Haptic Intelligence Conference Paper 2023

Utilizing Online and Open-Source Machine Learning Toolkits to Leverage the Future of Sustainable Engineering

Thumb ticker sm thumb ticker 20241029 schulz andrew 1 3840pxwidth edited
Haptic Intelligence
  • Research Scientist
Image

Recently, there has been a national push to use machine learning (ML) and artificial intelligence (AI) to advance engineering techniques in all disciplines ranging from advanced fracture mechanics in materials science to soil and water quality testing in the civil and environmental engineering fields. Using AI, specifically machine learning, engineers can automate and decrease the processing or human labeling time while maintaining statistical repeatability via trained models and sensors. Edge Impulse has designed an open-source TinyML-enabled Arduino education tool kit for engineering disciplines. This paper discusses the various applications and approaches engineering educators have taken to utilize ML toolkits in the classroom. We provide in-depth implementation guides and associated learning outcomes focused on the Environmental Engineering Classroom. We discuss five specific examples of four standard Environmental Engineering courses for freshman and junior-level engineering. There are currently few programs in the nation that utilize machine learning toolkits to prepare the next generation of ML and AI-educated engineers for industry and academic careers. This paper will guide educators to design and implement ML/AI into engineering curricula (without a specific AI or ML focus within the course) using simple, cheap, and open-source tools and technological aid from an online platform in collaboration with Edge Impulse.

Author(s): Andrew Schulz and Suzanne Stathatos and Cassandra Shriver and Roxanne Moore
Book Title: Proceedings of the American Society of Engineering Education (ASEE)
Year: 2023
Month: June
Bibtex Type: Conference Paper (inproceedings)
Address: Baltimore, USA
DOI: https://peer.asee.org/44595
State: Published
Electronic Archiving: grant_archive
Note: Andrew Schulz and Suzanne Stathatos are co-first authors

BibTex

@inproceedings{Schulz23-ASEE-Edge,
  title = {Utilizing Online and Open-Source Machine Learning Toolkits to Leverage the Future of Sustainable Engineering},
  booktitle = {Proceedings of the American Society of Engineering Education (ASEE)},
  abstract = {Recently, there has been a national push to use machine learning (ML) and artificial intelligence (AI) to advance engineering techniques in all disciplines ranging from advanced fracture mechanics in materials science to soil and water quality testing in the civil and environmental engineering fields. Using AI, specifically machine learning, engineers can automate and decrease the processing or human labeling time while maintaining statistical repeatability via trained models and sensors. Edge Impulse has designed an open-source TinyML-enabled Arduino education tool kit for engineering disciplines. This paper discusses the various applications and approaches engineering educators have taken to utilize ML toolkits in the classroom. We provide in-depth implementation guides and associated learning outcomes focused on the Environmental Engineering Classroom. We discuss five specific examples of four standard Environmental Engineering courses for freshman and junior-level engineering. There are currently few programs in the nation that utilize machine learning toolkits to prepare the next generation of ML and AI-educated engineers for industry and academic careers. This paper will guide educators to design and implement ML/AI into engineering curricula (without a specific AI or ML focus within the course) using simple, cheap, and open-source tools and technological aid from an online platform in collaboration with Edge Impulse.},
  address = {Baltimore, USA},
  month = jun,
  year = {2023},
  note = {Andrew Schulz and Suzanne Stathatos are co-first authors},
  slug = {schulz23-asee-edge},
  author = {Schulz, Andrew and Stathatos, Suzanne and Shriver, Cassandra and Moore, Roxanne},
  month_numeric = {6}
}