Physical Intelligence Talk Biography
08 June 2018 at 11:00 - 12:00 | Room 3P02 - Stuttgart

Biomechanical insights into flexible wings from gliding mammals

ORGANIZERS
Thumb ticker sm metin eth vertical small
Physical Intelligence
Guest Researcher
Thumb ticker sm cropped imprs facylty aja
Locomotion in Biorobotic and Somatic Systems
Max Planck Research Group Leader [~Assoc. Prof.]
Image002

Gliding evolved at least nine times in mammals. Despite the abundance and diversity of gliding mammals, little is known about their convergent morphology and mechanisms of aerodynamic control. Many gliding animals are capable of impressive and agile aerial behaviors and their flight performance depends on the aerodynamic forces resulting from airflow interacting with a flexible, membranous wing (patagium). Although the mechanisms that gliders use to control dynamic flight are poorly understood, the shape of the gliding membrane (e.g., angle of attack, camber) is likely a primary factor governing the control of the interaction between aerodynamic forces and the animal’s body. Data from field studies of gliding behavior, lab experiments examining membrane shape changes during glides and morphological and materials testing data of gliding membranes will be presented that can aid our understanding of the mechanisms gliding mammals use to control their membranous wings and potentially provide insights into the design of man-made flexible wings.

Speaker Biography

Dr. Greg Byrnes (Siena College, NY)

Associate Professor of Biology

Dr. Greg Byrnes is an Associate Professor of Biology at Siena College in New York. He completed his Ph.D. in Integrative Biology at the University of California, Berkeley in 2009, investigating the biomechanical and ecological contexts of gliding in mammals. He conducted postdoctoral research at the University of Cincinnati, studying the biomechanics of locomotion in arboreal snakes. His broad research interests are in understanding how and why animals move and understanding how we can apply these strategies to the engineering problems.