Probabilistic Numerics Talk Biography
15 June 2018 at 11:00 - 12:00 | S2 seminar room

An approach to the text normalization problem making use of deep learning techniques

ORGANIZERS
Thumb ticker sm hennig lowres cropped
Probabilistic Numerics, Empirische Inferenz
Affiliated Researcher

The problem of text normalization is simple to understand: transform a given arbitrary text into its spoken form. In the context of text-to-speech systems – that we will focus on – this can be exemplified by turning the text “$200” into “two hundred dollars”. Lately, the interest of solving this problem with deep learning techniques has raised since it is a highly context-dependent problem that is still being solved by ad-hoc solutions. So much so that Google even started a contest in the web Kaggle to solve this problem. In this talk we will see how this problem has been approached as part of a Master thesis. Namely, the problem is tackled as if it were an automatic translation problem from English to normalized English, and so the architecture proposed is a neural machine translation architecture with the addition of traditional attention mechanisms. This network is typically composed of an encoder and a decoder, where both of them are multi-layer LSTM networks. As part of this work, and with the aim of proving the feasibility of convolutional neural networks in natural-language processing problems, we propose and compare different architectures for the encoder based on convolutional networks. In particular, we propose a new architecture called Causal Feature Extractor which proves to be a great encoder as well as an attention-friendly architecture.

Speaker Biography

Adrián Javaloy (University of Murcia)

MSc Student