aware component.

1.5.2 Generate Human Motions: Scenes and Text Integration

Our key idea combines general, scene-agnostic text-to-motion diffusion models with
paired human-scene data for realistic interactions. First, we pre-train a text-conditioned
diffusion model Tevet et al. (2023) on a diverse motion dataset without objects (e.g., Hu-
manML3D Guo et al. (2022)) to learn realistic motion patterns and their correlation with
text. We then fine-tune this model with an additional scene-aware component that incor-
porates scene information, refining the motion outputs to align with the environment.
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Given a target object and a text prompt describing the desired motion, we break down
the task into two parts: navigation (approaching the object while avoiding obstacles) and
interaction (interacting with the object). Both stages use diffusion models pre-trained on
scene-agnostic data and fine-tuned with a scene-aware branch.

In summary, our contributions are:

• A novel approach for scene-aware and text-conditioned motion generation by fine-
tuning an augmented model on top of a pre-trained text-to-motion diffusion model.

• A method, TeSMo, that leverages this approach for navigation and interaction com-
ponents to generate high-quality motions in a scene from text.

• Data augmentation strategies for realistically placing navigation and interaction
motions with text annotations in scenes to enable scene-aware fine-tuning.

1.6 Thesis organization
The organization of this thesis is structured as follows:

Chapter 2 provides the background needed to explore human-scene interactions and
highlights recent advances in reconstructing and generating these interactions. It begins
by reviewing existing datasets for human-scene interactions, then covers methods for re-
constructing these interactions from videos and other sources. The chapter also discusses
progress in creating 3D scenes and generating 3D human motions from different inputs.

Chapter 3 presents joint reconstruction of human-scene interaction from a monocular
RGB video. It details an optimization-based approach to jointly reconstruct 3D human
motion and scenes from RGB videos. We conduct a comprehensive evaluation using the
PROX Hassan et al. (2019) and PiGraphs Savva et al. (2016) datasets to demonstrate the
method’s effectiveness.

Chapter 4 explores human-aware 3D scene generation, introducing a novel genera-
tive model that incorporates human motion data to create interactive 3D environments.
This chapter shifts focus from reconstructing to generating human-scene interactions by
synthesizing 3D scenes based on input human motions.

Chapter 5 focuses on scene-aware motion generation via text control. This chapter
describes an innovative approach that integrates text-driven commands into the motion
generation process. Annotated navigation and interaction motions are embedded within
scenes to facilitate training. We evaluate the performance on our generated dataset and
demonstrate that our approach exceeds previous techniques in terms of the plausibility,
realism, and variety of the generated human-scene interactions.

Chapter 6 wraps up the thesis by summarizing the key insights from the three con-
straints used in reconstructing and generating human-scene interaction datasets. It also
outlines future work focused on generating realistic human videos that include not only
human-scene interactions but also social behaviors, such as conversations and assisting
actions.
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Chapter 2

Related Work

2.1 Human-Scene Interaction Datasets.
To provide a comprehensive overview of datasets for modeling human-scene interac-
tions, this discussion is divided into two main sections: first, the shortcomings of existing
datasets in capturing detailed human-scene interactions; and second, the development of
new synthetic datasets designed to overcome these limitations.

2.1.1 Capturing Human-Scene Interaction Datasets
Current datasets primarily focus on either human movements or static scenes, using tech-
nologies such as optical markers Sigal et al. (2010); Ionescu et al. (2014); CMU Graphics
Lab (2000), IMU sensors von Marcard et al. (2018); Huang et al. (2018c), and multiple
RGB cameras Joo et al. (2017); Yu et al. (2020); Mehta et al. (2018). These often ex-
clude essential 3D environments like floors, walls, and furniture, which are crucial for
understanding human interactions within a space. Conversely, datasets like Matterport3D
Chang et al. (2017a), ScanNet Dai et al. (2017), and Replica Straub et al. (2019) cap-
ture detailed static scenes using time-of-flight sensors but lack dynamic human elements,
limiting their effectiveness in modeling human-scene interactions. While recent datasets
Huang et al. (2022); Guzov et al. (2021b); Hassan et al. (2019); Monszpart et al. (2019);
Bhatnagar et al. (2022); Wang et al. (2019b) combine humans and environments, their
static nature and absence of dynamic scene elements reduce their utility. Efforts like
those by Hassan et al. Hassan et al. (2021b) to enhance datasets by adjusting object sizes
and human poses still fail to capture full scene dynamics.

As noted in the bottom part of Table 2.1, many existing datasets related to contact
focus on self-contact Fieraru et al. (2021); Müller et al. (2021) or person-to-person in-
teractions Fieraru et al. (2020), but inadequately address human-scene contact (HSC).
Relevant datasets for HSC, such as Guzov et al. (2021a) and PROX Hassan et al. (2019),
have limitations. The former provides egocentric images for localization, unsuitable for
HSC detection from third-party perspectives. While potentially useful, the PROX dataset
is limited to indoor scenes and suffers from low-quality and occlusion issues in its RGB-
D data-derived ground-truth bodies. This restricts the variety of captured human-scene

13



Chapter 2 Related Work

Datasets Contact Label Scene
Captured Dataset

MTP Müller et al. (2021) self-contact N/A
GRAB Taheri et al. (2020) hand-object N/A
ContactHands Narasimhaswamy et al. (2020) hand-X‡ N/A
Fieraru et al. Fieraru et al. (2020) person-person N/A
Fieraru et al. Fieraru et al. (2021) self-contact N/A
PiGraph Savva et al. (2016) joint-scene RGB-D scans
i3DB Monszpart et al. (2019) N/A CAD
GPA Wang et al. (2019b) N/A Cubes
Guzov et al. Guzov et al. (2021a) foot-ground laser scans
PROX Hassan et al. (2019) body-scene RGB-D scans
RICH Huang et al. (2022) body-scene laser scans

Synthetic Dataset
Pose2Room Nie et al. (2022) body-scene (skeleton) 3D scenes (scans)
GTA-IM Cao et al. (2020) body-scene (skeleton) 3D scenes (CAD)
3D-FRONT HUMAN (Ours) body-scene (static) 3D scenes (CAD)
Loco-3D-FRONT (Ours) body-scene (motion) 3D scenes (CAD)

Table 2.1: Comparison of human-scene interactions datasets.

interactions (mostly walking, sitting, lying) and affects the quality of body fits.

2.1.2 New Synthetic Datasets for Enhanced Training
Composite or synthetic datasets such as Patel et al. (2021); Bazavan et al. (2021); Cai
et al. (2021) are also widely used for human mesh recovery, but their meaningful human-
scene interaction is fairly limited. To our knowledge, Pose2Room Nie et al. (2022) and
GTA-IM Cao et al. (2020) are the closest to our needs. However, they represent humans
with 3D skeletons, which cannot represent realistic contact between the body surface
and the scene. Also, the scene arrangement is still not rich enough to train a generative
model.

To overcome these deficiencies, we introduce two synthetic datasets: 3D FRONT Hu-
man and Loco-3D-FRONT tailored for advanced machine learning models like MIME
and TeSMo. The 3D FRONT Human dataset utilizes the 3D FRONT project’s scenes Fu
et al. (2021a), populating them with human models that move and interact with the envi-
ronment in a dynamic fashion. Complementing this, the Loco-3D-FRONT dataset inte-
grates locomotion sequences from HumanML3D into a variety of 3D environments, gen-
erating about 9,500 walking motions, each accompanied by textual descriptions and ten
plausible 3D scenes, thus creating approximately 95,000 training pairs Yi et al. (2023b);
Guo et al. (2022). This dataset not only captures realistic motions but also allows for
randomized initial translations and orientations of the motions within scenes, augmented
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further with left-right mirroring to enhance variety.
These synthetic datasets are created to offer a richer and more dynamic resource for

training models that need a detailed understanding of human interactions in complex 3D
environments. By overcoming the limitations of existing datasets, these new resources
aim to improve machine learning’s ability to understand and predict human behavior in
real-world scenarios.

2.2 Reconstructing Human-scene Interactions

2.2.1 Reconstruct Single-view 3D Human Pose in “Isolation”

Estimating human pose from an image is a long-standing problem Moeslund et al. (2006);
Sarafianos et al. (2016). Typically, this is cast as estimating 2D or 3D joints of the body
Andriluka et al. (2018); Martinez et al. (2017); Rogez and Schmid (2016); Tekin et al.
(2016); Tome et al. (2017) or a whole-body Cao et al. (2021); Jin et al. (2020); Wein-
zaepfel et al. (2020) skeletons. Recently, there has been a significant shift in research
interest towards reconstructing the 3D human body surface which, in contrast to the
joints, interacts directly with objects and can be observed by commodity cameras. To
this end, many non-parametric methods Gabeur et al. (2019); Kolotouros et al. (2019a);
Saito et al. (2019, 2020); Smith et al. (2019); Varol et al. (2018); Zheng et al. (2019)
have been developed, estimating either depth maps Gabeur et al. (2019); Smith et al.
(2019), 3D voxels Varol et al. (2018); Zheng et al. (2019), 3D distance fields Saito et al.
(2019, 2020), or free-form 3D meshes Kolotouros et al. (2019a). While these methods
can reconstruct bodies with details like hair and clothing, they miss semantic information
and correspondence information. In contrast, parametric statistical 3D shape models for
the body Anguelov et al. (2005); Hasler et al. (2009); Loper et al. (2015) and a whole
body Joo et al. (2018); Pavlakos et al. (2019a); Xu et al. (2020) provide this information
and allow re-posing. Since parametric models represent the shape and pose in a low-
dimensional space, they are a powerful tool to estimate the surface from incomplete data
(e.g., 2D images with occlusions) through optimization Bogo et al. (2016); Joo et al.
(2018); Pavlakos et al. (2019a); Xiang et al. (2019), regression Choutas et al. (2020);
Kanazawa et al. (2018); Kocabas et al. (2020); Kolotouros et al. (2019b), or hybrid ap-
proaches Joo et al. (2020).

However, all the above methods reason about the human in “isolation”, i.e. without
taking the surrounding objects and scenes into account. Thus, they struggle to reconstruct
details like contact with objects, and often fail due to occlusions (e.g., bodies standing
behind furniture). PARE Kocabas et al. (2021) addresses this by leveraging localized
features and attention, gaining occlusion robustness. We initialize our approach with
Kocabas et al. (2021) to refine the 3D scene layout.
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Method GDI Cam. C-HOI N-HOI FGC
PHOSA Zhang et al. (2020a) ✓ ✗ ✓ ✗ ✗

Holistic++ Chen et al. (2019) ✗ ✗ ✗ ✗ ✓

HolisticMesh Weng and Yeung (2020) ✓ ✓ ✓ ✗ ✓

Ours ✓ ✓ ✓ ✓ ✓

Table 2.2: Comparison of the most relevant methods. GDI: Geometric Detailed Inter-
action. C-HOI: Contact-Human-Object Interaction. N-HOI: Exploiting free space con-
straints with no object contact. FGC: Feet-Ground Contact. Cam.: Camera orientation
and ground-plane are refined with humans or not.

2.2.2 Reconstructing Single-view 3D Scene in Isolation

3D reconstruction from single views has been addressed in several recent works that
leverage learned geometrical priors for specific object classes or entire scenes. Shapes
from single views are reconstructed using generative models for specific object classes
Choy et al. (2016); Groueix et al. (2018); Wang et al. (2018b); Mescheder et al. (2019);
Sitzmann et al. (2019). The methods differ in the underlying representation, which
ranges from volumetric representations like occupancy fields Mescheder et al. (2019)
and implicit surface functions Park et al. (2019); Liu et al. (2020), to explicit surface
representations like triangular meshes Wang et al. (2018b); Gkioxari et al. (2019). To
reconstruct scenes, single objects can be detected He et al. (2017) and reconstructed in
isolation. Mesh-RCNN Gkioxari et al. (2019) detects the objects in an RGB image and
predicts the geometry for each object individually. Instead of a generative mesh model,
Izadinia et al. (2017) and Kuo et al. (2020) propose to retrieve individual CAD models
for the detected objects in the scene. Bansal et al. (2016) predict a normal map from the
input image that is used to align a retrieved CAD model. Instead of predicting normal
maps from the input image, there is a series of methods that estimate depth maps Laina
et al. (2016); Godard et al. (2017); Fu et al. (2018); Shin et al. (2019), or pixel-aligned
implicit functions for objects Saito et al. (2019, 2020); Xiu et al. (2022) and scenes Den-
ninger and Triebel (2020); Dahnert et al. (2021). Joint estimation of the room layout and
objects with scene context information has been proposed by Choi et al. (2013); Huang
et al. (2018a,b); Zhang et al. (2017); Zhao and Zhu (2013); Zhang et al. (2021a); Nie
et al. (2020). However, these methods only consider an isolated 3D scene without a
human in it.

Note that there are also methods that predict room layouts with 3D bounding boxes
Dasgupta et al. (2016); Hedau et al. (2009); Lee et al. (2009); Mallya and Lazebnik
(2015). In contrast, we reconstruct the detailed object geometry to leverage explicit
contact point constraints based on the human scene interactions, while optimizing for
the scene layout.
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2.2.3 Reconstructing 3D Human-Scene Interaction
Humans inhabit 3D scenes. Several methods model this and learn to populate a 3D
scene Hassan et al. (2021a); Li et al. (2019b); Zhang et al. (2020b,d). In contrast,
our work reasons about the human and its interaction with the 3D scene from RGB
observations. There are several methods that explore different kinds of human scene
interaction; these can be divided into three categories based on the granularity of the
interaction between human and scenes: (1) Hand-Object Cao et al. (2021); Yang et al.
(2021); Chao et al. (2021a); Liu et al. (2021); Jiang et al. (2021); Kwon et al. (2021).
(2) Body-Object Zhang et al. (2020a); Dabral et al. (2021); Xie et al. (2025). (3) Body-
Scene Monszpart et al. (2019); Chen et al. (2019); Weng and Yeung (2020); Huang et al.
(2022).

Our proposed method focuses on reconstructing 3D scenes composed of objects and
structural elements like the floor plane, using accumulated human scene interactions
(body-objects and body-scene). Table 2.2 summarizes the most related work that oper-
ates on single-view RGB images/videos. PHOSA Zhang et al. (2020a) infers humans
and objects together when they are in contact. They do not consider the fact that humans
do not need to contact an object to constrain its location; their movement through free
space constrains object placement. Zanfir et al. (2018) only consider feet-ground contact.
iMapper Monszpart et al. (2019) maps RGB videos to dynamic “interaction snapshots”,
by learning “scenelets” from PiGraphs data and fitting them to videos. However, the
estimated scene is not aligned with the 2D image, and consists of pre-defined CAD tem-
plates with fixed shape and size. Holistic++ Chen et al. (2019) takes learned 3D Human
Object Interaction (HOI) into account, to reason about the arrangement of bodies and
objects jointly. Both Monszpart et al. (2019) and Chen et al. (2019) do not model ge-
ometrically detailed human-scene interactions, due to their simplified representation of
the scene and bodies. Weng and Yeung (2020) jointly optimize the reconstructed mesh-
based 3D scene and bodies, which are initialized from Nie et al. (2020) and Pavlakos
et al. (2019a). The approach only considers interpenetration between objects and the hu-
man, and does not model the explicit human-scene contact. Additionally, both Weng and
Yeung (2020); Chen et al. (2019) do not model the coherence of human-scene interac-
tions across frames from monocular video. In contrast to the prior work, our contribution
lies in incorporating multiple human-scene interactions collectively, such that we can re-
construct a more accurate and consistent scene, with physically plausible human-scene
interactions.

2.3 Generate Scenes from Humans

2.3.1 Generative Scene Synthesis (No People)
Most prior work on indoor scene synthesis focuses on generating scenes without consid-
ering human interactions. These methods are typically based on: (1) procedural model-
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ing with grammars Müller et al. (2006); Parish and Müller (2001); Prakash et al. (2019);
Talton et al. (2011); Kar et al. (2019); Devaranjan et al. (2020); Purkait et al. (2020),
which employ recursive functions and formal grammar rules to model 3D structures like
plants, buildings, cities, and indoor or outdoor scenes. For example, Talton et al. (2011)
integrates reversible-jump MCMC to control the output of the stochastic context-free
grammars, while Meta-sim Kar et al. (2019) learns models that modify scene graph at-
tributes sampled from known probabilistic grammars to match real-world data. (2) graph
neural networks Li et al. (2019a); Wang et al. (2019a); Zhou et al. (2019,?); Luo et al.
(2020); Purkait et al. (2020); Zhang et al. (2020e,c); Keshavarzi et al. (2020); Di et al.
(2020), which represent scenes as graphs. These models typically involve neural mes-
sage passing or other graph-based techniques to predict relationships between objects.
For instance, methods like Zhou et al. (2019) synthesize 3D scenes by generating parse
trees, adjacency matrices, or scene hierarchies, requiring supervision in the form of rela-
tion graphs or scene structures.

(3) autoregressive neural networks Ritchie et al. (2019); Wang et al. (2018a), that
sequentially generate scene elements. Ritchie et al. (2019) employs a CNN-based ar-
chitecture to predict object attributes like category, location, orientation, and size in a
specific order.

(4) transformers-based approaches Wang et al. (2021c); Paschalidou et al. (2021);
Para et al. (2023), which utilize the powerful modeling capabilities of transformers for
scene synthesis. SceneFormer Wang et al. (2021c) autoregressively adds objects to a
scene, while ATISS Paschalidou et al. (2021) generates a 3D scene represented as an
unordered set of objects using a permutation-invariant autoregressive transformer. Some
works leverage lexical text Chang et al. (2015) or a sentence Chang et al. (2017b) as
input to guide the 3D scene synthesis. Fisher et al. (2012) takes 3D scans as input and
synthesizes the corresponding 3D object arrangements.

All methods mentioned above do not take human motion into consideration to guide
the 3D scene synthesis. In contrast, we generate 3D scenes that are compatible with the
humans defined by a given input motion. Specifically, the objects in the generated scene
should support human motion (e.g., a chair or couch for sitting) and should not collide
with the path of a walking human, To this end, we build upon the autoregressive scene
synthesis architecture of ATISS Paschalidou et al. (2021) and incorporate contact and
free-space information into the pipeline.

2.3.2 Human-aware Scene Generation
Qi et al. (2018) propose a method that synthesizes a 3D scene based on a human’s affor-
dance map together with a spatial And-Or graph. PiGraphs Savva et al. (2016) learns a
probability distribution over human pose and object geometry from interactions. It does
not model the lack of interaction, i.e. the free space carved out by movement. Similarly,
recent methods Mura et al. (2021); Nie et al. (2022) explore how to estimate a 3D scene
from human behaviors and interactions. Mura et al. (2021) predict the “3D floor plan”
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from a 2D human walking trajectory in a deterministic way. The approach only indicates
the room layout and furniture footprints and does not model objects or contact. Nie et al.
(2022) propose Pose2Room, which predicts 3D objects inside a room from 3D human
pose trajectories in a probabilistic way, by learning 3D object arrangement distribution.
It only predicts contacted objects and can not generate objects in free space. In addition,
it cannot take floor plans as input. We find these crucial in our experiments since object
arrangements are highly related to the floor plan; some furniture is designed to go against
a wall.

2.4 Generating Humans Motions from Scenes

2.4.1 Scene-aware Motion Generation

Motion synthesis in computer graphics has a rich history, encompassing areas such as lo-
comotion Zhang and Tang (2022); Agrawal and van de Panne (2016); Lee et al. (2006);
Kovar et al. (2023); Guzov et al. (2024), human-scene/object interaction Lee et al.
(2002); Taheri et al. (2022); Zhang et al. (2024b), and dynamic object interaction Corona
et al. (2020); Li et al. (2024b, 2023). We refer readers to an extensive survey Zhu et al.
(2023) for an overview and focus on scene-aware motion generation in this section.

A particular challenge in modeling scene-aware motion is the lack of paired, high-
quality human-scene datasets. One line of work Wang et al. (2021a,b) employs a two-
stage method that first predicts the root path, followed by the full-body motion based
on the scene and predicted path. However, these methods suffer from low-quality mo-
tion generation, attributed to the noise in the training datasets captured from monocular
RGB-D videos Hassan et al. (2019). Neural State Machine (NSM) Starke et al. (2019)
proposes the use of phase labeling Holden et al. (2017) and local expert networks Eigen
et al. (2013); Jacobs et al. (1991); Yuksel et al. (2012) to generate high-quality object
interactions, such as sitting and carrying, after training on a small human-object mocap
dataset. Nonetheless, it struggles with recognizing walkable regions in 3D scenes, of-
ten failing to avoid obstacles. Therefore, later work in this vein requires using the A*
algorithm for collision-free path planning Hassan et al. (2021b). These and related ap-
proaches Zhang et al. (2022b, 2024a) are moreover limited by the diversity of the small
human-scene interaction datasets with no text annotations.

Various approaches ameliorate the data issue by creating synthetic data with captured
Yi et al. (2023b); Ye et al. (2022) or generated Kulkarni et al. (2024) motions placed in
scenes heuristically. HUMANISE Wang et al. (2022) improves this for text-conditioned
scene interactions but relies entirely on short synthetic sequences for training, where
the data generation heuristics used limit the realism. The reinforcement learning (RL)
approach DIMOS Zhao et al. (2023) learns autoregressive policies to reach goal poses
in a scene without requiring paired human-scene data for training, but still relies on
A* and is constrained by the accuracy of goal pose generation Zhao et al. (2022). RL
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Chapter 2 Related Work

with physical simulators Chao et al. (2021b); Peng et al. (2022); Hassan et al. (2023);
Xiao et al. (2024) has been used to produce physically plausible movements but faces
challenges in generalizing across varied scenes and objects.

Unlike most prior work, our approach is text-conditioned and leverages a mix of both
scene-agnostic and paired human-scene data. Pre-training is done with a diverse scene-
agnostic dataset, while scene-aware fine-tuning uses motion data with scene context. For
training, we adopt both synthetic data creation with real motions and data augmentation
of real-world human-object interactions Hassan et al. (2021b).

2.4.2 Diffusion-Based Motion Generation
Recently, diffusion models have demonstrated the ability to generate high-quality human
motions, especially when conditioned on a text prompt Tevet et al. (2023); Zhang et al.
(2022a); Petrovich et al. (2024); Li et al. (2024a). In addition to text, several diffusion
models add spatial controllability. Some work Tevet et al. (2023); Shafir et al. (2023)
adopt image inpainting techniques to incorporate dense trajectories of spatial joint con-
straints into generated motions. OmniControl Xie et al. (2024) and GMD Karunratanakul
et al. (2023) allow control with sparse signals and a pre-defined root path, respectively.

A few diffusion works handle interactions with objects or scenes. TRACE Rempe
et al. (2023) generates 2D trajectories for pedestrians based on a rasterized street map.
SceneDiffuser Huang et al. (2023a) conditions generation on a full scanned scene point
cloud, but motion quality is limited due to noisy training data Hassan et al. (2019). An-
other approach Pi et al. (2023) tackles single-object interactions through the hierarchical
generation of milestone poses followed by dense motion, but it lacks text control. A con-
current line of work enables text conditioning for single-object interactions Diller and
Dai (2024); Peng et al. (2023), but they focus on humans manipulating dynamic objects
rather than interactions in full scenes.

We leverage a pre-trained text-to-motion diffusion model Tevet et al. (2023) and a fine-
tuned scene-aware branch to enable both text controllability and scene-awareness with
diffusion. We break motion generation into navigation and interaction with static objects
by conditioning on 2D-floor maps and 3D geometry, respectively, and create specialized
human-scene data to enable diversity and quality.
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Chapter 3

Human-Aware Object Placement for
Visual Environment Reconstruction

3.1 Introduction
Human behavior, and the interaction of humans with their environment, are fundamen-
tally about the 3D world. Hence, 3D reconstruction of both the human and scene can
facilitate human behavior analysis. Where and how humans interact with a scene can be
used to predict future motions and interactions for human-centered AI and robots, or to
synthesize these for AR/VR and other computer-graphics applications.

Tremendous progress has been made in reconstructing 3D human bodies Kocabas
et al. (2021); Guler and Kokkinos (2019); Joo et al. (2020); Kanazawa et al. (2018);
Kocabas et al. (2020); Kolotouros et al. (2019b); Pavlakos et al. (2019a,c); Yuan et al.
(2022, 2021); Luo et al. (2021) and 3D scenes Huang et al. (2018a); Nie et al. (2020);
Zhang et al. (2021a); Dahnert et al. (2021); Božič et al. (2021) from monocular images
or videos, typically in isolation from each other. In real life, though, humans always
interact with scenes. Consequently, humans (partially) occlude the scene, and the scene
(partially) occludes humans. Strong human-scene occlusion can cause challenges for
both scene and human reconstruction.

In contrast, recent work on human-scene interaction (HSI), estimates humans and
scenes together Hassan et al. (2019); Chen et al. (2019); Weng and Yeung (2020).
PROX Hassan et al. (2019) demonstrates how HSI can constrain 3D human pose es-
timation, but it requires a priori knowledge of a 3D scan of the full scene. This is often
impractical and cumbersome, as it requires one to conduct offline 3D reconstruction by
walking around the scene with a depth sensor Zollhöfer et al. (2018) to observe it from
many viewpoints.

What we need, instead, is a method that estimates the scene and humans from images
of a single color camera. This is challenging because the lack of depth information
leads to inconsistencies in the scale and placement of objects relative to the interacting
humans. Methods that reconstruct 3D humans from single views utilize statistical body
models Joo et al. (2018); Loper et al. (2015); Pavlakos et al. (2019a); Xu et al. (2020) as
priors for body shape and pose. However, such tools do not exist for the collective space
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Figure 3.1: From a monocular video sequence, MOVER reconstructs a 3D scene that
best affords humans interacting with it. Existing methods for monocular 3D scene re-
construction ignore people and produce non-functional scenes. MOVER takes as input:
(1) several images of human-scene interaction (HSI) from a static camera, (2) a rough
estimate of 3D object shape and placement in 3D space Nie et al. (2020), and (3) esti-
mated 3D human bodies interacting with the scene Pavlakos et al. (2019a); Kocabas et al.
(2021). Each frame contains valuable information about humans, objects, and the proxi-
mal relationship between them. MOVER accumulates this information across frames, to
optimize for a physically plausible and functional 3D scene. The final 3D scene is more
accurate than the input and enables reasoning about human-scene contact.

of 3D scene layouts. This is due to the enormous space of possible object arrangements
in indoor 3D scenes, the large number of different object classes, and the huge inter-class
(e.g., chairs and desks) and intra-class (e.g., desk chair and club chair) shape variability.

To address the above issues, we present MOVER, which stands for “human Motion
driven Object placement for Visual Environment Reconstruction”. MOVER leverages
information across several HSI frames to estimate both a plausible 3D scene and a mov-
ing human that interacts with the scene. Figure 3.1 provides a high-level overview of
the approach. MOVER takes as input: (1) a set of color frames from a static monocular
camera, (2) a 3D human mesh inferred for each frame Pavlakos et al. (2019a); Kocabas
et al. (2021), and (3) a 3D shape inferred for each object detected in the scene Nie et al.
(2020); Kirillov et al. (2020). As output, MOVER produces a refined 3D scene, con-
sisting of repositioned input objects, ensuring consistency with the estimated 3D human;
that is, it satisfies the expected contacts on the body Hassan et al. (2021a) while pre-
venting inter-penetration. MOVER employs a novel optimization scheme that jointly
optimizes over camera pose, ground-plane pose, and the size and position of 3D objects,
subject to various HSI constraints.

MOVER considers three types of HSI constraints into account: (1) humans that move
in a scene are occluded or occlude objects, thus, defining the depth ordering of the ob-
jects, (2) humans move in free space that is not occupied by objects and do not interpen-
etrate objects, (3) contact between humans and objects means that the contacting parts
of their surfaces occupy the same place in space. Thus, we leverage both explicit (i.e.,
contact) and implicit (i.e., free space, no penetrations) HSI cues. MOVER is able to use
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Figure 3.2: Overview of MOVER. Given a video or multiple images, the initialization
involves using Nie et al. (2020) to reconstruct a 3D scene from labeled or detected 2D
instance segmentation masks Kirillov et al. (2020), estimating the 3D human poses and
shape Pavlakos et al. (2019a); Kocabas et al. (2021), and extracting the expected contact
vertices on the estimated bodies using POSA Hassan et al. (2021a). The first step then
refines the camera orientation and ground plane using the human bodies and their foot
contact. Then we optimize the object layout based on 2D bounding boxes and silhouettes
to remove interpenetration between people and objects, e.g., the human sits through the
chair, stands into a table, and the legs are in a bed. Finally, incorporating multiple HSIs
collectively from the whole video, we can improve the 3D scene further such that the
bodies perform more realistic scene interaction.

these because it employs detailed meshes for both the scene and the moving human. In
contrast, previous attempts toward similar goals either use oversimplified shapes Chen
et al. (2019), such as 3D bounding boxes for objects and skeletons for humans, work
only for static humans that contact a single object Zhang et al. (2020a), or do not inte-
grate information across several interaction frames Weng and Yeung (2020); Zhang et al.
(2020a); Chen et al. (2019).

Comparisons with the state of the art on the PROX Hassan et al. (2019) and PiGraphs
Savva et al. (2016) datasets demonstrate that MOVER estimates more accurate and re-
alistic 3D scene layouts, satisfying expected contacts while minimizing penetrations rel-
ative to the moving humans. Interestingly, we find that MOVER’s estimated 3D scene
can refine human poses using a PROX-like method Hassan et al. (2019). Although esti-
mating 3D scenes and 3D humans from a monocular camera is challenging, our results
indicate that these tasks are synergistic and benefit from each other.

3.2 Method
MOVER is an optimization-based approach that reconstructs a physically plausible 3D
scene that is consistent with predicted human-scene interactions over time (see Fig-
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ure 3.2). Specifically, our method takes a single RGB video or multiple images {It}T
t=1

as input and reconstructs the human bodies at each time step t along with the numerous
static scene objects, all residing in a common 3D space supported by a ground plane.
In our experiments, we focus on large objects in indoor scenes that humans frequently
interact with, such as, chairs, beds, sofas, and tables.

We initialize our approach using separate estimates for the 3D human poses Kocabas
et al. (2021); Pavlakos et al. (2019a), the 3D scene Nie et al. (2020), and the ground
plane. Using the estimated body poses, we predict contact vertices C for all bodies using
POSA Hassan et al. (2021a), which predicts likely contact vertices on the body condi-
tioned on pose. We further categorize these vertices into foot contacts Cfeet and other
body part contacts Cbody. The explicit foot contact points Cfeet serve as constraints to re-
fine the camera orientation and ground plane prediction. Based on this initialization, we
optimize object alignment by minimizing an objective function incorporating multiple
human-scene interactions (HSIs) across the entire input data.

3.2.1 3D Scene Layout Optimization

Our method leverages multiple HSIs to refine the 3D scene. Recall that these HSIs pro-
vide the following constraints: (1) humans that move in a scene are occluded or occlude
objects, thus, defining the relative depth ordering of the objects (depth order constraint),
(2) humans move through free space and do not interpenetrate objects (collision con-
straint), (3) when humans and objects are in contact, the contact surfaces occupy the same
place in space (contact constraint). Using these constraints, our objective Lscene-human is:

Lscene-human =

λ1Lbbox +λ2Locc-sil +λ3Lscale +λ4Ldepth +λ5Lcollision +λ6Lcontact. (3.1)

We apply an occlusion-aware silhouette term Locc-sil from Zhang et al. (2020a), a 2D
bounding box projection term Lbbox that constrains the top-left corner and the width of
the bounding boxes of the objects, and Lscale, an ℓ2-based regularizer to constraint the
variation of the object scales.

The 2D bounding box term Lbbox is an ℓ1 norm between the object’s projected 3D
bounding box Proji and its corresponding detected 2D bounding box Deti, expressed
with the top-left corner coordinate xmin,ymin and width value.

Lbbox = ∑
i
∥Projαi −Detαi ∥, α ∈ {xmin,ymin,width}. (3.2)

The scale term prevents object scales s deviating far from the initial estimates sinit
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from Total3D Nie et al. (2020):

Lscale = ∑
i
∥ si

sinit
i

−1.0∥2. (3.3)

Depth Order Constraint Ldepth. The occlusion between humans and objects can pro-
vide clues about the object’s depth. We assume that the human’s depth is accurate. If
a human occludes an object, the far side of the person sets a limit on how close the
object can be. Alternatively, if the object occludes the person, the visible side of the
person sets a maximum distance for the object. This is summarized in Figure 3.3. In
this way, human-object occlusion provides constraints on scene layout even when there
is no human-object contact. Directly applying the ordinal depth loss proposed by Jiang
et al. Jiang et al. (2020) for each image is inefficient, as the required memory increases
with the number of images. In contrast, we accumulate all single depth ordering maps
into one far depth range map D̂far and one near depth range map D̂near as follows:

D̂far(p) = min
(
D1

far(p), ...,DT
far(p)

)
,

D̂near(p) = max
(
D1

near(p), ...,DT
near(p)

)
,

(3.4)

where the pixel p is in the overlapping region between the human bodies and the objects.
Using these accumulated depth range maps, we constrain the depth Di(q) of a projected
pixel q from object i to lie within the corresponding range:

Ldepth = ∑
i

∑
q∈Sili∩Mi

[ReLU(Di(q)− D̂far(q))

+ReLU(D̂near(q)−Di(q))],
(3.5)

where Sili is the rendered silhouette of the object i, Mi is the 2D segmentation mask of
it, and Di(q) is the depth of the object i at the pixel q.

Collision Constraint Lcollision. To penalize interpenetrating vertices of objects and
bodies in the scene, we use the signed distance field (SDF) of all reconstructed bodies.
Specifically, we calculate a signed distance field volume Vj for each body j in a shared 3D
world space, and accumulate them into a global SDF volume as V̂ = min(V1, ...,Vj, ...),
This ensures that, at any point in space, the global SDF reflects the smallest signed dis-
tance value among the individual volumes. The SDF V̂ is stored in a volumetric grid of
size 2563, which spans a padded bounding box of all bodies. For a vertex ui of an ob-
ject Oi, we compute the voxel coordinate f (ui) = (p(ui),q(ui),k(ui)) in the global SDF
volume, where p,q,k denote the grid indices, and retrieve the corresponding SDF value
V̂f (ui). Based on the SDF values of all vertices of all N objects, we resolve scene-body
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Rendered 
Body Mask

Detected 
Human Mask

Static 
Object Mask

Frontal (top) Region / 
Behind (bottom) Region

Figure 3.3: Computing depth range maps for the depth order constraint Ldepth. Given a
detected human mask Mt and a rendered body mask Silt , for each object i, we compute
the overlap region between Mi and Silt ∩Mt as the frontal region and extract the depth of
the backside surface of the body as the near depth range Dt

near of the object i. Similarly,
we compute (Silt −Mt)∩Mi, which defines the far depth range Dt

f ar of the object.

26



3.2 Method

inter-penetration by penalizing vertices with a negative SDF value:

Lcollision = ∑
i

∑
u
∥V̂f (ui)∥

2
2, V̂f (ui) < 0. (3.6)

Contact Constraint Lcontact. When humans and objects are in contact, their contact
surfaces occupy the same place. We propose a contact constraint to minimize the distance
between the contacted body parts and their corresponding assigned contacted object.
PHOSA Zhang et al. (2020a) proposes a loss in which they assign a whole body to only
one object, whereas humans sometimes interact with multiple objects; for example, a
person may sit on a chair while placing their hand on a table. In contrast, we directly
assign the contacted body vertices Cbody

i of each body to different objects, based on the
overlap between the 2D projection of the vertices and the detected object masks, and the
3D distances between them. We consider the vertices of sofa and chair backs and seat
bottoms as contactable regions. We minimize the distance between the contacted bodies
and the contacted object parts as follows:

Lcontact = ∑
i

∑
v∈Cbody

I(v,Oi)[CD(vy,C(Oi)
y)+CD(v⊥y,C(Oi)

⊥y)], (3.7)

where C(Oi)
⊥y and C(Oi)

y denote the back and the bottom seat contact part of an object i,
respectively. I(v,Oi) is an indicator function (1 only if the contact vertex v is assigned to
the contacted object Oi, 0 otherwise). CD denotes the one-directional ChamferDistance
(CD), i.e., from bodies to objects, because for large furniture like a bed or a sofa, a
human typically contacts only a small region of the object. In contrast, PHOSA Zhang
et al. (2020a) uses a bi-directional CD, which tends to shrink the object to match the
contacted body parts.

3.2.2 Optimization
We optimize Equation (3.1) for a specific scene with respect to the parameters si (scale),
θi (rotation), ti (translation) of the objects {i = 1...N} using the Adam optimizer Kingma
and Ba (2014). In the following, we detail the initialization of the 3D scene and the
human poses.

Initial 3D Scene. We extract a representative 2D image I from the input data that con-
tains no human-object occlusion. For this image, we label or compute 2D bounding
boxes Bi and an instance masks Mi for all N objects in the scene using PointRend Kir-
illov et al. (2020). We use Nie et al. (2020) to get an initial 3D scene S0, consisting of a
ground plane y = yp and multiple object meshes {Oi}N

i=1, and a perspective camera with
yaw and pitch orientation. Each object i has a translation ti ∈ R3, scale si ∈ R3, and a
rotation along the y-axis θ

y
i ∈ [0,2π). Since the predicted meshes of Nie et al. (2020) are
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incomplete and have holes, we use Occupancy Networks Mescheder et al. (2019) and
Marching Cubes Lorensen and Cline (1987) to transform each object mesh into a water-
tight mesh. Based on this preparation, we first optimize the objective function Lscene
without considering the HSIs:

Lscene = Locc-sil +λ1Lbbox +λ2Lscale. (3.8)

Initialization of the Ground and the Camera. As shown in the third column of Fig-
ure 3.2, the estimated ground plane and camera orientation from Nie et al. (2020) vi-
olates the reconstructed bodies (e.g., people float in the air). Previous methods either
fix the camera orientation and only optimize the ground plane and humans Chen et al.
(2019), or estimate them independently per image Weng and Yeung (2020), which gener-
ates inconsistent camera orientation and ground planes throughout a video. However, the
camera orientation and ground plane are essential for producing plausible HSIs. Thus,
we jointly estimate the ground, camera and multiple humans together, by applying Lfeet:

Lfeet(R, p) = ρ1(R⊤
∑
t
Ct

feet − [0,yp,0]⊤), (3.9)

where R is the camera rotation matrix calculated from pitch, yaw, and ρ denotes a robust
Geman-McClure error function Comer et al. (2010) for down-weighting outliers.

Initial Estimate of 3D Bodies. As an initial shape and body pose estimate for the
input images {It}T

t=1, where a human interacts with a 3D scene, we use OpenPose Cao
et al. (2021) and SMPLify-X Pavlakos et al. (2019a). Specifically, we use a perspective
camera projection and estimate the pose parameters θt of SMPL-X for each frame with
shared body shape parameters β . SMPLify-X requires a good initialization and, for this,
we use PARE Kocabas et al. (2021) because it is robust to occlusion and our scenes
involve significant occlusion. PARE outputs SMPL, which we convert to SMPL-X, and
use the resulting 3D joints to initialize SMPLify-X.

We then optimize all SMPL-X parameters to minimize an objective function EBody of
multiple terms, as described in SMPLify-X Pavlakos et al. (2019a) (see ESMPLify-X) :

EBody =
T

∑
t=1

(
ESMPLify-X (t)

)
+λsmoothLsmooth. (3.10)

To reduce the jitter, we add a constant-velocity motion smoothing term on 3D joints J
and their 2D projections JProj:

Lsmooth =
T−1

∑
t=1

ρ2 (∥Jt−1 + Jt+1 −2× Jt∥) +ρ3

(
∥JProj

t−1 + JProj
t+1 −2× JProj

t ∥
)
. (3.11)

We also apply the constant-velocity assumption to avoid noisy and unreliable body poses
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and, therefore, wrong human-scene interactions during optimization. We calculate the
pelvis acceleration νt and local joints’ acceleration αt of a person in frame t to describe
the global body translation and local pose articulations of the body. We filter out those
bodies with either large pelvis translation or incorrect human pose with a large ν or a
large α respectively: { j : ν j < τpelvis ∩α j < τlocal, j ∈ {1...T}}, where τpel,τlocal are the
thresholds for the pelvis acceleration and the local pose acceleration, respectively.

3.3 Datasets

PiGraphs. PiGraphs Savva et al. (2016) consists of 60 RGB-D videos of 30 scenes.
The dataset is recorded with a Microsoft Kinect One, and is designed to capture human
and object arrangements in different kinds of interactions. Each video recording is ap-
proximately 2 minutes long with 5 fps. It contains labeled 3D bounding boxes of objects
in the scene and human poses represented as 3D skeletons. We use this dataset to evalu-
ate the scene reconstruction and compare with Nie et al. (2020); Weng and Yeung (2020).
Note that the provided human poses are noisy and not suitable for an evaluation of 3D
human shape and pose estimation.

PROX Qualitative. PROX qualitative contains 61 RGB-D videos at 30 fps of human
motion/interaction in 12 scanned static 3D scenes. The data has been recorded using the
Microsoft Kinect One and StructureIO sensor. To enable 3D scene reconstruction evalu-
ation on this dataset, we segment and label each object with its 3D bounding box. Since
there are two scenes (i.e., “BasementSittingBooth” and “N0SittingBooth”) containing an
inseparable object (see Figure 3.4) which is challenging to segment out from the entire
3D scan, we evaluate all methods on the remaining 10 scenes using the corresponding 51
videos as input.

PROX Quantitative. PROX quantitative captures a sequence of human-scene interac-
tion RGB-D frames within a synchronized Vicon marker-based motion capturing system.
In total, the dataset contains 178 frames and provides ground truth body meshes, which
are useful for human pose and shape (HPS) evaluation. For fair evaluation on HPS, we
input all images into HolisticMesh Weng and Yeung (2020) and ours to get a refined
scene and use a refined scene to get refined bodies. In addition, we also label this scene
for 3D scene reconstruction evaluation, see Figure 3.4.

3.4 Implementation Details

Contact Regions of Objects. We automatically calculate the contact regions of objects
based on vertices normal. Specifically, vertices with normals along the y-axis represent
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(A)  PROX qualitative dataset (B)  PROX quantitative dataset

Figure 3.4: We crop out each object separately and label the corresponding 3D bound-
ing box for 10 scenes in PROX qualitative dataset and one scene in PROX quantitative
dataset.
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Figure 3.5: Contact regions of different objects. The red, green, and blue axes represent
the x, y, and z coordinates, respectively, while the yellow lines indicate the normal direc-
tion at each point.

the bottom or top parts of the objects, while vertices with normals along the z-axis rep-
resent the back parts of the objects. We define sofas and chairs as having two contact
regions (bottom and back parts), while beds and tables have only a top part as the contact
region, shown in Figure 3.5.

Since PARE Kocabas et al. (2021) uses SMPL Loper et al. (2015) model, we use
Pavlakos et al. (2019b) to transfer it to the SMPL-X Pavlakos et al. (2019a) model.

Optimization. We use the Adam optimizer Joo et al. (2018) to optimize the final en-
ergy term with a step size of 0.002 and 3000 iterations. We set λ1,λ2,λ3 to 1000,0.3,1000,
respectively, for 2D bounding box term, occlusion-aware term and scale term. The
weights of our proposed depth order constraint, collision constraint, and contact con-
straint are set to λ4 = 8,λ5 = 1000, and λ6 = 1e5, respectively. We use two robust
Geman-McClure error functions, ρ1,ρ2 with parameter 0.1 on 3D joints, and one ρ3
with parameter 100 on 2D projection of 3D joints.

Our method takes around 30 minutes for 3000 iterations to optimize a 3D scene with
accumulated HSI constraints. In comparison, HolisticMesh Weng and Yeung (2020),
which jointly optimizes human and a 3D scene for one single image, directly trains the
parameters of the network in Total3DUnderstanding Nie et al. (2020) to regress the 3D
scene, which is time-consuming and takes around 40 minutes. For the human optimiza-
tion, it runs twice (5 minutes), i.e., one is a HPS initialization used to refine the scenes,
and the second pass is done using the refined scenes. In total, HolisticMesh takes 45
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Methods Setting Scene Recon. HSI
BBOX&Mask Cam. Contact Depth Colli. IoU3D ↑ P2S↓ IoU2D ↑ Non-Col ↑ Cont. ↑

HolisticMesh Weng and Yeung (2020) PointRend 0.211 0.410 0.648 0.990 0.369
Total3D Nie et al. (2020) PointRend 0.246 0.319 0.522 0.974 0.510

Ours PointRend ✓ ✓ ✓ ✓ 0.309 0.221 0.777 0.977 0.612

HolisticMesh Weng and Yeung (2020) 2D GT 0.267 0.237 0.745 0.988 0.491
Total3D Nie et al. (2020) 2D GT 0.196 0.369 0.227 0.963 0.440

Ours 2D GT ✓ ✓ ✓ ✓ 0.383 0.199 0.898 0.986 0.673

✓ 0.374 0.206 0.859 0.979 0.738
✓ ✓ ✓ 0.389 0.199 0.904 0.983 0.697

Ablation Study 2D GT ✓ ✓ 0.381 0.205 0.904 0.980 0.773
✓ ✓ 0.393 0.194 0.907 0.983 0.638
✓ ✓ 0.383 0.199 0.903 0.984 0.674

Table 3.1: Quantitative results for 3D scene understanding (3D object detection) and
human-scene interaction on the PROX qualitative dataset. P2S, Non-Col and Cont de-
note point2surface distance, Non-Collision and Contactness respectively. In each col-
umn, red is the best result among methods that take 2D labeled masks as input; blue is
the second best.

minutes for one single image. Our method takes approximately the same time for a
scene (around 10 objects) regardless of the number of frames in the input video. The
number of frames in a video only affects the time required to calculate the depth map,
the SDF volume, and the contact information of each body. However, these calcula-
tions can be performed once and are easily parallelized before optimization. In contrast,
HolisticMesh Weng and Yeung (2020) processes a video sequentially, i.e., one frame af-
ter another. Therefore, the optimization time increases with the number of frames in a
video.

3.5 Experiments
To evaluate the influence of accumulated HSIs on the optimized 3D scene layout, we
use two datasets, PiGraphs Savva et al. (2016) and PROX Hassan et al. (2019). In com-
parison to Nie et al. (2020) and Weng and Yeung (2020), we achieve state-of-the-art 3D
scene layout reconstruction, both quantitatively (see Section 3.5.1) and qualitatively (see
Section 3.5.3). On the PROX quantitative dataset, we find that our 3D scene reconstruc-
tions result in more accurate human shape and pose estimations than our baselines. In
Section 3.5.2, we analyze the contributions of different energy terms to our final results.
Qualitative results are shown in Figure 3.6.

3.5.1 Quantitative Analysis

We conduct several experiments to investigate the effectiveness of our proposed method
in three areas: 3D scene reconstruction, human-scene interaction (HSI) reconstruction,
and human pose and shape (HPS) estimation. The results are listed in Table 3.1.

32



3.5 Experiments

Methods IoU2D ↑ IoU3D ↑
Cooperative Huang et al. (2018a) 68.6 21.4
Holistic++ Chen et al. (2019) 75.1 24.9
HolisticMesh Weng and Yeung (2020) 75.6 26.3
Ours 79.2 27.8

Table 3.2: Quantitative results for 3D scene understanding (3D object detection) on
PiGraphs dataset Savva et al. (2016).

Cam. Orien. Ground Pen
Methods pitch ↓ roll ↓ mean ↓ Freq. ↓ Dist. ↓
Total3D Nie et al. (2020) 0.059 0.031 0.045 0.316 0.167
Ours 0.042 0.034 0.038 0.100 0.112

Table 3.3: Errors in the camera orientation and the ground penetration using foot contact
on the PROX qualitative dataset.

3D Scene Reconstruction. Following Nie et al. (2020); Huang et al. (2018b); Chen
et al. (2019); Weng and Yeung (2020), we compute the 3D Intersection over Union (IoU)
and 2D IoU of object bounding boxes to evaluate the 3D scene reconstruction and the
consistency between the 3D world and 2D image on PROX and PiGraphs. However,
the 3D IoU is coarse and does not capture the error in an object’s orientation, which is
crucial for physically plausible HSI, e.g., a human can not sit on an armed chair with the
wrong orientation. Therefore, we introduce the point2surface distance (P2S) to measure
the distance from a cropped object mesh to the estimated 3D object mesh. It enables 3D
scene reconstruction evaluation with more geometric details including orientation and
shape. Given 2D labeled or detected Kirillov et al. (2020) bounding boxes and masks,
our method improves upon the input from Nie et al. (2020) and outperforms Weng and
Yeung (2020) on all scene-reconstruction metrics across different datasets, as shown in
Table 3.1 and Table 3.2.

Additionally, we also evaluate the error in camera orientation and ground plane pen-
etration Rempe et al. (2021) using the estimated foot contact vertices (see Table 3.3).
We find that jointly optimizing the camera orientation and the ground plane using foot
contact significantly improves accuracy compared to the initial estimate from Nie et al.
(2020).

Human-scene Interaction Reconstruction. To evaluate the estimated HSI or func-
tionality of the scene (i.e., how well the estimated scene supports human motion), we
compute the metrics as Zhang et al. (2020d,b); Hassan et al. (2021a). Specifically, for
each reconstructed body and 3D scene, we calculate (1) the non-collision score which
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 Ours  RGB Input Total3D  HolisticMesh

Figure 3.6: Qualitative results on PiGraphs (top) and PROX. Our method recovers better
3D scenes and HPS, which supports more plausible HSIs, compared with our baseline
Nie et al. (2020) (Separated Composition) and another single-image baseline (Sequen-
tially Joint Optimize) Weng and Yeung (2020).

measures the ratio of body mesh vertices without collision with the estimated 3D scene
to the total number of body mesh vertices, and (2) the contact score, which indicates
whether the body is in contact with the 3D scene. The contact score is 1 if at least one
vertex of a body interpenetrates with the 3D scene. We report the mean non-collision
score and mean contact scores among all videos and all bodies. In Table 3.1, MOVER
(ours) achieves the best balance between non-collision and contact scores.

The estimated scenes with detected 2D boxes and masks Kirillov et al. (2020) yield
lower HSI scores than with 2D GT. It is primarily due to the mis-detected objects from
Kirillov et al. (2020). Since the reconstructed scenes of Weng and Yeung (2020) do not
support human-scene contact well, e.g., a sitting body often floats, due to the lack of
explicit human-scene contact modeling, it has a better non-collision score but a lower
contact score.

More Evaluation Results on PROX Quantitative Dataset. We also evaluate 3D scene
reconstruction and human-scene interaction on the PROX quantitative dataset, as shown
in Table 3.4. Our method improves our input baseline Nie et al. (2020) significantly and
outperforms the previous method Weng and Yeung (2020) by a large margin in both 3D
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Methods Scene Recon. HSI
IoU3D ↑ P2S↓ IoU2D ↑ Non-Col ↑ Cont. ↑

HolisticMesh Weng and Yeung (2020) 0.239 0.133 0.533 0.948 0.951
Total3D Nie et al. (2020) 0.063 0.409 0.342 0.940 0.436

Ours 0.390 0.095 0.862 0.972 0.934
Table 3.4: Quantitative results for 3D scene understanding (3D object detection) and
human-scene interaction on the PROX quantitative dataset. P2S, Non-Col and Cont
denote point2surface distance, Non-Collision and Contactness respectively.

scene reconstruction metrics and human-scene interaction metrics.

Human Pose and Shape (HPS) Estimation. Can we use the estimated 3D scene to,
in turn, improve 3D HPS? Here, we follow PROX but replace the scanned 3D scene of
PROX with our estimated 3D scene. In Table 3.5, we evaluate the HPS estimation on
PROX quantitative using the same metrics as Hassan et al. (2019). Specifically, we re-
port (1) the mean per-joint error (PJE) and (2) the mean vertex-to-vertex distance (V2V).
For completeness, we also compute these metrics on the Procrustes-aligned predictions
(denoted as p.PJE and p.V2V, respectively). But note that the metrics w./o. Procrustes
alignment (PJE and V2V) are more meaningful, since we want to evaluate the transla-
tion, rotation and scaling of the human body. As shown in Table 3.5, with estimated
camera orientation and ground plane constraints (+CamGP), the PJE and V2V are both
improved by a significant margin +43.21 and +42.41 respectively, with respect to our
baseline. We also see that our refined scene can further refine our estimated bodies by
applying the SDF loss (+SDF) and the contact loss (+Contact) from Hassan et al. (2019).
Our final body estimation outperforms HolisticMesh Weng and Yeung (2020) and is sim-
ilar to PROX, without having access to a scanned 3D scanned scene.

3.5.2 Ablation Study

To analyze the contribution of the accumulated HSIs and the influences of the different
constraints, we conducted multiple ablation studies; see Table 3.1. All three proposed
HSI constraints (depth, contact, and collision) help improve 3D scene reconstruction in
different ways. The contact constraint produces the human-scene contact scores, but
decreases the non-collision score. The collision and depth both contribute to the non-
collision score. However, using only the depth achieves a slightly better 3D scene eval-
uation than our full model, but leads to worse human-scene contact scores. By applying
all constraints, our method can generate a more accurate 3D scene, which supports more
physically plausible HSI.
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With G.T Captured 3D Scene Scans
Methods PJE↓ V2V ↓ p.PJE ↓ p.V2V↓
RGB Hassan et al. (2019) 220.27 218.06 73.24 60.80
PROX Hassan et al. (2019) 167.08 166.51 71.97 61.14

With Image2Mesh Models
HolisticMesh Weng and Yeung (2020) 190.78 192.21 72.72 61.01
baseline∗ 219.62 222.50 75.92 68.34
+CamGP 176.41 180.09 73.41 67.33
+CamGP+SDF 175.98 179.98 73.96 68.29
Ours 174.37 178.31 73.60 67.89

Table 3.5: Quantitative results for human pose estimation on PROX quantitative dataset
(baseline∗: batch-wise SMPLify-X, Ours: +CamGP+SDF+Contact.)

3.5.3 Qualitative Analysis

In Figure 3.6, we show reconstructed 3D scenes and humans along with RGB videos, to
demonstrate the effectiveness and generality of our approach on different datasets (PROX
and PiGraphs). MOVER recovers better 3D scenes and HPS compared to our baseline
Nie et al. (2020) (Separated Composition) and another single-image baseline Weng and
Yeung (2020) (Sequentially Joint Optimize).

In Figure 3.7 and Figure 3.8, we present additional qualitative results on the PROX
Hassan et al. (2019) qualitative dataset and the PiGraphs Savva et al. (2016) dataset,
respectively. As can be seen, our method performs well across a variety of scenes and
predicts physically plausible and functional scene layouts.

3.5.4 Sensitivity Analysis.

Our approach utilizes HSIs observed in a video. Longer videos typically contain more
HSIs, providing additional constraints for our objective function. In Table 3.6, we ana-
lyze the impact of video length on scene reconstruction by reporting the 3D intersection-
over-union (IoU) metric. We use 10 sequences from the PROX qualitative dataset, one
sequence per scene, and randomly sample segments of 10s, 20s, and 30s length from
each sequence. We find that longer sequences correlate with improved performance, as
indicated by higher IoU values and lower standard deviation. The analysis suggests that
performance depends on the number of HSIs rather than video length itself; a shorter
video with numerous HSIs can yield better reconstruction than a longer video with fewer
unique HSIs.

We also conducted a sensitivity study with respect to noise in the initialization. In
Table 3.7, we add uniform noise on the initial scale, translation and orientation of objects
predicted by Total3D Nie et al. (2020), and report the 3D IoU. MOVER is robust to noisy
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10s 20s 30s entire videos (51s)
3D IoU mean ↑ 0.389 0.395 0.407 0.424
3D IoU std. ↓ 0.018 0.015 0.010 -

Table 3.6: Ablation study on different length of videos as input. The average length of
entire videos is 51s.

Scale Noise ± 25% ± 15% ± 0.05%
3D IoU ↑ 0.345 0.3805 0.4105

Translation ± 30 cm ± 20 cm ± 10 m
3D IoU ↑ 0.4175 0.416 0.415

Orientation ± 45◦ ± 30◦ ±15◦

3D IoU ↑ 0.4205 0.418 0.4205

Table 3.7: Sensitivity analysis on scene reconstruction with uniform noise on input scale,
translation, and orientation from Total3D Nie et al. (2020) (Werkraum 03301 01 video).
Scene without noise has a 3D IoU of 0.417.

orientation and translation estimates from Total3D, but sensitive to scale variations. This
is because we currently regularize the optimization to the initial scale relatively strongly;
meaning we cannot deviate much from a noisy estimate to “correct” it.

3.5.5 Failure Cases

In this section, we discuss and show the failure cases of our method. Besides optimizing
the 3D scene layout, we do not modify the initial shape estimate of an object. As a
result, an incorrectly estimated shape can still disrupt human interaction, as shown in (A)
in Figure 3.9. A more flexible and adjustable geometry representation, e.g., an implicit
representation, would be necessary. Human motion reconstruction struggles with severe
occlusions in the input, leading to incorrect body poses and poor estimations of HSIs,
which affect our 3D scene layout prediction, see (B) in Figure 3.9. While not the scope
of our work, the robustness and accuracy of human motion estimation can be improved
by incorporating human motion priors or learning-based probabilistic human pose and
estimation network. Severe occlusion can also cause missing objects in the scene like
the chair in Figure 3.9(C).

In our pipeline, we currently consider the contact between detected objects and bodies.
As a potential future extension of our method, one can also leverage the information
from a 2D learning-based human-object interaction (HOI) detection network Zou et al.
(2021), by using contacted bodies to discover missing objects; or learn a model that
jointly regresses human-object interaction and their shape.
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3.6 Discussion
Based on single-view inputs, our proposed method optimizes the 3D alignment of objects
in a static scene. However, humans also move objects, resulting in a dynamic scene
layout. While our approach uses individual mesh models for each object, we assume a
static scene. Nevertheless, we believe that our proposed constraints based on HSIs will be
beneficial for future work on the reconstruction of dynamic scenes. Besides optimizing
the 3D scene layout, we do not change the initial shape estimate of an object. A more
flexible and adjustable geometry representation, e.g., an implicit representation, would
be needed since the initial mesh could have a wrong topology.

Human motion reconstruction and 2D instance segmentation struggle with severe oc-
clusions in the input, which leads to poor estimation of HSIs, influencing our 3D scene
layout prediction. While not the scope of our work, the robustness and accuracy of hu-
man motion estimation can be improved by incorporating human motion priors Zhang
et al. (2021b); Rempe et al. (2021). Also, jointly predicting human motion and the 3D
scene with HSIs in a probabilistic framework can be another interesting direction for
future work.

3.6.1 Discussion of Potential Misuse
Our approach is not intended for any surveillance application. Our goal is to understand
how humans interact and move in scenes from videos (e.g., from TV sitcoms), to this
end both the scene geometry and the human pose need to be reconstructed. Our method
could be misused in potential surveillance applications that curtail human rights and civil
liberties, but we restrict the usage of our method for surveillance.

3.6.2 Conclusion
We have introduced MOVER, which reconstructs a 3D scene by exploiting 3D humans
interacting with it. We have demonstrated that accumulated HSIs, computed from a
monocular video, can be leveraged to improve the 3D reconstruction of a scene. The
reconstructed scene, in turn, can be used to improve 3D human pose estimation. In
contrast to the state of the art, MOVER can reconstruct a consistent, physically plausible
3D scene layout.
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Figure 3.7: More qualitative results on the PROX qualitative dataset.
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Figure 3.8: More qualitative results on the PiGraphs dataset.
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(A) (B) (C)

Figure 3.9: Failure cases. (A) The estimated sofa has arms, which does not match the
armless sofa in the input image. (B) The lower half of the body is occluded, leading
to incorrect pose estimation and HSI observation. Additionally, the body appears to be
’sitting in the air’ because the chair is missing.
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Chapter 4

Human-Aware 3D Scene Generation

4.1 Introduction

Humans constantly interact with their environment. They walk through a room, touch
objects, rest on a chair, or sleep in a bed. All these interactions contain information
about the scene layout and object placement. In fact, a mime is a performer who uses
our understanding of such interactions to convey a rich, imaginary, 3D world using only
their body motion. Can we train a computer to take human motion and, similarly, conjure
the 3D scene to which it belongs? Such a method would have many applications in
synthetic data generation, architecture, games, and virtual reality. For example, there
exist large datasets of 3D human motion like AMASS Mahmood et al. (2019) and such
data rarely contains information about the 3D scene in which it was captured. Could we
take AMASS and generate plausible 3D scenes for all the motions? If so, we could use
AMASS to generate training data containing realistic human-scene interaction.

To answer such questions, we train a new method called MIME (Mining Interaction
and Movement to infer 3D Environments) that generates plausible indoor 3D scenes
based on 3D human motion. Why is this possible? The key intuitions are that (1) a
human’s motion through free space indicates the lack of objects, effectively carving out
regions of the scene that are free of furniture. And (2) when they are in contact with the
scene, this constrains both the type and placement of 3D objects; e.g., a sitting human
must be sitting on something, such as a chair, a sofa, a bed, etc.

To make these intuitions concrete, we develop MIME, which is a transformer-based
auto-regressive 3D scene generation method that, given an empty floor plan and a human
motion sequence, predicts the furniture that is in contact with the human, as shown in
Figure 4.1. It also predicts plausible objects that have no contact with the human but
fit with the other objects and respect the free-space constraints induced by the human
motion. To condition the 3D scene generation with human motion, we estimate possible
contact poses using POSA Hassan et al. (2021a) and divide the motion into contact and
non-contact snippets. The non-contact poses define free space in the room, which we
encode as 2D floor maps, by projecting the foot vertices onto the ground plane. The
contact poses and corresponding 3D human body models are represented by 3D bound-
ing boxes of the contact vertices predicted by POSA. We use this information as input
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Figure 4.1: Estimating 3D scenes from human movement. Given 3D human motion,
e.g., from motion capture or body-worn sensors, we reconstruct plausible 3D scenes
in which the motion could have taken place. Our generative model is able to produce
multiple realistic scenes that take into account the locations and poses of the person,
with appropriate human-scene contact.

to the transformer and auto-regressively predict the objects that fulfill the contact and
free-space constraints.

To train MIME, we built a new dataset called 3D-FRONT Human, which extends
the large-scale synthetic scene dataset 3D-FRONT Fu et al. (2021a). Specifically, we
automatically populate the 3D scenes with humans, i.e., non-contact humans (a sequence
of walking motions and standing humans) as well as contact humans (sitting, touching,
and lying humans). To this end, we leverage motion sequences from AMASS Mahmood
et al. (2019), as well as static contact poses from AGORA Patel et al. (2021) scans.

At inference time, MIME generates a plausible 3D scene layout for the input motion,
represented as 3D bounding boxes. Based on this layout, we select 3D models from the
3D-FUTURE dataset Fu et al. (2021c) and refine their 3D placement based on geometric
constraints between the human poses and the scene.

In comparison to pure 3D scene generation baselines like ATISS Paschalidou et al.
(2021), our method generates a 3D scene that supports human contact and motion while
placing plausible objects in free space. In contrast to Pose2Room Nie et al. (2022),
which is a recent pose-conditioned generative model, our method enables the generation
of objects that are not in contact with the human, thus predicting the entire scene instead
of isolated objects. We demonstrate that our method can be directly applied to real
captured motion sequences such as PROX-D Hassan et al. (2019) without fine-tuning.

In summary, we make the following contributions:

• a novel motion-conditioned generative model for 3D room scenes that auto-regressively
generates objects in contact with the human or avoids free-space defined by the
motion.

• a new 3D scene dataset with interacting humans and free space humans which
is constructed by populating 3D FRONT with static contact/standing poses from

44



4.2 Method

AGORA and motion data from AMASS.

4.2 Method
Given input motion of a human and an empty or partially occupied room of a specific
kind (e.g., bedroom, living room, etc.) with its floor plan, we learn a generative model
that can populate the room with objects that do not collide with the input humans and also
support them. To this end, we propose a human-aware autoregressive model that repre-
sents scenes as one unordered set of objects. We divide the objects into two kinds, i.e.,
contact objects and non-contact objects, based on the human-object interaction. Contact
objects are ones that humans interact with. Non-contact objects can be placed anywhere
in the free space of a room that makes semantic sense. These objects enrich the content
and potential functionality of a room.

In the following, we describe our human-aware scene synthesis model, MIME, which
consists of two components: (1) a generative scene synthesis method based on 3D bound-
ing boxes with object labels, and (2) a 3D refinement method that takes 3D human-scene
interactions into account to optimize the rotation and placement of the generated objects.
In Section 4.3, we detail the dataset generation process used to train our model.

4.2.1 Generative Human-aware Scene Synthesis
Given humans H and a floor plan F , our goal is to generate a “habitat” X = {H,F ,S}
where the 3D scene S can support all human interactions and motions. In contrast to the
pure 3D scene generation methods Paschalidou et al. (2021); Para et al. (2023), we focus
on leveraging information from human motion to guide the 3D scene generation. To this
end, we extract two types of information from the input motion and the corresponding
human bodies: (i) contact humans C and (ii) free-space humans. We use POSA Hassan
et al. (2021a), to take posed human meshes and automatically label which of their ver-
tices are potentially in contact with an object. Free-space humans are those that are only
in contact with the floor plane F . These define a binary mask that we call free-space mask
FS , which is constructed by the union of all projected foot contact points on F . This
free-space mask FS defines the region of a room that is free from objects, as a human
can stand and walk there. Given all contact humans, we compute the bounding boxes
of their contact vertices and keep only the non-overlapping boxes using non-maximum
suppression; we denote these as ci. The collection of contact boxes is referred to as
C = {ci}N

i=1. Instead of storing all contact vertices of all bodies, our features are compact
and encode complementary information. The contact humans, represented by C, indicate
where to locate an object. See Figure 4.3 top and middle rows for an illustration.

We represent a 3D scene S as an unordered set of objects, consisting of two kinds
of objects based on human-object interaction. Objects in contact with the input human
are referred to as contact objects O = {o}N

i=1, while non-contact objects Q = {q}M
i=1
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Figure 4.2: Method overview. In training, our method generates object M+1 through a
transformer encoder and a decoding module, conditioned on the free space concatenated
with the floor plan, contact humans cN

j=1, other existing objects oM
j=1 and a learnable

query q. We minimize the negative log-likelihood between the distribution of the gener-
ated object M + 1 and the ground truth. In inference, we start from the floor plane, the
free space, and input contact humans cN

i=1 and assign the contact label of the first human
as 1 by default, to autoregressively generate objects. At each step, we remove the contact
humans that overlap the previously generated object and generate the next objects until
the end symbol is generated.

are without any human interaction. Formally, a 3D scene is the union of contact and
non-contact objects: S =O∪Q.

The free-space mask FS , the floor plan F , the contact humans C as well as the al-
ready existing objects S are input to an auto-regressive transformer model. Each input is
encoded with a respective encoder, detailed below.

The log-likelihood of the generation of scene S including contact objects and non-
contact objects is:

log p(S) = log p(O|F ,FS,C)+ log p(Q|F ,FS,C). (4.1)

To calculate the likelihood of all generated contact objects Q, we accumulate the likeli-
hood of every contact object:

p(O|F ,FS,C) = ∑
Ô∈π(O)

∏
j∈Ô

p
(
o j | o< j,F ,FS,c≥ j

)
, (4.2)

where p
(
o j | o< j,F ,FS,c≥ j

)
is the probability of generating the jth object conditioned

on the input floor plan, free-space humans, the rest of contact humans and the previously
generated objects, and π is the random permutation function for those generated contact
objects in the scene. The likelihood of all non-contact objects Q is computed by replacing
the input contact humans with the corresponding generated contact objects. During the
training, we remove all contact humans inside the room; thus, all contact objects O can
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Figure 4.3: We divide input humans into two parts: contact humans and free-space hu-
mans. We extract the 3D bounding boxes for each contact human and use non-maximum
suppression on the 3D joint union to aggregate multiple humans in the same 3D space
into a single contact 3D bounding box (orange boxes). We project the foot vertices of
free-space humans on the floor plane, to obtain the 2D free-space mask (dark blue).
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be treated as non-contact objects Q′:

p(Q|F ,FS,C) = p(Q|F ,FS,O)

= p(Q|F ,FS,Q′)

= ∑
Q̂∈π(Q+Q′)

∏
j∈Q̂

p
(
q j | q< j,F ,FS

)
.

(4.3)

We follow Paschalidou et al. (2021) to use Monte Carlo sampling to approximate all
different object permutations during training, to make our model invariant to the order of
generated objects.

Free-Space Encoder. The 2D free-space mask FS is encoded together with the 2D
floor plan F using a ResNet-18 He et al. (2016). The encoded feature provides the
information to the transformer encoder about where an object can be placed.

Contact Encoder. We represent the contact humans as 3D bounding boxes, which
consist of the contact label I, the contact class category k (sitting, touching, lying), the
translation t, the rotation r, and the size s. During generation of a scene, we set the
contact label I of one contact human to 1 while the others are labeled 0. This label
highlights the contribution of the specific contact human to the next generated contacted
object. Note that we remove contact humans from the input set if they are already in
contact with an existing object in the scene. Otherwise, we encode the jth input contact
human by applying:

Eθ : (I j,k j, t j,r j,s j)→ (I j,λ (k j), p(t j), p(r j), p(s j)), (4.4)

where λ (·) is a learnable embedding for the contact class category k, and p(·) Vaswani
et al. (2017) is the positional encoding for the translation t, rotation r and size s.

Furniture Encoder. The furniture encoder computes the embedding of existing objects
in the room:

Eθ : (I j = 0,k j, t j,r j,s j)→ (0,λ (k j), p(t j), p(r j), p(s j)). (4.5)

Note that the furniture encoder shares the same weight as the contact encoder. The
contact labels of the objects are all zero, where j ∈ [1,M].

Scene Synthesis Transformer. We pass the free-space feature F , context embedding
T M+N

i=1 , and a learnable query vector q ∈R64 into a transformer encoder τθ Vaswani et al.
(2017); Devlin et al. (2018) without any positional encoding Vaswani et al. (2017), to
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predict the feature q̂ that is used to generate the next object:

τθ (F,T M+N
i=1 ,q)→ q̂. (4.6)

To decode the attribute distribution (k̂, t̂, r̂, ŝ) of the generated object oM+1 from q̂, we
follow the same design from ATISS Paschalidou et al. (2021). Specifically, we employ
an MLP for each attribute in a consecutive fashion. Given q̂, we first predict the class
category label k̂, then we predict the t̂, r̂ and ŝ in this specific order, where the previous
attribute will be concatenated with the input q̂ for the next attribution prediction.

4.2.2 Training and Inference.

We train our model on the training set of 3D FRONT HUMAN, by maximizing the log-
likelihood of each generated scene S in Equation (4.1). During training, we select a
human-populated scene in 3D FRONT HUMAN and add a random permutation π (·)
on all N contact and M non-contact objects. We randomly select the mth + 1 as the
generated object, where m ∈ [0,N +M]. Note that, m = 0 represents an empty scene,
while m = N +M indicates the generated scene is already full, and the class label of the
predicted object is an extra end symbol. Our model predicts the attribute distribution
of the generated object, conditioned on the floor plane F , free space FS , previous m
objects and contact humans C; see Figure 4.2. To enable our model to generate both
contact objects and non-contact objects, we augment the data by adding input contact
humans or dropping them out with equal frequency.

During inference, we start with an empty floor plane F and input humans, including
free-space humans FS and contact humans C. We autoregressively sample the attributes
of the next generated object to place one object into a scene. By default, we set the
contact label of the first contact human to 1 and the rest are 0. After each generation
step, we remove contact humans that are already in contact, by computing the 2D IoU
of the human bounding box and the generated object by projecting them onto the ground
plane. Specifically, if the IoU is larger than 0.5, we remove the contact human from the
input. Once the end symbol is generated, the scene generation is complete.

4.2.3 3D Scene Refinement

The generated scene from our model is represented with 3D bounding boxes. Based on
the bounding box size and class category label, we retrieve the closest mesh model from
3D FUTURE Fu et al. (2021c). To improve the human-scene interaction between the
generated scenes and input humans, we optimize the collision loss and the contact loss
from MOVER Yi et al. (2022) to refine the object position, as can be seen in Figure 4.4.
We calculate a unified SDF volume and accumulate all contact vertices for all humans
in the 3D space, then jointly optimize the object alignment to improve human-object
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Figure 4.4: Scene refinement with the collision and contact loss from MOVER Yi et al.
(2022). In the contact loss, all contact vertices (orange color) are accumulated from all
bodies into 3D space and the sofa and chair are refined by minimizing the one-directional
Chamfer Distance with the contact vertices. In the collision loss, we compute one uni-
form SDF volume for all bodies, where the inside of bodies is denoted as blue voxels.
The table gets refined with the collision loss.

contact and resolve 3D interpenetrations between humans and the scene. The MOVER
contact loss weight and the collision loss weight are 1e5 and 1e3 respectively.

4.2.4 Training Details

During training, we apply the Adam optimizer Kingma and Ba (2014) with a learning
rate 1e−4 and no weight decay. In the Adam optimizer, we use the default PyTorch
implemented parameters: β1 = 0.9, β2 = 0.999 and ε = 1e−8. We train MIME with a
batch size of 128 for 100k iterations. We perform random global rotation augmentation
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4.3 Dataset Generation of 3D FRONT HUMAN

Interpenetration(↓) 2D IoU(↑) 3D IoU(↑)

ATISS Paschalidou et al. (2021) Ours ATISS Paschalidou et al. (2021) Ours ATISS Paschalidou et al. (2021) Ours

Bedroom 0.348 0.129 0.472 0.939 0.376 0.756
Living 0.129 0.050 0.480 0.971 0.360 0.920
Dining 0.121 0.047 0.163 0.959 0.122 0.769
Library 0.139 0.106 0.351 0.725 0.390 0.570

Table 4.1: Quantitative comparison on the test split of the 3D FRONT HUMAN dataset
for human-scene interaction. Interpenetration loss, 2D IoU, and 3D IoU are used to
evaluate the interaction quality in generated scenes.

FID Score (↓) Category KL Div. (↓)

ATISS Paschalidou et al. (2021) Ours ATISS Paschalidou et al. (2021) Ours

Bedroom 70.21±1.80 74.18±2.19 0.028 0.044
Living 130.61±1.27 150.03± 1.00 0.004 0.053
Dining 45.99 ± 0.90 76.75 ± 1.45 0.004 0.037
Library 93.16 ± 2.59 118.34±2.94 0.066 0.093

Table 4.2: Evaluation of generative model performance on the test split of the 3D FRONT
HUMAN dataset. FID score and category KL divergence are used to assess the realism
and diversity of generated scenes compared with ATISS.

between [0,360] degrees on the holistic populated scene, including the floor plane, all
objects, the free space, and all contact humans.

4.3 Dataset Generation of 3D FRONT HUMAN

To enable 3D scene generation from humans, we need a dataset that consists of a large
number of rooms with a wide variety of human interactions. Since no such dataset exists,
we generate a new synthetic dataset by populating the 3D rooms in the 3D FRONT
Fu et al. (2021a) with interactive humans. We name the resulting dataset 3D FRONT
HUMAN. To populate the rooms of 3D FRONT with people, we insert humans with
contact and humans that stand or walk in free space, as shown in Figure 4.5. We represent
people using the SMPL-X model Pavlakos et al. (2019a) and add contact humans from
AGORA Patel et al. (2021) by randomly assigning plausible interactions to different
contactable objects in the room. Specifically, we allow three types of contact interactions:
touching, sitting, and lying. In Figure 4.5 (bottom), we place a lying down person on a
bed, and multiple humans interact with a nightstand or wardrobe. In the free space, we
put a random number of static standing people and add multiple walking motion clips
from AMASS Mahmood et al. (2019) with random start positions and directions to the
scene, and remove humans that intersect with objects in the scene.
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Chapter 4 Human-Aware 3D Scene Generation

Figure 4.5: The illustration of populated 3D scenes in 3D FRONT HUMAN. Given a
room, we place random numbers of static “standing” people and add multiple “walking”
motion sequences with varying start positions and directions in the free space. We also
place various “contact humans” into the scene so that their interaction with the objects
makes sense, e.g., “touching” and “lying”. The red boxes represent the bounding boxes
of the contact vertices of each interactive body.

52



4.4 Experiments

Figure 4.6: Qualitative comparison on the test split in 3D FRONT HUMAN. Given free
space and contact humans as input, MOVER generates more plausible scenes in which
the contact humans interact with the contact objects and the free space humans have
fewer collisions with all the generated objects. We also show the original ATISS with or
without the free space mask as input. All results are without refinement. Top and bottom
rows represent two different example inputs.

4.4 Experiments
We qualitatively and quantitatively evaluate our method and compare with two baselines.
Specifically, we compare to the 3D scene generation method ATISS Paschalidou et al.
(2021) and the human-aware scene reconstruction method Pose2Room Nie et al. (2022).

Evaluation Datasets. Our human-populated dataset 3D FRONT HUMAN contains
four room types: 1) 5689 bedrooms, 2) 2987 living rooms, 3) 2549 dining rooms and
4) 679 libraries. We use 21 object categories for the bedrooms, 24 for the living and
dining rooms, and 25 for the libraries. We independently train our model four times
for the four kinds of rooms. Following our baseline, ATISS Paschalidou et al. (2021),
for each kind of room, we split the data 80%, 10%, 10% into training, validation and
test sets respectively. We train and validate MIME on the training and validation sets
respectively, and evaluate it on the test set. Since ATISS Paschalidou et al. (2021) does
not provide a pre-trained model, we retrain it with the official code1, following the same
training strategy on the original 3D FRONT dataset as one of our baseline.

To evaluate the effectiveness and generalization of our method, we test MIME on

1https://github.com/nv-tlabs/ATISS/commit/6b46c11.
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Figure 4.7: Evaluation on PROX Hassan et al. (2019); Yi et al. (2022). Compared with
Pose2Room Nie et al. (2022), which uses the 3D skeletons of the same input motion
as MOVER, MOVER (w/o finetuning and w/o refinement) can not only generate more
accurate contact objects, but it also generates objects appropriately in free space. GT =
ground truth.

a RGB-D based motion capture 3D motion dataset PROX-D Hassan et al. (2019) and
compare it with Pose2Room Nie et al. (2022). Pose2Room requires a sequence of human
motions that are in contact with objects. Our 3D FRONT HUMAN does not provide these
interactive human-object motions, so we cannot finetune and evaluate Pose2Room on our
3D FRONT HUMAN.

Evaluation Metrics. We compare MIME with the baselines in two different ways: (i)
the plausibility between human-scene interaction and (ii) the realism of the generated
scenes only. We propose an interpenetration loss (↓) to evaluate the collisions between
the generated objects and the free space, by computing the ratio of the violated free space
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versus the 2D projection of the generated objects:

Linter =

(
M

∑
j=1

∑
p∈O j

FS(p)

)
/ ∑

p∈FS
FS(p), (4.7)

where p denotes each pixel on the floor plane image. We calculate the 2D IoU and 3D
IoU between generated objects and input contact bounding boxes to measure human-
object interaction. To evaluate the realism and diversity of generated scenes, we follow
common practice Paschalidou et al. (2021); Zhang et al. (2020c) and calculate the FID
Heusel et al. (2017) (at 2562 resolution) score between birds-eye view orthographic pro-
jections of generated scenes and real scenes from the test set, as well as the category
KL divergence. We compute the FID score 10 times and report its mean and variance.
All these evaluation experiments are conducted on the test split of the 3D FRONT HU-
MAN dataset.

4.4.1 Human-aware Scene Synthesis.

In Figure 4.6, we visualize the ability of our method to generate plausible 3D scenes
from input motion and floor plans for different kinds of rooms; we also show our baseline
methods for comparison.

We present more qualitative examples for different kinds of rooms, in Figure 4.8,
Figure 4.9, and Figure 4.10. Compared with our baseline methods Paschalidou et al.
(2021), our method can generate more plausible 3D scenes that input motions can interact
with.

Note that the original ATISS Paschalidou et al. (2021) model generates a 3D scene
only based on the floor plan, without taking the humans into account. Thus, scenes
generated by ATISS violate the free space constraints and are not consistent with human
contact. For a more fair comparison, we extend ATISS to take information about the
human motion as input. Specifically, we adapt the 2D input floor plan to also contain
the free space information of the walking and standing humans. However, ATISS with
input free space still generates objects in free space, while also generating implausible
object configurations such as the white closet inside the bed (Figure 4.6, top). In contrast,
MIME generates plausible 3D scenes that have less interpenetration with the free space
and support interacting humans; e.g. a bed beneath a lying person and a chair under a
sitting person.

The observations in the qualitative comparison are also confirmed by a quantitative
evaluation in Table 4.1 and Table 4.2. MIME achieves significant improvements on
human-scene interaction evaluation metrics compared with ATISS. Note, since our scene
generation is constrained by the input motion, the diversity scores (FID, KL divergence)
are lower than of ATISS, which is not human-aware. This is not a failure/limitation of
MIME.
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Figure 4.8: Qualitative comparison on bedrooms in the test split of 3D FRONT HUMAN.
Given free space and contact humans as input, MIME generates more plausible scenes
in which the contact humans interact with the contact objects and the free space humans
have fewer collisions with all the generated objects. We also show the original ATISS w/
or w/o the free space mask as input. All results are w/o refinement. Each row represents
an example input.

To evaluate the generalization of our method, we test it on a motion capture (mocap)
dataset of human motion. We consider the PROX-D Hassan et al. (2019) dataset and the
3D bounding box annotation from Yi et al. (2022). We use it without scene refinement,
and use the motions to generate scenes. We compare our method with Pose2Room Nie
et al. (2022), which predicts 3D objects from a motion sequence of 3D skeletons. Note
that Pose2Room can only predict contact objects, it does not predict an entire scene
which is the goal of our method. Figure 4.7 presents a qualitative comparison of the
methods and we report the quantitative metrics in Table 4.3.

Specifically, we compute the mean average precision with 3D IoU 0.5 (mAP@0.5)
to evaluate the 3D object detection accuracy for those contact objects only. Both meth-
ods are probabilistic generative models that predict the distribution of object attributes.

Method 3D IoU
P2R-Net Nie et al. (2022) w/o pretrain 5.36
Ours (MIME) w/o pretrain 8.47

Table 4.3: Comparisons on 3D object detection accuracy (mAP@0.5) using the PROX-D
qualitative dataset Hassan et al. (2019).
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Figure 4.9: Qualitative comparison on the class “library” in the test split of 3D FRONT
HUMAN. Given free space and contact humans as input, MIME generates more plausi-
ble scenes in which the contact humans interact with the contact objects, and free space
humans experience fewer collisions with all generated objects. We also show the original
ATISS with or without the free space mask as input. All results are without refinement.
Each row represents an example input case.
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Figure 4.10: Qualitative comparison on living rooms (the first two rows) and dining
rooms (the last two rows) in the test split of 3D FRONT HUMAN. Given free space and
contact humans as input, MIME generates more plausible scenes in which the contact
humans interact with the contact objects and the free space humans have fewer collisions
with all the generated objects. We also show the original ATISS w/ or w/o the free space
mask as input. All results are w/o refinement. Each row represents an example input.
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4.5 Discussion

Following Pose2Room, we use the same 5 input motions and sample 10 scenes for each
motion sequence, and report the mean value of the 3D IoU. Our method achieves better
3D object detection accuracy compared to Pose2Room without pretraining Pose2Room
on our dataset.

4.4.2 Ablation Study on Input Humans

Figure 4.11: Ablation study on different numbers of contact humans and different density
of free space humans. In (a), with more contact humans as input, the generated scenes
contain more occupied objects. In (b), the more free space humans have in a room, the
fewer objects are generated in a scene.

In Figure 4.11, we evaluate the influence of the density of free-space humans, and the
number of contact humans, that we provide as input to MIME. We observe that MIME
generates contact objects according to the number of contact humans and, as the density
of free-space humans increases, MIME generates fewer objects in scenes. This is as
expected.

4.5 Discussion
Given a sequence of human motions, MIME generates diverse and plausible scenes with
which the humans interact. We assume that the generated scenes are static, and future
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work should explore generating moving objects by investigating the interaction between
humans and moving objects, such as moving a chair, grasping a cup, opening a door, and
etc.

MIME, like ATISS, needs a pre-defined floor plan room layout as input. The res-
olution of the 2D floor plan is coarse; for instance, 1 pixel represents approximately
10 centimeters, which is extracted as a 512-dimension feature by ResNet-18. Introduc-
ing a finer floor plan representation, such as dividing a floor plan into multiple patches
(cf. ViTRanftl et al. (2021)) or simply increasing the size of the feature dimension, could
improve the generated object placement, resulting in less collision between the humans
and the free space. Another interesting direction is to jointly estimate a floor plan, room
category, and 3D object layout from input humans alone.

During inference, MIME uses a hand-crafted 2D IoU metric between the generated
objects and the input contact humans to factor out which human is in contacted with
which object. A simple extension would be to use the network to learn this information.
Our model directly estimates 3D bounding boxes as a 3D scene representation, followed
by a scene refinement that places the mesh models into the scene. Learning to directly
estimate mesh models from interacting humans is another promising direction.

4.6 Conclusion
We introduced MIME, a method that generates diverse furniture layouts consistent with
input human movements and contacts. To train MIME, we built a new dataset called
3D FRONT HUMAN, by populating humans into the large-scale synthetic scene dataset
Fu et al. (2021a). We demonstrated that by incorporating input human motion into free
space and contact boxes, our method can generate multiple realistic scenes where the
input motion can occur. MIME has numerous applications, particularly for generating
synthetic training data at scale. MIME provides a means of taking existing human motion
capture data and “upgrading” it to include plausible 3D scenes that are consistent with
it.
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Chapter 5

Generating Human Interaction
Motions in Scenes with Text Control

5.1 Introduction

Apart from capturing human-scene interaction (chapter 3), we can generate human-scene
interaction by synthesizing 3D scenes from input human motions (chapter 4). However,
these input motions still need to be captured, and their variety and numbers are limited.
Can we take the opposite approach, i.e., generating 3D humans directly from 3D scenes?
Generating realistic human movements that can interact with 3D scenes is crucial for
many applications, ranging from gaming to embodied AI. For example, character anima-
tors for games and films need to author motions that successfully navigate through clut-
tered scenes and realistically interact with target objects, while still maintaining artistic
control over the style of the movement. One natural way to control style is through text,
e.g., “skip happily to the chair and sit down”. Recently, diffusion models have shown re-
markable capabilities in generating human motion from user inputs. Text prompts Tevet
et al. (2023); Zhang et al. (2022a) let users control style, while methods incorporat-
ing spatial constraints enable more fine-grained control, such as specifying desired joint
positions and trajectories Xie et al. (2024); Shafir et al. (2023); Karunratanakul et al.
(2023). However, these works have predominantly focused on characters in isolation,
without considering environmental context or object interactions.

In this work, we aim to incorporate scene-awareness into user-controllable human
motion generation models. However, learning to generate motions involving scene in-
teractions is challenging, even without text prompts. Unlike large-scale motion capture
datasets that depict humans in isolation Mahmood et al. (2019), datasets with paired
examples of 3D human motion and scene/object geometry are limited. Prior work uses
small paired datasets without text annotations to train VAEs Hassan et al. (2021b); Zhang
et al. (2022b); Starke et al. (2019) or diffusion models Huang et al. (2023a); Pi et al.
(2023) that generate human scene interactions with limited scope and diversity. Rein-
forcement learning methods are able to learn interaction motions from limited super-
vision Hassan et al. (2023); Zhao et al. (2023); Lee and Joo (2023), and can generate
behaviors that are not present in the training motion dataset. However, designing reward
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A person is walking

A person sits down

A person stands up

A person walks forward slowly

A person sits down 
and stretch out his legs

Figure 5.1: We present TeSMo, a method for generating diverse and plausible human-
scene interactions from text input. Given a 3D scene, TeSMo generates scene-aware
motions, such as walking in free space and sitting on a chair. Our model can be easily
controlled using textual descriptions, start positions, and goal positions.

functions that lead to natural movements for a diverse range of interactions is difficult
and tedious.

To address these challenges, we introduce a method for Text-conditioned Scene-aware
Motion generation, called TeSMo. As shown in Figure 5.1, our method generates realis-
tic motions that navigate around obstacles and interact with objects, while being condi-
tioned on a text prompt to enable stylistic diversity. Our key idea is to combine the power
of general, but scene-agnostic, text-to-motion diffusion models with paired human-scene
data that captures realistic interactions. First, we pre-train a text-conditioned diffusion
model Tevet et al. (2023) on a diverse motion dataset with no objects (e.g., HumanML3D
Guo et al. (2022)), allowing it to learn a realistic motion prior and the correlation with
text. We then fine-tune the model with an augmented scene-aware component that takes
scene information as input, thereby refining motion outputs to be consistent with the
environment.

Given a target object with which to interact and a text prompt describing the desired
motion, we decompose the problem of generating a suitable motion in a scene into two
components, navigation (e.g., approaching a chair while avoiding obstacles) and inter-
action (e.g., sitting on the chair). Both stages leverage diffusion models that are pre-
trained on scene-agnostic data, then fine-tuned with an added scene-aware branch. The
navigation model generates a pelvis trajectory that reaches a goal pose near the inter-
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action object. During fine-tuning, the scene-aware branch takes, as input, a top-down
2D floor map of the scene and is trained on our new dataset containing locomotion se-
quences Mahmood et al. (2019) in 3D indoor rooms Fu et al. (2021b). The generated
pelvis trajectory is then lifted to a full-body motion using motion in-painting Shafir et al.
(2023). Next, the interaction model generates a full-body motion conditioned on a goal
pelvis pose and a detailed 3D representation of the target object. To further improve gen-
eralization to novel objects, the model is fine-tuned using augmented data that re-targets
interactions Hassan et al. (2021b) to a variety of object shapes while maintaining realistic
human-object contacts.

Experiments demonstrate that our navigation approach outperforms prior work in
terms of goal-reaching and obstacle avoidance, while producing full-body motions on
par with scene-agnostic diffusion models Xie et al. (2024); Karunratanakul et al. (2023).
Meanwhile, our interaction model generates motions with fewer object penetrations than
the state-of-the-art approach Zhao et al. (2023), being preferred 71.9% of the time in
a perceptual study. The central contributions of this method includes: (1) a novel ap-
proach to enable scene-aware and text-conditioned motion generation by fine-tuning an
augmented model on top of a pre-trained text-to-motion diffusion model, (2) a method,
TeSMo, that leverages this approach for navigation and interaction components to gener-
ate high-quality motions in a scene from text, (3) data augmentation strategies for placing
navigation and interaction motions with text annotations realistically in scenes to enable
scene-aware fine-tuning.

5.2 Text-Conditioned Scene-Aware Motion Generation

5.2.1 Overview

Given a 3D scene and a target interaction object, our goal is to generate a plausible
human-scene interaction, where the motion style can be controlled by a user-specified
text prompt. Our approach decomposes this task into two components, navigation and
interaction, as illustrated in Figure 5.2. Both components are diffusion models that lever-
age a fine-tuning routine to enable scene-awareness without losing user controllability,
as introduced in Section 5.2.2. To interact with an object, the character must first navi-
gate to a location in the scene near the object, which is easily calculated heuristically or
specified by the user, if desired. As described in Section 5.2.3, we design a hierarchical
navigation model, which generates a root trajectory starting from an initial location that
moves to the goal location while navigating around obstacles in the scene. The generated
root trajectory is then lifted into a full-body motion using in-painting techniques Shafir
et al. (2023); Xie et al. (2024). Since the navigation model gets close to the object in the
first stage, to generate the actual object interaction, we can focus on scenarios where the
character is already near the object. This allows a one-stage motion generation model
that directly predicts the full-body motion from the starting pose (i.e, the last pose of

63



Chapter 5 Generating Human Interaction Motions in Scenes with Text Control

Navigation Model
Root Trajectory Generation Full-body Lifting

A person is walking.

Interaction Model

Navigation Input Interaction Input 

start position goal position

Generated Navigation Motion

goal position

start pose

A person sits down on a chair.

Generated Interaction

Navigation Model
Root Trajectory Generation Full-body Lifting

A person is walking.

Interaction Model

Navigation Input Interaction Input 

start position goal position

Generated Navigation Motion

goal position

start pose

A person sits down on a chair.

Generated Interaction
Figure 5.2: Pipeline overview: given the start position (green arrow), goal position (red
arrow), 3D scene, and text description, the navigation root trajectory is first generated and
then the full-body motion is completed through in-painting. Subsequently, the interaction
is generated from a start pose (i.e., the end pose from navigation), the goal position, and
the target object, enabling the generation of object-specific motion.

navigation), a goal pelvis pose, and the object (as detailed in Section 5.2.4).

5.2.2 Background: Controllable Human Motion Diffusion Models

Motion Diffusion Models. Diffusion models have been successfully used to gener-
ate both top-down trajectories Rempe et al. (2023) and full-body motions Tevet et al.
(2023); Zhang et al. (2022a). These models generate motions by iteratively denoising
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Figure 5.3: Network architecture of the (a) root trajectory model and (b) interaction
motion model. Initially, the base transformer encoder is trained on scene-agnostic motion
data using the start pose, target pose, and text as input. Subsequently, a scene-aware
component is fine-tuned, which incorporates the 2D floor map (a) or 3D object (b). 65
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a temporal sequence of N poses (e.g., root positions or full-body joint positions/angles)
x =

[
x1, . . . ,xN]. During training, the model learns to reverse a forward diffusion pro-

cess, which starts from a clean motion x0 ∼ q(x0), sampled from the training data, and
after T diffusion steps is approximately Gaussian xT ∼ N (0,I). Then at each step t of
motion denoising, the reverse process is defined as:

pφ (xt−1|xt ,c) =N
(

xt−1; µφ (xt ,c, t),βtI
)

(5.1)

where c is some conditioning signal (e.g., a text prompt), and βt depends on a pre-defined
variance schedule. The denoising model µφ with parameters φ predicts the denoised mo-
tion x̂0 from a noisy input motion xt Ho et al. (2020). The model is trained by sampling
a motion x0 from the dataset, adding random noise, and supervising the denoiser with a
reconstruction loss ∥x0 − x̂0∥2.

Augmented Controllability. In the image domain, general pre-trained diffusion mod-
els are specialized for new tasks using an augmented ControlNet Zhang et al. (2023)
branch, which takes in a new conditioning signal and is fine-tuned on top of the frozen
base diffusion model. OmniControl Xie et al. (2024) adapts this idea to the human
motion domain. For motion diffusion models with a transformer encoder architecture,
they propose an augmented transformer branch that takes in kinematic joint constraints
(e.g., pelvis or other joint positions) and, at each layer, connects back to the base model
through a linear layer that is initialized to all zeros.

As described in Secs. 5.2.3 and 5.2.4, our key insight is to use an augmented control
branch to enable scene awareness. We first train a strong scene-agnostic motion diffusion
model to generate realistic motion from a text prompt, and then fine-tune an augmented
branch that takes scene information as input (e.g., a 2D floor map or 3D geometry).
This new branch adapts generated motion to be scene-compliant, while still maintaining
realism and text controllability.

Test-time Guidance. At test time, diffusion models can be controlled to meet specific
objectives through guidance. We directly apply the guidance to the clean motion predic-
tion from the model x̂0 Rempe et al. (2023); Ho et al. (2022). At each denoising step,
the predicted x̂0 is perturbed with the gradient of an analytic objective function J as
x̃0 = x̂0 −α∇xtJ (x̂0) where α controls the strength of the guidance and xt is the noisy
input motion at step t. The predicted mean µφ is then calculated with the updated motion
prediction x̃0 as in Rempe et al. (2023); Ho et al. (2022). As detailed later, we define
guidance objectives for avoiding collisions and reaching goals.
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5.2 Text-Conditioned Scene-Aware Motion Generation

5.2.3 Navigation Motion Generation
The goal of the navigation stage is for the character to reach a goal location near the target
object using realistic locomotion behaviors that can be controlled by the user via text. We
design a hierarchical method that first generates a dense root trajectory with a diffusion
model, then leverages a powerful in-painting model Shafir et al. (2023) to generate a
full-body motion for the predicted trajectory. This approach facilitates accurate goal-
reaching with the root-only model while allowing diverse text control through the in-
painting model.

Root Trajectory Generation. Our root trajectory diffusion model, shown in Figure 5.3
(a), operates on motions where each pose is specified by xn = [x,y,z,cosθ ,sinθ ]n, with
(x,y,z) being the pelvis position and θ the pelvis rotation, both of which are represented
in the coordinate frame of the first pose in the sequence. The model is conditioned on a
text prompt along with starting and ending goal positions and orientations. In contrast to
the representation from prior work Guo et al. (2022), which uses relative pelvis velocity
and rotation, our representation using absolute coordinates facilitates constraining the
outputs of the model with goal poses.

Inspired by motion in-painting models Tevet et al. (2023); Shafir et al. (2023), given
a start pose s and end goal pose g, at each denoising step, we mask out the input xt
such that x1

t = s and xN
t = g, thereby providing clean goal poses directly to the model.

To achieve this, a binary mask m =
[
m1, . . . ,mN] with the same dimensionality as xt is

defined, where m1 and mN are a vector of 1’s and all other mn are 0’s. During train-
ing, overwriting occurs with x̃t = m ∗ x0 +(1−m) ∗ xt where ∗ indicates element-wise
multiplication and x0 is a ground truth root trajectory.

We then concatenate the mask with the overwritten motion [x̃t ;m] and use this as input
to the model to indicate which frames have been overwritten.

At test time, goal-reaching is improved using a guidance objective Jg = (x̂N
0 −g)2 that

measures the error between the end pelvis position and orientation of the predicted clean
trajectory x̂N

0 and the final goal pose.

Incorporating Scene Representation. The model as described so far is trained on a
locomotion subset of the HumanML3D dataset Guo et al. (2022) to enable generating
realistic, text-conditioned root trajectories. However, it will be entirely unaware of the
given 3D scene. To take the scene into account and avoid degenerating the text-following
and goal-reaching performance, we augment the base diffusion model with a control
branch that takes a representation of the scene as input. This scene-aware branch is
a separate transformer encoder that is fine-tuned on top of the frozen base model. As
input, we extract the walkable regions from the 3D geometry of the scene and project
them to a bird’s-eye view, yielding a 2D floor map M. Following Rempe et al. (2023),
a Resnet-18 He et al. (2016) encodes the map M as a feature grid, and at denoising step
t, each 2D projected pelvis position (x,z) ∈ xn

t is queried in the feature grid M to get

67



Chapter 5 Generating Human Interaction Motions in Scenes with Text Control

the corresponding feature fn
t . The resulting sequence of features ft=

[
f1
t , . . . , fN

t
]
, along

with the text prompt and noisy motion xt , become the input to the separated transformer
branch.

At test time, a collision guidance objective further encourages scene compliance. This
is defined as Jc = SDF(x̂0,M) where SDF calculates the 2D transform distance map
from the 2D floor map, then queries the 2D distance value at each time step of the root
trajectory. Positive distances, indicating pelvis positions outside the walkable region, are
averaged to get the final collision loss.

Scene-aware training and data. To train the scene-aware branch, it is important to
have a dataset featuring realistic motions navigating through scenes with correspond-
ing text prompts. For this purpose, we create the Loco-3D-FRONT dataset by inte-
grating locomotion sequences from HumanML3D into diverse 3D environments from
3D-FRONT Fu et al. (2021b). Each motion is placed within a different scene with ran-
domized initial translation and orientation, following the methodology outlined in Yi
et al. (2023b), as depicted in Figure 5.4(a). Additionally, we apply left-right mirroring
to both the human motions and the 3D scenes with which they interact to augment the
dataset Guo et al. (2022). This results in a dataset of approximately 9,500 walking mo-
tions, each motion accompanied by textual descriptions and 10 plausible 3D scenes on
average, resulting in 95k locomotion-scene training pairs.

Added Control with Trajectory Blending. Our root trajectory diffusion model gen-
erates scene-aware motions and, unlike many prior works Hassan et al. (2021b); Zhao
et al. (2023), does not require a navigation mesh to compute A* Hart et al. (1968) paths
to follow. However, a user may want a character to take the shortest path to an object by
following the A* path, or to control the general shape of the path by drawing a 2D route
themselves. To enable this, we propose to fuse an input 2D trajectory p ∈RN×2 with our
model’s predicted clean trajectory at every denoising step. At step t, we extract the 2D
(x,z) components p̂0 from the predicted root trajectory x̂0 and interpolate them with the
input trajectory p̃0 = s ∗ p̂0 +(1− s) ∗p where s is the blending scale that controls how
closely the generated trajectory matches the input. We then overwrite the 2D components
of x̂0 with p̃0 and continue denoising. This blending procedure ensures outputs roughly
follow the desired path but still maintain realism inherent to the trained diffusion model.

Lifting to Full-body Poses. To lift the generated pelvis trajectory to a full-body mo-
tion, we leverage the existing text-to-motion in-painting method PriorMDM Shafir et al.
(2023), which takes a dense 2D root trajectory as input. By using this strong model that
is pre-trained for text-to-motion, we can effectively generate natural and scene-aware
full-body motion, while offering diverse stylistic control through text.
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5.2 Text-Conditioned Scene-Aware Motion Generation

5.2.4 Object-Driven Interaction Motion Generation
After navigation, the character has reached a location near the target object and next
should execute a desired interaction motion. Due to the fine-grained relationship between
the body and object geometry during interactions, we propose a single diffusion model
to directly generate full-body motion, unlike the two-stage navigation approach from
Section 5.2.3.

Interaction Motion Generation. The interaction motion model operates on a sequence
of full-body poses and is shown in Figure 5.3(b). Our pose representation extends
that of HumanML3D Guo et al. (2022) to add the absolute pelvis position and head-
ing (x,y,z,cosθ ,sinθ), similar to our navigation model. Each pose in the motion is
xn =

[
x, y, z, sinθ , cosθ , ṙa, ṙx, ṙz, ry, jp, jv, jr, c f ]

n ∈ R268 with ṙa root angular ve-
locity, (ṙx, ṙz) root linear velocity, ry root height, c f foot contacts, and jp, jv, jr the local
joint positions, velocities, and rotations, respectively.

The model is conditioned on a text prompt along with a starting full-body pose (i.e,
the final pose of the navigation stage) and a final goal pelvis position and orientation.
The goal pelvis pose can usually be computed heuristically, but may also be provided
by the user or predicted by another network Hassan et al. (2021b). The same masking
procedure described in Section 5.2.3 is used to pass the start and end goals as input to
the model. At test time, we also use the same goal-reaching guidance to improve the
accuracy of hitting the final pelvis pose.

Object representation. The base interaction diffusion model is first trained on a dataset
of interaction motions from HumanML3D and SAMP Hassan et al. (2021b) without any
objects, which helps develop a strong prior on interaction movements driven by text
prompts. Similar to navigation, we then augment the base model with a new object-
aware transformer encoder and fine-tune this encoder separately.

For the input to this branch at each denoising step t, we leverage Basis Point Sets
(BPS) Prokudin et al. (2019) to calculate two key features: object geometry and the
human-object relationship. First, a sphere with a radius of 1.0m is defined around the
object’s center, and 1024 points are randomly sampled inside this sphere to form the BPS.
The distance between each point in the BPS and the object’s surface is then calculated,
capturing the object’s geometric features and stored as BO ∈ R1024. Next, for each body
pose xn

t at timestep n in the noisy input sequence, we calculate the minimum distance
from each BPS point to any body joint, giving Bn ∈ R1024. The resulting sequence
of features BH =

[
B1, . . . ,BN] represents the human-object relationship throughout the

entire motion. Finally, the object and human-object interaction features are concatenated
with the original pose representation at each timestep [xn

t ; Bn; BO] and fed to an MLP to
generate a merged representation, which serves as the input to the scene-aware branch.

At test time, a collision objective is used to discourage penetrations between the human
and object. This is very similar to the collision loss described in Section 5.2.3, but
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the SDF volume is computed for the 3D object and body vertices that are inside the
object are penalized. Noteably, our interaction motion generation model outputs 3D joint
positions. We begin by selecting random points (vertices) on the surface of the SMPL
mesh, which represents a human body in its default A-pose. These selected surface
vertices are then mapped to corresponding positions on an internal skeletal structure (or
inside skeleton), which is also in the A-pose. This linking creates a connection between
specific points on the mesh surface and the underlying skeletal framework. Once this
initial linking is complete, we can apply any new pose to the internal skeleton. As the
skeleton changes pose, the connected vertices on the SMPL mesh surface follow the
movements of the skeleton, resulting in the mesh surface adopting the new pose as well.
This setup allows us to efficiently update the positions of these sampled vertices for any
new pose without recalculating the mapping each time, ensuring consistent movement
with the inside skeleton. This is defined as Jc = SDF(x̂0,SO) where SDF calculates the
SDF volume of the object O, then queries the sign distance value at each time step of the
body vertices. Positive distances, indicating body vertices inside the interactive object,
are averaged to get the final collision loss.

Scene-aware Training and Data. To train the scene-aware branch, we utilize the
SAMP dataset Hassan et al. (2021b), which captures motions and objects simultane-
ously. Specifically, we focus on “sitting” and “stand-up” interactions extracted from 80
sitting motion sequences in the SAMP dataset involving chairs of varying heights, as
shown in Figure 5.4(b). To diversify the object geometry, we randomly select objects
from 3D-FRONT Fu et al. (2021b) to match the contact vertices on human poses in the
original SAMP motion sequences. This matching is achieved using the contact loss and
collision loss techniques outlined in MOVER Yi et al. (2022).

The original SAMP motions are often lengthy (∼100 sec) and lack paired textual de-
scriptions. For instance, a “sit” motion sequence involves walking to an object, sitting
down, standing up, and moving away. To effectively learn individual skills, we extract
sub-sequences containing specific interactions that begin or end with a sitting pose, such
as “walk then sit”, “stand up then sit”, “stand up from sitting”, and “walk from sitting.”
Furthermore, we annotate textual descriptions for each sub-sequence, which often in-
corporate the style of sitting poses, such as “a person walks and sits down on a chair
while crossing their arms.” Applying left-right data augmentation to motion and objects
results in approximately 200 sub-sequences for each motion sequence, each paired with
corresponding text descriptions and featuring various objects.
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a) Loco-3D-Front: locomotion in different rooms b) Interaction with different objects and text description

A person sits down on a chair A person stands up and walks away

a) Loco-3D-Front: locomotion in different rooms b) Interaction with different objects and text description

A person sits down on a chair A person stands up and walks away

Figure 5.4: (a) Loco-3D-FRONT contains locomotion placed in 3D-FRONT Fu et al.
(2021b) scenes without collisions. (b) We augment SAMP Hassan et al. (2021b) by
randomly selecting chairs from 3D-FRONT to match the motions and annotating a text
description for each sub-sequence.
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5.3 Experimental Evaluation

5.3.1 Implementation Details

Training. The scene-agnostic branch of our navigation model is trained on the 3D
motions and text descriptions from the Loco-3D-FRONT dataset for 420k optimization
steps. Subsequently, we freeze the base model weights and fine-tune the scene-aware
branch, with additional 2D-floor map inputs, for a further 20k steps. Similarly, the scene-
agnostic base of our interaction model is first trained on a mix of HumanML3D Guo
et al. (2022) and SAMP Hassan et al. (2021b) data without objects for 400k steps. Then,
the object-aware branch is fine-tuned on our text-annotated SAMP data with 3D object
inputs for an additional 20k steps.

Test-time Guidance. For the navigation model, we set the guidance weight α to 30
for goal-reaching guidance and 1000 for collision guidance. In the interaction model,
we utilize weights of 1000 for goal-reaching loss and 10 for the collision SDF loss.
To ensure smooth generation results, we exclude the inference guidance at the final time
step of denoising. For a fair comparison with baselines, we do not use inference guidance
unless explicitly stated in the experiment.

5.3.2 Evaluation Data and Metrics

Navigation. Navigation performance is assessed using the test set of Loco-3D-FRONT,
comprising roughly 1000 sequences. Our metrics evaluate the generated root trajectory
and the full-body motion after in-painting separately. For the root trajectory, we mea-
sure goal-reaching accuracy for the 2D (horizontal xz) root position (m), orientation
(rad), and root height (m). The collision ratio, the fraction of frames within generated
trajectories where a collision occurs, evaluates the consistency of root motions with the
environment. For the full-body motion after in-painting, we use common metrics from
prior work Guo et al. (2022). FID measures the realism of the motion, R-precision (top-
3) evaluates the consistency between the text and motion, and diversity is computed
based on the average pairwise distance between sampled motions. Additionally, the foot
skating ratio Karunratanakul et al. (2023) evaluates the physical plausibility of motion-
ground interaction by the proportion of frames where either foot slides a distance greater
than a specified threshold (2.5 cm) while in contact with the ground (foot height <5 cm).

Interactions. To evaluate full-body human-object interactions, we use the established
test split of the SAMP dataset Hassan et al. (2021b), which contains motions related to
sitting. Similar to navigation, we analyze goal-reaching accuracy through position, ori-
entation, and height errors. Furthermore, we assess physical plausibility by computing
average penetration values and penetration ratios between the generated motion and
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interaction objects. The penetration value is the mean SDF value across all interpene-
trated body vertices of the generated motions, while the ratio is the fraction of generated
poses containing penetrations (i.e., SDF values < −3 cm) over all generated motion
frames.

Figure 5.5: The layout of our perceptual study for evaluating the plausibility of human-
object interaction.

To evaluate the plausibility of human-object interaction, we perform a user study to
compare our method and DIMOS Zhao et al. (2023). We employ Amazon Mechanical
Turk (AMT) Amazon Web Services, Inc. (2024) to solicit assessments from 30 individ-
uals. Raters are presented with two side-by-side videos of generated interactions and
asked which is more realistic, particularly focusing on the contact between the charac-
ter’s buttocks and their back with the chair or bench, and the presence of minimal or no
interpenetration between the body and the object. We present 70 test videos with the
positions of our generated videos and DIMO’s results randomly shuffled horizontally. In
order to filter out poor responses, we duplicated our 5 test examples where clear pref-
erences between two video results were evident, serving as catch trials. Ultimately, we
obtained 65 useful responses out of 70 raters. The full survey page is illustrated in Fig-
ure 5.5. The perceptual study reveals a distinct preference for motions generated by our
approach (preferred 71.9%) over those produced by DIMOS.
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5.3.3 Comparisons
Navigation. We conduct a comparative analysis of our method with previous scene-
aware and scene-agnostic motion generation approaches, shown in Table 5.1. Every
method is conditioned on a text prompt along with a start and end goal pose, as described
in Section 5.2.3. The TRACE baseline and our method MOVER also receive the 2D-floor
map as input.

Root trajectory evaluation Full-body motion evaluation
Goal-reaching error ↓

Method Pos. Orient. Height Collision ↓ FID ↓ R-precision ↑ Diversity ↑ Foot skating ↓

Ground Truth - - - - 0.010 0.672 7.553 0.000

GMDKarunratanakul et al. (2023) 0.374 1.231 - - 13.160 0.114 4.488 0.181
OmniContolXie et al. (2024) 1.226 1.018 1.159 - 22.930 0.458 7.128 0.094
TRACE Rempe et al. (2023) 0.205 0.152 0.010 0.055 22.669 0.144 6.501 0.058

Ours (1-stage train) 0.197 0.132 0.013 0.028 22.372 0.152 6.347 0.062
Ours 0.169 0.119 0.008 0.031 20.465 0.376 6.415 0.056

Table 5.1: Evaluation of navigation motion generation on the Loco-3D-FRONT test set.
(Left) For generated pelvis trajectories, our approach achieves the best goal-reaching
accuracy with low collision rate. (Right) After in-painting the full-body motion, our
method maintains diverse and realistic motion that aligns with the given text prompt, and
is competitive with diffusion-based scene-agnostic GMD and OmniControl.

Goal-reaching error ↓ Object penetration ↓ User study
Method Pos. Height Orient. Value Ratio preference ↑

DIMOS Zhao et al. (2023) 0.2020 0.1283 0.4731 0.0193 0.1076 29.1%
Ours 0.1445 0.0120 0.2410 0.0043 0.0611 71.9%

Table 5.2: Evaluation of human-object interaction motion generation on the SAMP Has-
san et al. (2021b) sitting test set. Compared to DIMOS, our approach reaches the goal
pose more accurately and exhibits fewer object penetrations, leading to superior perfor-
mance in the user perceptual study.

We first compare to GMD Karunratanakul et al. (2023) and OmniControl Xie et al.
(2024), previous scene-agnostic text-to-motion diffusion models trained on HumanML3D
to follow a diverse range of kinematic motion constraints. GMD utilizes the horizontal
pelvis positions (x,z) of both the start and end goals to generate a dense root trajectory
and subsequently the full-body motion. OmniControl takes as input the horizontal pelvis
positions (x,z) along with the height y to directly generate full-body motion in a single
stage. Our navigation model achieves better goal-reaching accuracy, e.g., 16.9 cm for
root position, since it is trained specifically for the goal-reaching locomotion task. More
importantly, in the right half of Table 5.1 the full-body motion from our method after in-
painting is comparable in terms of realism, text-following, and diversity, while achieving
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Figure 5.6: Navigation generation performance. The start pose is the green arrow, and
the goal pose is the red arrow. Our method more accurately reaches the goal and avoids
obstacles while the style is controlled by a text prompt.
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Figure 5.7: More results of navigation generation. The start pose is the green arrow, and
the goal pose is the red arrow. Our method more accurately reaches the goal and avoids
obstacles while the style is controlled by a text prompt.

the best foot skating results. This demonstrates that our approach adds scene-awareness
to locomotion generation, without compromising realism or text control.

To evaluate the importance of our two-branch model architecture, we adopt TRACE
Rempe et al. (2023), a recent root trajectory generation model designed to take a 2D
map of the environment as input. The adapted TRACE architecture is very similar to
our model in Figure 5.3(a), but instead of using a separate scene-aware branch, the base
transformer directly takes the encoded 2D-floor map features as input. This results in
a single-branch architecture that must be trained from scratch, as opposed to our two-
branch fine-tuning approach. Table 5.1 reveals that our method generates more plausible
root trajectories with fewer collisions and more accurate goal-reaching. We also see
that training our full two-branch architecture from scratch (1-stage train in Table 5.1),
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instead of using pre-training and then fine-tuning, degrades both goal-reaching and final
full-body motion after in-painting.

A qualitative comparison of generated motions in different rooms is shown in Fig-
ure 5.6 and Figure 5.7. GMD tends to generate simple walking-straight trajectories.
OmniControl and GMD do not reach the goal pose accurately and ignore the surround-
ings, leading to collisions with the environment. Our method TeSMo is able to generate
diverse locomotion styles controlled by text in various scenes, achieving superior goal-
reaching accuracy compared to other methods.

Interaction. Table 5.2 compares our approach to DIMOS Zhao et al. (2023), a state-
of-the-art method to generate interactions trained with reinforcement learning. DIMOS
requires a full-body final goal pose as input to the policy, unlike our approach which uses
just the pelvis pose. Despite this, DIMOS struggles to reach the goal accurately, likely
due to error accumulation during autoregressive rollout. Our method exhibits fewer in-
stances of interpenetration with interaction objects and the perceptual study reveals a
distinct preference for motions generated by our approach (preferred 71.9%) over those
produced by DIMOS. Figure 5.8 compares the approaches qualitatively, where we see
that more accurate goal-reaching reduces floating or penetrating the chair during sitting.
Moreover, the interactions generated by DIMOS lack diversity, and cannot be condi-
tioned on text.

Guidance Navigation Interaction
Goal Reach Collision Goal Pos. Collision Goal Pos. Pen. Val. Pen. Ratio

✗ ✗ 0.1568 0.0294 0.1445 0.0043 0.0611
✓ ✗ 0.118 0.0342 0.1453 0.0050 0.0554
✗ ✓ 0.1550 0.0013 0.1407 0.0040 0.0414
✓ ✓ 0.1241 0.0012 0.1404 0.0045 0.0494

Table 5.3: Test-time guidance evaluation. Adding guidance to reach goal poses and avoid
collisions during inference improves performance. Lower is better for all metrics.

5.3.4 Analysis of Capabilities
In Figure 5.1, our method carries out a sequence of actions, enabling traversal and in-
teraction with multiple objects within a scene. Figure 5.9 demonstrates additional key
capabilities. In the top section, our method is controlled through a variety of text prompts.
For interactions in particular, diverse text descriptions disambiguate between actions like
sitting or standing up, and allow stylizing the sitting motion, e.g., with crossed arms. In
the middle section, we enable user control over trajectories by adhering to a predefined
A* path. By adjusting the blending scale, users can adjust how closely the generated
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trajectory follows A*. At the bottom of Figure 5.9, we harness guidance at test time
to encourage motions to reach the goal while avoiding collisions and penetrations. As
shown in Table 5.3, combining guidance losses gives improved results both for naviga-
tion and interactions.

5.3.5 Ablation Study

Method Goal-reaching error ↓ Collision ↓
Pos. Orient. Height

Ours (OmniControl in-painting) 0.459 0.999 0.090 0.073
Ours (full-body rep) 0.844 0.016 0.110 0.124
Ours 0.169 0.119 0.008 0.031

FID ↓ R-precision ↑ Diversity ↑ Foot skating ↓

Ours (OmniControl in-painting) 17.927 0.396 6.288 0.0308
Ours (full-body rep) 24.642 0.189 6.967 0.169
Ours 20.465 0.376 6.415 0.056

Table 5.4: Ablation study comparing various full-body infilling methods and different
representations of navigation motion generation using the Loco-3D-FRONT test set.
(Left) For generated pelvis trajectories, our approach achieves the best goal-reaching
accuracy with low collision rate. (Right) After in-painting the full-body motion, our
method preserves diverse and realistic movements that align with the provided text
prompt, much like the model employing an alternative OminiControl full-body inpaint-
ing technique. However, our approach distinctly outperforms the model utilizing full-
body representation.

Alternative Full-Body In-painting Approach. While our root trajectory generation
approach can integrate with several motion in-painting techniques, here we use Prior-
MDM Shafir et al. (2023). As an alternative, we evaluate our method using OminiCon-
trol Xie et al. (2024) for in-painting in Table 5.4. However, OmniControl overrides our
generated dense pelvis trajectory and jointly generates full-body locomotion with a new
pelvis trajectory. This severely degrades the goal-reaching ability (from 0.169 cm to
0.459 cm) as demonstrated in Table 5.4. Therefore, we choose to utilize PriorMDM as
our body motion in-painting method. It aligns well with our generated trajectory, result-
ing in the generation of plausible locomotion while maintaining adherence to the goal
position.

One-stage Navigation Motion Generation. To evaluate the efficacy of our two-stage
navigation model design, we compare to a single-stage full-body motion generation abla-
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tion of our model. This model operates on the same input data but directly generates full-
body locomotion. However, as shown in Table 5.4, this approach limits goal-reaching
ability and does not produce motion styles that align with the input text. The local poses
are somewhat dissociated from the global pelvis trajectories, allowing trajectory varia-
tions while maintaining the same motion style. For instance, individuals can walk along
different paths while maintaining consistency in their motion style.

5.4 Discussion
We introduced TeSMo, a novel method for text-controlled scene-aware motion gener-
ation. By first pre-training a scene-agnostic text-to-motion diffusion model on large-
scale motion capture data and subsequently fine-tuning with a scene-aware component,
our text-conditioned method enables generating realistic and diverse human-object in-
teractions within 3D scenes. To support such training, we introduced the new Loco-
3D-FRONT dataset containing realistic navigation motions placed in 3D scenes, and
extended the SAMP dataset with additional objects and text annotations. Experiments
demonstrate that our generated motion is on par with state-of-the-art diffusion models,
while improving the plausibility and realism of interactions compared to prior work.

Limitations & Future Work. While our navigation model enables accurate goal-reaching
and text-to-motion controllability, the two-stage process can sometimes lead to a discon-
nect between the generated pelvis trajectory and in-painted full-body poses. Explor-
ing new one-stage models, capable of simultaneously generating pelvis trajectories and
poses, would streamline the process. Additionally, our current approach, which operates
on 2D-floor maps, restricts the ability to handle intricate interactions, such as a person
stepping over a small stool.

Our current approach is aimed at controllability to allow users to specify text prompts
or goal objects and locations. However, our method may also fit into recently proposed
pipelines Xiao et al. (2024) that employ LLM planners to specify a sequence of actions
and contact information that could be used to guide our motion generation. Looking
ahead, we also aim to broaden the spectrum of actions modeled by the system, to encom-
pass activities such as lying down and touching. Furthermore, enabling interactions with
dynamic objects will allow more interactive and realistic scenarios.
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Figure 5.8: Compared with DIMOS Zhao et al. (2023), our method generates more real-
istic human-object interactions with reduced floating and interpenetrations.
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Chapter 6

Conclusion and Future Work
Throughout this thesis, we have explored human-scene interaction by focusing on the
constraints that influence movement and behavior within 3D environments. Through the
study of depth ordering, collision avoidance, and contact consistency, we have developed
models that significantly enhance the accuracy and realism of scene reconstructions in
computer vision. These constraints inform the spatial arrangement of elements within a
scene and guide the generation of plausible human actions and interactions.

Capturing Human-scene Interactions. In Chapter 3, we established a robust frame-
work for understanding and reconstructing 3D environments through the lens of human-
scene interactions (HSIs). By harnessing HSIs derived from monocular video footage,
we have developed a method (MOVER) that not only reconstructs a scene with enhanced
accuracy but also refines 3D human pose estimations within that scene. The primary
achievement of this work lies in its ability to produce a consistent, physically plausible
scene layout, which significantly surpasses the capabilities of existing methods.

Our approach’s core revolves around optimizing three specific HSI constraints: depth
ordering, non-interpenetration, and contact consistency. These constraints are vital as
they allow for the logical arrangement of objects in relation to human interaction, thereby
ensuring a reconstruction that respects both the spatial and physical realities of the scene.

For future work, several promising directions exist. First, extending the model to in-
corporate dynamic interactions and transient scene elements could extend MOVER to
more complex and variable environments. Second, enhancing the computational effi-
ciency of the model could allow for real-time processing applications, which are cru-
cial for areas such as augmented reality and robotic navigation. Lastly, expanding the
datasets to include more varied interaction scenarios could improve the generalization
of the model, making it adaptable to a wider range of real-world applications. Continu-
ing to build on the foundation laid by this thesis will enable significant advances in both
theoretical and practical aspects of computer vision and human-scene interaction studies.

Generating Human-scene Interactions by Scenes from Humans. Capturing human-
scene interactions is labor-intensive, we explore to generate human-scene interaction.
In Chapter 4, we introduce MIME, a novel method capable of generating 3D indoor
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scenes informed by human motion. Utilizing an autoregressive transformer architecture,
MIME effectively synthesizes furniture layouts that are coherent with captured human
movements and interactions. This approach leverages human motion as a dynamic input
to model free space and object interactions, such as sitting or touching, which helps
generate more realistic and functionally accurate 3D scenes.

While MIME represents a significant advance in scene generation from human motion,
it currently operates under the constraint of static scenes. Future iterations could explore
the inclusion of dynamic objects to simulate more complex interactions like moving a
chair or opening a door. Additionally, the resolution of the 2D floor plan used as input
is relatively coarse, and enhancing this by employing a finer floor plan representation
or enlarging the feature dimensions could further improve object placement and reduce
collisions.

Another promising direction is to develop methods for joint estimation of floor plans
and 3D object layouts directly from human inputs, potentially eliminating the need for
predefined layouts. Enhancing the model’s capability to directly estimate mesh mod-
els from interacting humans could streamline the generation process, providing a more
integrated and accurate scene reconstruction.

Our contributions not only pave the way for generating synthetic training data at scale
but also have potential applications in gaming, architecture, and virtual reality, where
realistic human-scene interactions are crucial. The current model uses a hand-crafted
metric for object placement, but a more sophisticated approach would involve learning
this placement directly through the network, enhancing the model’s ability to adapt to
various scene configurations and human interactions.

Overall, MIME offers a transformative approach to 3D scene generation, providing a
foundation for further research in creating interactive and dynamically rich virtual en-
vironments. Future work will focus on these expansions and refinements to push the
boundaries of what is achievable with generative scene modeling technologies.

Generating Human-scene Interactions by Humans from Scenes. Apart from gener-
ating scenes based on human-scene interactions, we also explore the opposite approach:
generating human motions from 3D scenes. In Chapter 5, we introduced TeSMo, a
method for text-controlled scene-aware motion generation leveraging denoising diffu-
sion models. This approach represents an advancement over prior methods by integrating
a scene-agnostic text-to-motion model pre-trained on extensive motion capture datasets
with a scene-aware component fine-tuned on our new Loco-3D-FRONT dataset. Our
experiments demonstrate that TeSMo achieves a high degree of realism and diversity in
human-object interactions, matching and, in some aspects, surpassing current state-of-
the-art diffusion models.

Despite these achievements, there are notable limitations and areas for improvement.
The current two-stage process occasionally results in discrepancies between the gen-
erated pelvis trajectory and the full-body poses, suggesting the potential benefits of
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developing a more integrated one-stage model. Additionally, the reliance on 2D floor
maps limits the system’s ability to handle more complex interactions, such as navigating
around or over small objects.

Looking forward, we plan to explore several avenues to enhance the capabilities of
TeSMo. One primary focus will be the development of models that allow for seamless
generation of both pelvis trajectories and full-body poses in a single step. We also aim
to extend the variety of actions the system can model, such as incorporating motions like
lying down and interacting with dynamic objects, which would increase the realism and
interactivity of the generated scenes. Furthermore, integrating our method into frame-
works that utilize large language model planners for action sequencing could provide
more detailed and contextually appropriate motion generation.

6.1 Long-term Future Work
In the future, the overarching aim of this thesis is to establish a robust feedback loop
between reconstruction and generation to enhance both the realism of generated interac-
tions and the accuracy of reconstructed human motions and scenes. Specifically, the goal
is to leverage 3D human-scene interaction generation to create realistic videos that feed
back into the reconstruction process. This feedback would act as a flywheel: accurate re-
construction provides richer 3D data on human-scene interactions, which, in turn, helps
train a more sophisticated 3D human-scene interaction generation model. The missing
element in this cycle is the generation of realistic videos that incorporate these interac-
tions. By integrating 3D human-scene interactions into the generated videos, we can
improve our understanding of human-scene interaction perception. Furthermore, this
approach will enable us to extend the scope from human-scene interactions to human-
human interactions, thereby demonstrating nuanced social abilities such as conversa-
tional dynamics and assisting behaviors, which will further enrich the system. This
iterative process will lead to an ever-improving system where both reconstruction and
generation inform and refine each other. This section outlines our long-term research
objectives and the methods we propose to explore in order to achieve these ambitious
goals.

Synthesizing Realistic Videos in Physics Rendering Engine with HSIs. To synthe-
size realistic videos, we aim to integrate human-scene interactions into physics-based
rendering. This integration will enhance the realism of human motions within various
3D environments, effectively bridging the gap between digital human representations
and their physical surroundings. Leveraging the achievements of the BEDLAM dataset,
as shown in Figure 6.1, which incorporates highly realistic simulations of diverse body
shapes, motions, skin tones, and detailed clothing animated through physics simulation,
we aim to further enhance the authenticity of these interactions. By extracting and ana-
lyzing human motion data, and rendering these motions within physics-simulated scenes,
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Figure 6.1: BEDLAM is a large-scale synthetic video dataset designed to train and test
algorithms on the task of 3D human pose and shape estimation (HPS). BEDLAM con-
tains diverse body shapes, skin tones, and motions. Beyond previous datasets, BEDLAM
has SMPL-X bodies with hair and realistic clothing animated using physics simulation.
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we expect to produce videos that not only display realistic human movements but also
show authentic interactions with the environment. Future work will focus on refining
these interactions to capture complex dynamics, such as variable lighting, texture inter-
actions, and the physical impact of human activities on the surroundings, thus pushing
the boundaries of current video realism in synthetic datasets In our ongoing efforts to
synthesize realistic videos, we aim to integrate human-scene interactions into physics-
based rendering. This integration will enhance the realism of human motions within var-
ious 3D environments, effectively bridging the gap between digital human representation
and their physical surroundings. Leveraging the achievements of the BEDLAM dataset,
as shown in Figure 6.1, which incorporates highly realistic simulations of diverse body
shapes, motions, skin tones, and detailed clothing animated through advanced physics
simulations, we aim to enhance the authenticity of these interactions further. By ex-
tracting and analyzing human motion data, and rendering these motions within physics-
simulated scenes, we expect to produce videos that not only display realistic human
movements but also show authentic interactions with the environment. Future work will
focus on refining these interactions to capture complex dynamics, such as variable light-
ing, texture interactions, and the physical impact of human activities on the surroundings,
thus pushing the boundaries of current video realism in synthetic datasets

Prompt: A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage. She wears a black leather jacket, a long red 
dress, and black boots, and carries a black purse. She wears sunglasses and red lipstick. She walks confidently and casually. The street is damp and reflective, 

creating a mirror effect of the colorful lights. Many pedestrians walk about.

Prompt: Several giant wooly mammoths approach treading through a snowy meadow, their long wooly fur lightly blows in the wind as they walk, snow covered 
trees and dramatic snow capped mountains in the distance, mid afternoon light with wispy clouds and a sun high in the distance creates a warm glow, the low 

camera view is stunning capturing the large furry mammal with beautiful photography, depth of field.

Figure 6.2: Sora OpenAI (2024) is an AI video generation model that generates realistic
and imaginative scenes from textual instructions.

Synthesizing Realistic Videos based on Diffusion Models. Recent diffusion-based
video generation methods have achieved notable advances, enabling the creation of high-

87



Chapter 6 Conclusion and Future Work

quality videos. Sora OpenAI (2024), a text-to-video model, excels in generating intri-
cate scenes with detailed, accurate representations of multiple characters and dynamic
motions, as shown in Figure 6.2. Sora also demonstrates realistic interaction capabilities
within videos, though it faces challenges with simulating complex physical interactions
and cause-and-effect scenarios, such as not reflecting physical changes when an object
is manipulated. Nonetheless, its strengths in handling diverse and complex video con-
tent make it well-suited for systems aimed at creating photorealistic videos with detailed
human-scene interactions and social dynamics.

Additionally, recent diffusion-based methods like EMO Tian et al. (2024) and Champ
Zhu et al. (2024) showcase promising results for human-centric video generation. Both
build on the text-to-image model Stable Diffusion (SD) 1.5 , incorporating extra tempo-
ral layers inspired by AnimateDiff to enable the generation of talking or pose-controlled
videos, as seen in Figure 6.3. Specifically, EMO generates vocal avatar videos from a
single reference image and vocal audio input, achieving synchronized facial expressions
and head poses with audio cues. Meanwhile, Champ enhances the shape and pose align-
ment by integrating 3D depth, normal, and semantic maps derived from the SMPL model
within the video generation process.

These diffusion-based methods pave the way for the next generation of video gener-
ation engines, offering powerful tools for generating realistic videos that authentically
reflect human-scene interactions. By further developing these methods, we can bridge
the gap between reconstructed and generated human-scene interactions, enabling seam-
less realism that aligns closely with the dynamic cues and interactions present in the
input signals.

Incorporating Social Ability. Humans are inherently social creatures, interacting not
only with our environment but also with each other Freud (1923). To enhance these inter-
actions digitally, the development of social avatars represents a significant step towards
creating digital humans capable of realistic interactions. We leverage advancements in
modeling the translation from human speech to body motion Yi et al. (2023a) and neu-
ral rendering Zheng et al. (2023), incorporating abilities like communication as depicted
in Figure 6.4. By generating expressive 3D motions—from body and hand gestures to
facial expressions—based solely on audio cues, we bring digital avatars to life, synchro-
nizing their expressions with speech to enable engaging and believable dialogues and
social interactions.

Additionally, as shown Figure 6.5, the “Generative Proxemics” Müller et al. (2024)
models human-human interactions by generating two individuals in close social prox-
imity, enabling realistic 3D reconstructions from images. This technology is crucial
for creating scenarios where digital representations mimic real-life interactions without
manual annotations. Complementing this, the “Assistance in Human Interactions” high-
lighted in the Watch-And-Help Puig et al. (2021) challenge involves collaborative efforts
where one agent (Bob) observes another (Alice), discerns her objectives and aids her in
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Figure 6.3: Illustration of EMO Tian et al. (2024) and Champ Zhu et al. (2024), two
diffusion-based image-to-video generation frameworks. EMO takes a single reference
image and vocal audio input (e.g., talking or singing) to produce vocal avatar videos,
emphasizing expressive facial expressions and dynamic head poses, synchronized with
audio cues. Champ employs a 3D human parametric model (SMPL) within a latent
diffusion framework to enhance alignment between body shape and motion, generating
3D human pose-controlled videos.
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a new environment to achieve cooperative interaction and goal accomplishment.
For future work, we aim to further refine the integration of social abilities within dig-

ital avatars, exploring broader aspects of human interaction such as empathy, conflict
resolution, and cooperative tasks. Advancements in models for emotion and gesture
recognition, combined with AI-driven behavioral prediction, will enhance the authentic-
ity and responsiveness of digital humans. This evolution will pave the way for avatars
that not only interact naturally with their environment but also exhibit complex interper-
sonal dynamics that mirror human social behavior.

In conclusion, the long-term goals outlined in this thesis chart a path toward advancing
digital human interaction modeling and generation in virtual environments. By synthe-
sizing realistic videos that capture the nuances of real-world interactions and enhancing
the social capabilities of avatars, this work aims to bridge digital and real-world social
experiences. These developments lay the groundwork for immersive applications across
multiple domains: in gaming, they can enable more responsive, lifelike NPCs; in virtual
reality, they create more authentic, engaging social spaces; and in interactive media, they
support storytelling with dynamic, human-centered characters.
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Figure 6.4: Given a human speech, TalkSHOW Yi et al. (2023a) first generates realistic
sequences of body poses, hand gestures, and facial expressions. Then, AvatarReX Zheng
et al. (2023) takes the output from TalkSHOW to animate NeRF-based full-body avatars,
to produce high-quality images with detailed and realistic appearance.
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Figure 6.5: ”Generative Proxemics” Müller et al. (2024) models human-human inter-
actions by simulating two individuals in close proximity, enabling realistic 3D recon-
structions from images without manual annotations. Additionally, ”Assistance in Human
Interactions” Puig et al. (2021) within the Watch-And-Help challenge illustrates collabo-
rative efforts, where agent Bob observes Alice to identify her objectives, and then assists
in completing the task in a new setting, highlighting teamwork and effective cooperation.
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Zollhöfer, M., Stotko, P., Görlitz, A., Theobalt, C., Nießner, M., Klein, R., and Kolb,
A. (2018). State of the art on 3D reconstruction with RGB-D cameras. Computer
Graphics Forum (CGF), 37(2), 625–652.

Zou, C., Wang, B., Hu, Y., Liu, J., Wu, Q., Zhao, Y., Li, B., Zhang, C., Zhang, C., Wei,
Y., et al. (2021). End-to-end human object interaction detection with hoi transformer.
In Computer Vision and Pattern Recognition (CVPR), pages 11825–11834.

120


	1 Introduction
	1.1 What is Human-Scene Interaction?
	1.2 Perceiving and Generating Human-Scene Interaction
	1.3 Capturing Human-scene Interactions
	1.3.1 Capture Human-scene Interaction through Multiple Sensors
	1.3.2 Independent Reconstruction of Human Motion and 3D Scenes from Monocular Videos
	1.3.3 Joint Reconstruction of 3D Humans and Scenes from Monocular Videos

	1.4 Generating Human-scene Interactions through Scenes from Humans
	1.4.1 Generate Scenes in Isolation
	1.4.2 Generate Scenes from Humans

	1.5 Generating Human-scene Interaction through Humans from Scenes
	1.5.1 Generate Human Motions: Text Isolation and Scene Isolation
	1.5.2 Generate Human Motions: Scenes and Text Integration

	1.6 Thesis organization

	2 Related Work
	2.1 Human-Scene Interaction Datasets.
	2.1.1 Capturing Human-Scene Interaction Datasets
	2.1.2 New Synthetic Datasets for Enhanced Training

	2.2 Reconstructing Human-scene Interactions
	2.2.1 Reconstruct Single-view 3D Human Pose in ``Isolation''
	2.2.2 Reconstructing Single-view 3D Scene in Isolation
	2.2.3 Reconstructing 3D Human-Scene Interaction

	2.3 Generate Scenes from Humans
	2.3.1 Generative Scene Synthesis (No People)
	2.3.2 Human-aware Scene Generation

	2.4 Generating Humans Motions from Scenes
	2.4.1 Scene-aware Motion Generation
	2.4.2 Diffusion-Based Motion Generation


	3 Human-Aware Object Placement for Visual Environment Reconstruction
	3.1 Introduction
	3.2 Method
	3.2.1 3D Scene Layout Optimization
	3.2.2 Optimization

	3.3 Datasets
	3.4 Implementation Details
	3.5 Experiments
	3.5.1 Quantitative Analysis
	3.5.2 Ablation Study
	3.5.3 Qualitative Analysis
	3.5.4 Sensitivity Analysis.
	3.5.5 Failure Cases

	3.6 Discussion
	3.6.1 Discussion of Potential Misuse
	3.6.2 Conclusion


	4 Human-Aware 3D Scene Generation
	4.1 Introduction
	4.2 Method
	4.2.1 Generative Human-aware Scene Synthesis
	4.2.2 Training and Inference.
	4.2.3 3D Scene Refinement
	4.2.4 Training Details

	4.3 Dataset Generation of 3D FRONT HUMAN
	4.4 Experiments
	4.4.1 Human-aware Scene Synthesis.
	4.4.2 Ablation Study on Input Humans

	4.5 Discussion
	4.6 Conclusion

	5 Generating Human Interaction Motions in Scenes with Text Control
	5.1 Introduction
	5.2 Text-Conditioned Scene-Aware Motion Generation
	5.2.1 Overview
	5.2.2 Background: Controllable Human Motion Diffusion Models
	5.2.3 Navigation Motion Generation
	5.2.4 Object-Driven Interaction Motion Generation

	5.3 Experimental Evaluation
	5.3.1 Implementation Details
	5.3.2 Evaluation Data and Metrics
	5.3.3 Comparisons
	5.3.4 Analysis of Capabilities
	5.3.5 Ablation Study

	5.4 Discussion

	6 Conclusion and Future Work
	6.1 Long-term Future Work

	Bibliography

