Institute Homepage
Institute Homepage
EN
Sign In
Forschung
Forschung
Forschung
Übersicht
Publikationen
Abteilungen
Empirische Inferenz
Haptische Intelligenz
Perzeptive Systeme
Physische Intelligenz
Robotik-Materialien
Soziale Grundlagen der Informatik
Forschungsgruppen
Algorithms and Society
Biomimetic Materials and Machines
Deep Models and Optimization
Human Aspects of Machine Learning
Learning and Dynamical Systems
Neuromechanics of Movement
Organizational Leadership and Diversity
Robotic Composites and Compositions
Robust Machine Learning
Safety- and Efficiency-Aligned Learning
Über uns
Über uns
Personen
Wissenschaft
Personenverzeichnis
Alumni-Netzwerk
Kontakt
Management
Kontakt
Anreise
Our Institute
Unser Institut
Campus-Überblick
Campuseinrichtungen
Code of Conduct
Anlaufstellen für Institutsangehörige
Unsere Geschichte
100/10-jähriges Jubiläum
Karriere
Karriere
Karriere
Karriere
Offene Stellen
Überblick über Promotionsprogramme
Doctoral Programs Overview
International Max Planck Research School for Intelligent Systems
Max Planck ETH Center for Learning Systems
ELLIS PhD Program
Karriere
Praktika
Planck Academy
Service
Service
Service-Einrichtungen
Unsere Services
Verwaltung
Scientific Coordination Office
IT Services
Welcome Service
Zentrale Wissenschaftliche Einrichtungen
Überblick
Materials
Medical Systems
Optics and Sensing Laboratory
Robotics
Scientific Computing
Software Workshop
Werkstätten
Workshop Overview
Fine Mechanical Workshop
Glass Workshop
Central Mechanical Workshop
Mechatronics Workshop
Campus Services
Campuseinrichtungen
Bibliothek
Max Planck House Tübingen
Impact
Impact
Impact
Unser Impact
Diversität
Nachhaltigkeit
Entrepreneurship & Innovation
Kooperationen
Unsere Partner
Promotionsprogramme
Initiativen und Partner
Cyber Valley
European Laboratory for Learning and Intelligent Systems
ELLIS Institute Tübingen
Tübingen AI Center
Personen
Aktuelles
Events
Forschung
Forschung
Forschung
Übersicht
Publikationen
Abteilungen
Empirische Inferenz
Haptische Intelligenz
Perzeptive Systeme
Physische Intelligenz
Robotik-Materialien
Soziale Grundlagen der Informatik
Forschungsgruppen
Algorithms and Society
Biomimetic Materials and Machines
Deep Models and Optimization
Human Aspects of Machine Learning
Learning and Dynamical Systems
Neuromechanics of Movement
Organizational Leadership and Diversity
Robotic Composites and Compositions
Robust Machine Learning
Safety- and Efficiency-Aligned Learning
Über uns
Über uns
Personen
Wissenschaft
Personenverzeichnis
Alumni-Netzwerk
Kontakt
Management
Kontakt
Anreise
Our Institute
Unser Institut
Campus-Überblick
Campuseinrichtungen
Code of Conduct
Anlaufstellen für Institutsangehörige
Unsere Geschichte
100/10-jähriges Jubiläum
Karriere
Karriere
Karriere
Karriere
Offene Stellen
Überblick über Promotionsprogramme
Doctoral Programs Overview
International Max Planck Research School for Intelligent Systems
Max Planck ETH Center for Learning Systems
ELLIS PhD Program
Karriere
Praktika
Planck Academy
Service
Service
Service-Einrichtungen
Unsere Services
Verwaltung
Scientific Coordination Office
IT Services
Welcome Service
Zentrale Wissenschaftliche Einrichtungen
Überblick
Materials
Medical Systems
Optics and Sensing Laboratory
Robotics
Scientific Computing
Software Workshop
Werkstätten
Workshop Overview
Fine Mechanical Workshop
Glass Workshop
Central Mechanical Workshop
Mechatronics Workshop
Campus Services
Campuseinrichtungen
Bibliothek
Max Planck House Tübingen
Impact
Impact
Impact
Unser Impact
Diversität
Nachhaltigkeit
Entrepreneurship & Innovation
Kooperationen
Unsere Partner
Promotionsprogramme
Initiativen und Partner
Cyber Valley
European Laboratory for Learning and Intelligent Systems
ELLIS Institute Tübingen
Tübingen AI Center
Personen
Aktuelles
Events
Back
Perzeptive Systeme
Award
24 June 2016
The FAUST dataset was awarded the "Dataset Award" at the Eurographics Symposium on Geometry Processing 2016. The award encourages and recognises the importance of the distribution of high-quality datasets on which geometry processing algorithms are tested. The creators of the dataset are Federica Bogo, Javier Romero, Matthew Loper, and Michael Black. The work originally appeared in the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 2014.
Diese Website verwendet Cookies, um sicherzustellen, dass Sie die bestmögliche Nutzererfahrung erhalten.
Mehr erfahren
.
Accept