Michal Rolinek
PostDoc
Alumni
Note: Michal Rolinek has transitioned from the institute (alumni). Explore further information here
2021
al
Bagatella, M., Olšák, M., Rolínek, M., Martius, G.
Planning from Pixels in Environments with Combinatorially Hard Search Spaces
In Advances in Neural Information Processing Systems 34, 30, pages: 24707-24718, Curran Associates, Inc., Red Hook, NY, 35th Conference on Neural Information Processing Systems (NeurIPS 2021), December 2021 (inproceedings)
al
Hornakova, A. K. T. S. P. R. M. R. B. H. R.
Making Higher Order MOT Scalable: An Efficient Approximate Solver for Lifted Disjoint Paths
Proceedings 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), pages: 6310-6320, IEEE, ICCV 2021, October 2021 (conference)
al
Paulus, A., Rolínek, M., Musil, V., Amos, B., Martius, G.
CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints
In Proceedings of the 38th International Conference on Machine Learning, 139, pages: 8443-8453, Proceedings of Machine Learning Research, (Editors: Meila, Marina and Zhang, Tong), PMLR, The Thirty-eighth International Conference on Machine Learning (ICML), July 2021 (inproceedings)
al
Zietlow, D., Rolinek, M., Martius, G.
Demystifying Inductive Biases for (Beta-)VAE Based Architectures
In Proceedings of the 2021 International Conference on Machine Learning (ICML), 139, pages: 12945-12954, Proceedings of Machine Learning Research , The 38th International Conference on Machine Learning (ICML 2021), July 2021 (inproceedings)
al
Vlastelica, M., Rolinek, M., Martius, G.
Neuro-algorithmic Policies Enable Fast Combinatorial Generalization
In Proceedings of the 2021 International Conference on Machine Learning (ICML), The Thirty-eighth International Conference on Machine Learning (ICML), July 2021 (inproceedings)
2020
al
Rolínek, M., Swoboda, P., Zietlow, D., Paulus, A., Musil, V., Martius, G.
Deep Graph Matching via Blackbox Differentiation of Combinatorial Solvers
In Computer Vision – ECCV 2020, 28, pages: 407-424, Lecture Notes in Computer Science, 12373, (Editors: Vedaldi, Andrea and Bischof, Horst and Brox, Thomas and Frahm, Jan-Michael), Springer, Cham, 16th European Conference on Computer Vision (ECCV 2020) , August 2020 (inproceedings)
al
Rolínek, M., Musil, V., Paulus, A., Vlastelica, M., Michaelis, C., Martius, G.
Optimizing Rank-based Metrics with Blackbox Differentiation
In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2020), pages: 7617 - 7627, IEEE, Piscataway, NJ, IEEE/CVF International Conference on Computer Vision and Pattern Recognition (CVPR 2020), June 2020, Best paper nomination (inproceedings)
al
Vlastelica*, M., Paulus*, A., Musil, V., Martius, G., Rolínek, M.
Differentiation of Blackbox Combinatorial Solvers
In International Conference on Learning Representations, ICLR’20, May 2020, *Equal Contribution (inproceedings)
al
ev
Pinneri, C., Sawant, S., Blaes, S., Achterhold, J., Stueckler, J., Rolinek, M., Martius, G.
Sample-efficient Cross-Entropy Method for Real-time Planning
In Conference on Robot Learning 2020, 2020 (inproceedings)
2019
al
Rolinek, M., Zietlow, D., Martius, G.
Variational Autoencoders Pursue PCA Directions (by Accident)
In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 12406-12415, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)
al
Kazda, A., Kolmogorov, V., Rolinek, M.
Even Delta-Matroids and the Complexity of Planar Boolean CSPs
ACM Transactions on Algorithms, 15(2):1-33, 2019, Article No. 22 (article)
2018
al
Rolinek, M., Martius, G.
L4: Practical loss-based stepsize adaptation for deep learning
In Advances in Neural Information Processing Systems 31 (NeurIPS 2018), pages: 6434-6444, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 2018 (inproceedings)