Publications

DEPARTMENTS

Emperical Interference

Haptic Intelligence

Modern Magnetic Systems

Perceiving Systems

Physical Intelligence

Robotic Materials

Social Foundations of Computation


Research Groups

Autonomous Vision

Autonomous Learning

Bioinspired Autonomous Miniature Robots

Dynamic Locomotion

Embodied Vision

Human Aspects of Machine Learning

Intelligent Control Systems

Learning and Dynamical Systems

Locomotion in Biorobotic and Somatic Systems

Micro, Nano, and Molecular Systems

Movement Generation and Control

Neural Capture and Synthesis

Physics for Inference and Optimization

Organizational Leadership and Diversity

Probabilistic Learning Group


Topics

Robot Learning

Conference Paper

2022

Autonomous Learning

Robotics

AI

Career

Award


Probabilistic Numerics Conference Paper Kernel Recursive ABC: Point Estimation with Intractable Likelihood Kajihara, T., Kanagawa, M., Yamazaki, K., Fukumizu, K. Proceedings of the 35th International Conference on Machine Learning, 2405-2414, PMLR, July 2018 Paper BibTeX

Probabilistic Numerics Article Convergence Rates of Gaussian ODE Filters Kersting, H., Sullivan, T. J., Hennig, P. arXiv preprint 2018, arXiv:1807.09737 [math.NA], July 2018 URL BibTeX

Empirical Inference Probabilistic Numerics Conference Paper Counterfactual Mean Embedding: A Kernel Method for Nonparametric Causal Inference Muandet, K., Kanagawa, M., Saengkyongam, S., Marukata, S. Workshop on Machine Learning for Causal Inference, Counterfactual Prediction, and Autonomous Action (CausalML) at ICML, July 2018 (Published) BibTeX

Probabilistic Numerics Conference Paper Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients Balles, L., Hennig, P. Proceedings of the 35th International Conference on Machine Learning (ICML), 80:404-413, Proceedings of Machine Learning Research, (Editors: Jennifer Dy and Andreas Krause), PMLR, ICML, July 2018 (Published) URL BibTeX

Probabilistic Numerics Article A probabilistic model for the numerical solution of initial value problems Schober, M., Särkkä, S., Hennig, P. Statistics and Computing, 29(1):99–122, 2018 (Published) PDF Code DOI BibTeX

Probabilistic Numerics Empirical Inference Article Counterfactual Mean Embedding: A Kernel Method for Nonparametric Causal Inference Muandet, K., Kanagawa, M., Saengkyongam, S., Marukata, S. Arxiv e-prints, arXiv:1805.08845v1 [stat.ML], 2018 arXiv BibTeX

Probabilistic Numerics Article Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences Kanagawa, M., Hennig, P., Sejdinovic, D., Sriperumbudur, B. K. Arxiv e-prints, arXiv:1805.08845v1 [stat.ML], 2018 arXiv BibTeX

Probabilistic Numerics Article Model-based Kernel Sum Rule: Kernel Bayesian Inference with Probabilistic Models Nishiyama, Y., Kanagawa, M., Gretton, A., Fukumizu, K. Arxiv e-prints, arXiv:1409.5178v2 [stat.ML], 2018 arXiv BibTeX

Empirical Inference Probabilistic Numerics Ph.D. Thesis Probabilistic Approaches to Stochastic Optimization Mahsereci, M. Eberhard Karls Universität Tübingen, Germany, 2018 (Published) URL BibTeX