Back
Zero-Shot Offline Imitation Learning via Optimal Transport
Zero-shot imitation learning algorithms hold the promise of reproducing unseen behavior from as little as a single demonstration at test time. Existing practical approaches view the expert demonstration as a sequence of goals, enabling imitation with a high-level goal selector, and a low-level goal-conditioned policy. However, this framework can suffer from myopic behavior: the agent's immediate actions towards achieving individual goals may undermine long-term objectives. We introduce a novel method that mitigates this issue by directly optimizing the occupancy matching objective that is intrinsic to imitation learning. We propose to lift a goal-conditioned value function to a distance between occupancies, which are in turn approximated via a learned world model. The resulting method can learn from offline, suboptimal data, and is capable of non-myopic, zero-shot imitation, as we demonstrate in complex, continuous benchmarks.
@inproceedings{rupf2024:ZILOT, title = {Zero-Shot Offline Imitation Learning via Optimal Transport}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning (ICML)}, abstract = {Zero-shot imitation learning algorithms hold the promise of reproducing unseen behavior from as little as a single demonstration at test time. Existing practical approaches view the expert demonstration as a sequence of goals, enabling imitation with a high-level goal selector, and a low-level goal-conditioned policy. However, this framework can suffer from myopic behavior: the agent's immediate actions towards achieving individual goals may undermine long-term objectives. We introduce a novel method that mitigates this issue by directly optimizing the occupancy matching objective that is intrinsic to imitation learning. We propose to lift a goal-conditioned value function to a distance between occupancies, which are in turn approximated via a learned world model. The resulting method can learn from offline, suboptimal data, and is capable of non-myopic, zero-shot imitation, as we demonstrate in complex, continuous benchmarks.}, volume = {267}, pages = {52345--52381}, series = {Proceedings of Machine Learning Research}, editors = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, publisher = {PMLR}, month = jul, year = {2025}, author = {Rupf, Thomas and Bagatella, Marco and G{\"u}rtler, Nico and Frey, Jonas and Martius, Georg}, eprint = {arXiv:2410.08751}, url = {https://proceedings.mlr.press/v267/rupf25a.html}, month_numeric = {7} }
More information