News & Awards

News 02-07-2013 Alfried Krupp-Förderpreis für Prof. Dr. Karsten Borgwardt Tübinger Forscher für Analyse großer Mengen biologischer Daten geehrt Der mit 1 Mio. Euro dotierte Alfried Krupp-Förderpreis zeichnet in diesem Jahr die herausragenden Leistungen des Tübinger Wissenschaftlers Prof. Dr. Karsten Borgwardt aus. Der 32-Jährige leitet seit fünf Jahren eine Forschungsgruppe an den Max-Planck-Instituten für Entwicklungsbiologie und für Intelligente Systeme. Vor zwei Jahren wurde Borgwardt zusätzlich zum Professor für „Data Mining in den Lebenswissenschaften“ an der Universität Tübingen ernannt.
Thumb ticker sm zoom
News 17-04-2013 StEM Gewinner 2012 EMS Outstanding Paper Award StEM gewinnt Preis der European Microscopy Society in der Kategorie Materials Science Autor: Dr.Wilfried Sigle, StEM, Max-Planck-Institut für Intelligente Systeme “Toroidal Plasmonic Eigenmodes in Oligomer Nanocavities for the Visible” B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, and PA van Aken Max Planck Institute for Intelligent Systems, Stuttgart Center for Electron Microscopy, Heisenbergstr. 3, 70569 Stuttgart, Germany
Thumb ticker sm outstanding paper
News 27-03-2013 A folding ceramic A sophisticated nanostructure renders a wafer-thin paper made of electrically conductive vanadium pentoxide fibres both tough and pliable Scientists in Stuttgart are currently doing things to a ceramic, which would normally result in a pile of shards. They were the first to produce a paper-like material from a vanadium pentoxide ceramic which is as hard as copper, yet flexible enough to be rolled up or folded. The material is also different from other ceramics, as it is electrically conductive. In a project funded by the German Research Foundation (DFG), the scientists from Stuttgart University, the Max Planck Institute for Intelligent Systems and the Max Planck Institute for Solid State Research produced the ceramic paper consisting of conductive nanofibres of vanadium pentoxide in a straightforward and simple way. The ceramic paper’s special mechanical properties are derived from its structure, which resembles that of mother-of-pearl. The material looks promising for applications in batteries, flat and flexible gas sensors and actuators in artificial muscles.
Thumb ticker sm a folding ceramic
News 27-03-2013 Ein Roboterarm lernt Dart werfen und jonglieren Preis für die beste europäische Doktorarbeit 2012 in der Robotik für ehemaligen Doktorand am MPI für Intelligente Systeme Dr. Jens Kober´s Doktorarbeit mit dem Titel: "Learning Motor Skills: From Algorithms to Robot Experiments" (Prüfung im April 2012 an der TU Darmstadt), wurde zur besten europäischen Doktorarbeit im Forschungsgebiet der Robotik gekürt. Dafür wurde Jens Kober am 20. März 2013 während des European Robotic Network-Forums EURON mit dem Georges Giralt Award ausgezeichnet. Er ist erst der vierte deutsche Robotiker, der diesen Preis entgegen nehmen durfte.
Thumb ticker sm jenskober kopie
News 05-03-2013 Training Immune Cells To Combat Disease Immunology: Researchers trap immune cells in droplets of water in oil in hopes of reprogramming them
Thumb ticker sm training immune
Empirical Inference News 22-01-2013 IEEE RAS Early Career Award for Prof. Jan Peters Prestigious Award in Robotics Research for Scientist of the MPI for Intelligent Systems Jan Peters, head of the Robotics Learning Laboratory at the Tübingen site of the Max Planck Institute for Intelligent Systems and since 2011 Professor of Intelligent Autonomous Systems at the Technical University of Darmstadt, receives the IEEE RAS Early Career Award for his contributions to robot learning. Jan Peters
Thumb ticker sm jannewinsmall
News 05-12-2012 Deuterium from a quantum sieve A metal-organic framework separates hydrogen isotopes more efficiently than previous methods In future it may be easier for chemists, biologists and physicists to obtain the ideal substance with which to clarify numerous research issues. For the first time, a team of scientists from the Max Planck Institute for Intelligent Systems in Stuttgart, Jacobs University Bremen and the University of Augsburg have been able to apply a new method to separate hydrogen and its heavier isotope deuterium more efficiently than before. To this effect, they use a metal-organic framework as a quantum sieve to separate the isotopes. Deuterium serves to determine the structure of unknown substances, for example. Chemists also use it to investigate how reactions involving hydrogen proceed and thus create the basis on which to optimise the conversion. Biologists use deuterium to analyse metabolic processes, among other things.
Thumb ticker sm deuterium from
Modern Magnetic Systems News 05-12-2012 Deuterium from a quantum sieve A metal-organic framework separates hydrogen isotopes more efficiently than previous methods. In future it may be easier for chemists, biologists and physicists to obtain the ideal substance with which to clarify numerous research issues. For the first time, a team of scientists from the Max Planck Institute for Intelligent Systems in Stuttgart, Jacobs University Bremen and the University of Augsburg have been able to apply a new method to separate hydrogen and its heavier isotope deuterium more efficiently than before. To this effect, they use a metal-organic framework as a quantum sieve to separate the isotopes. Deuterium serves to determine the structure of unknown substances, for example. Chemists also use it to investigate how reactions involving hydrogen proceed and thus create the basis on which to optimise the conversion. Biologists use deuterium to analyse metabolic processes, among other things. Michael Hirscher
Thumb ticker sm news item 003 artikel
News 12-09-2012 Quantum stress in nanofilms Electrons confined in an aluminium film of a few atomic layers thick create mechanical stress equivalent to up to one thousand times the standard atmospheric pressures Read heads in hard drives, lasers in DVD players, transistors on computer chips, and many other components all contain ultrathin films of metal or semiconductor materials. Stresses arise in thin films during their manufacture. These influence the optical and magnetic properties of the components, but also cause defects in crystal lattices, and in the end, lead to component failure. As researchers in the department of Eric Mittemeijer at the Max Planck Institute for Intelligent Systems in Stuttgart have now established, enormous stresses in the films are created by a quantum-mechanical mechanism that has been unknown until now, based on an effect by the name of quantum confinement. This effect can cause stresses equivalent to one thousand times standard atmospheric pressure, dependent of thickness. Knowledge of this could be helpful in controlling the optical and mechanical properties of thin-film systems and increase their mechanical stability. Additionally, very sensitive sensors might also be developed on the basis of this knowledge.
Thumb ticker sm quantum
Empirical Inference News 27-06-2012 Tübingen scientist honored for excellent research Bernhard Schölkopf receives the Academy Award 2012 of the Berlin-Brandenburg Academy. Detailed information in the German press release. Bernhard Schölkopf
Smart Nanoplasmonics News 23-03-2012 Vier Nachwuchswissenschaftler an Max-Planck-Instituten erhalten den Sofja Kovalevskaja-Preis 2012 Unter den insgesamt 14 Preisträgern befinden sich vier Nachwuchswissenschaftler, die an Max-Planck-Instituten arbeiten. Mit dem vom Bundesministerium für Bildung und Forschung gestifteten Sofia Kovalevskaja-Preis zeichnet die Alexander von Humboldt-Stiftung Spitzenleistungen von jungen, ausländischen Forschern aus. Mit je 1,65 Millionen Euro können sie damit eigenständige Nachwuchsgruppen an deutschen Forschungsinstitutionen aufbauen. Eine der Preisträgerinnen ist Na Liu vom Max-Planck-Institut für Intelligente Systeme in Stuttgart. Laura Na Liu
Thumb ticker sm pice laura na
News 08-03-2012 Cell movement patterns A method that enables scientists to grow cells on easily generated fine structures provides new insights into cell migration Whereas a cut knee often reduces children to tears, adults are more likely to be distressed by the fear of cancer. In both cases, that is wound healing and the growth and spread of tumours, a particular characteristic of the body’s cells plays a crucial role: their capacity to move in their tissue environment. Together with colleagues from Japan, scientists from the Max Planck Institute for Intelligent Systems in Stuttgart and the University of Heidelberg have developed a very promising method for the study of cell movement. The new method enables the examination of the collective behaviour of small groups of cells in an environment that imitates living tissue. Using this new method, the Stuttgart cooperative project was able to study the collective spreading behaviour of epithelial cells in the early stages of healing processes. The information gained from this study confirms the potential offered by the new method in generating new insights into cell migration, a process that has been under investigation for decades.
Thumb ticker sm cell movement
News 30-01-2012 Max Planck scientists very pleased about ERC grants The Max-Planck-Gesellschaft has once again been successful in winning support from the European Research Council (ERC) With seven Advanced Grants, the MPG is Germany’s top recipient of EU funding. In response to its fourth call for applications, the ERC conferred a total of 294 of these lucrative research awards, of which 52 went to German universities and research institutions.
Thumb ticker sm erc g
News 19-12-2011 On the edge of friction Precise insight into how two microscopic surfaces slide over one another could help in the manufacture of low-friction surfaces The problem exists on both a large and a small scale, and it even bothered the ancient Egyptians. However, although physicists have long had a good understanding of friction in things like stone blocks being pulled by workers into the shape of a pyramid, they have only now been able to explain friction in microscopic dimensions in any degree of detail. Researchers from the University of Stuttgart and the Stuttgart-based Max Planck Institute for Intelligent Systems arranged an elaborate experiment in which they pulled a layer of regularly ordered plastic spheres over an artificial crystal made of light. This enabled them to observe in detail how the layer of spheres slid over the light crystal. Contrary to what one might imagine, the spheres do not all move in unison. In fact, it's only ever some of them that move, while the others stay where they are. This observation confirms theoretical predictions and also explains why friction between microscopic surfaces depends on their atomic structure.
Thumb ticker sm on de edge
News 11-12-2011 The world’s smallest steam engine A heat engine measuring only a few micrometres works as well as its larger counterpart, although it splutters What would be a case for the repair shop for a car engine is completely normal for a micro engine. If it sputters, this is caused by the thermal motions of the smallest particles, which interfere with its running. Researchers at the University of Stuttgart and the Stuttgart-based Max Planck Institute for Intelligent Systems have now observed this with a heat engine on the micrometre scale. They have also determined that the machine does actually perform work, all things considered. Although this cannot be used as yet, the experiment carried out by the researchers in Stuttgart shows that an engine does basically work, even if it is on the microscale. This means that there is nothing, in principle, to prevent the construction of highly efficient, small heat engines.
Thumb ticker sm world smalles