Header logo is


2024


no image
Language Models Can Reduce Asymmetry in Information Markets

Rahaman, N., Weiss, M., Wüthrich, M., Bengio, Y., Li, E., Pal, C., Schölkopf, B.

arXiv:2403.14443, March 2024, Published as: Redesigning Information Markets in the Era of Language Models, Conference on Language Modeling (COLM) (techreport)

Abstract
This work addresses the buyer's inspection paradox for information markets. The paradox is that buyers need to access information to determine its value, while sellers need to limit access to prevent theft. To study this, we introduce an open-source simulated digital marketplace where intelligent agents, powered by language models, buy and sell information on behalf of external participants. The central mechanism enabling this marketplace is the agents' dual capabilities: they not only have the capacity to assess the quality of privileged information but also come equipped with the ability to forget. This ability to induce amnesia allows vendors to grant temporary access to proprietary information, significantly reducing the risk of unauthorized retention while enabling agents to accurately gauge the information's relevance to specific queries or tasks. To perform well, agents must make rational decisions, strategically explore the marketplace through generated sub-queries, and synthesize answers from purchased information. Concretely, our experiments (a) uncover biases in language models leading to irrational behavior and evaluate techniques to mitigate these biases, (b) investigate how price affects demand in the context of informational goods, and (c) show that inspection and higher budgets both lead to higher quality outcomes.

ei

link (url) [BibTex]

2024


link (url) [BibTex]


no image
Learning a Terrain- and Robot-Aware Dynamics Model for Autonomous Mobile Robot Navigation

Achterhold, J., Guttikonda, S., Kreber, J. U., Li, H., Stueckler, J.

CoRR abs/2409.11452, 2024, Preprint submitted to Robotics and Autonomous Systems Journal. https://arxiv.org/abs/2409.11452 (techreport) Submitted

Abstract
Mobile robots should be capable of planning cost-efficient paths for autonomous navigation. Typically, the terrain and robot properties are subject to variations. For instance, properties of the terrain such as friction may vary across different locations. Also, properties of the robot may change such as payloads or wear and tear, e.g., causing changing actuator gains or joint friction. Autonomous navigation approaches should thus be able to adapt to such variations. In this article, we propose a novel approach for learning a probabilistic, terrain- and robot-aware forward dynamics model (TRADYN) which can adapt to such variations and demonstrate its use for navigation. Our learning approach extends recent advances in meta-learning forward dynamics models based on Neural Processes for mobile robot navigation. We evaluate our method in simulation for 2D navigation of a robot with uni-cycle dynamics with varying properties on terrain with spatially varying friction coefficients. In our experiments, we demonstrate that TRADYN has lower prediction error over long time horizons than model ablations which do not adapt to robot or terrain variations. We also evaluate our model for navigation planning in a model-predictive control framework and under various sources of noise. We demonstrate that our approach yields improved performance in planning control-efficient paths by taking robot and terrain properties into account.

ev

preprint [BibTex]

preprint [BibTex]


no image
A Pontryagin Perspective on Reinforcement Learning

Eberhard, O., Vernade, C., Muehlebach, M.

Max Planck Institute for Intelligent Systems, 2024 (techreport)

lds

link (url) [BibTex]

link (url) [BibTex]


no image
Distributed Event-Based Learning via ADMM

Er, D., Trimpe, S., Muehlebach, M.

Max Planck Institute for Intelligent Systems, 2024 (techreport)

lds

link (url) [BibTex]

link (url) [BibTex]


no image
Incremental Few-Shot Adaptation for Non-Prehensile Object Manipulation using Parallelizable Physics Simulators

Baumeister, F., Mack, L., Stueckler, J.

CoRR abs/2409.13228, CoRR, 2024, Submitted to IEEE International Conference on Robotics and Automation (ICRA) 2025 (techreport) Submitted

Abstract
Few-shot adaptation is an important capability for intelligent robots that perform tasks in open-world settings such as everyday environments or flexible production. In this paper, we propose a novel approach for non-prehensile manipulation which iteratively adapts a physics-based dynamics model for model-predictive control. We adapt the parameters of the model incrementally with a few examples of robot-object interactions. This is achieved by sampling-based optimization of the parameters using a parallelizable rigid-body physics simulation as dynamic world model. In turn, the optimized dynamics model can be used for model-predictive control using efficient sampling-based optimization. We evaluate our few-shot adaptation approach in several object pushing experiments in simulation and with a real robot.

ev

preprint supplemental video link (url) [BibTex]

preprint supplemental video link (url) [BibTex]

2023


An Open-Source Modular Treadmill for Dynamic Force Measurement with Load Dependant Range Adjustment
An Open-Source Modular Treadmill for Dynamic Force Measurement with Load Dependant Range Adjustment

Sarvestani, A., Ruppert, F., Badri-Spröwitz, A.

2023 (unpublished) Submitted

Abstract
Ground reaction force sensing is one of the key components of gait analysis in legged locomotion research. To measure continuous force data during locomotion, we present a novel compound instrumented treadmill design. The treadmill is 1.7 m long, with a natural frequency of 170 Hz and an adjustable range that can be used for humans and small robots alike. Here, we present the treadmill’s design methodology and characterize it in its natural frequency, noise behavior and real-life performance. Additionally, we apply an ISO 376 norm conform calibration procedure for all spatial force directions and center of pressure position. We achieve a force accuracy of ≤ 5.6 N for the ground reaction forces and ≤ 13 mm in center of pressure position.

dlg

arXiv link (url) DOI [BibTex]


no image
Natural Language Processing for Policymaking

Jin, Z., Mihalcea, R.

In Handbook of Computational Social Science for Policy, pages: 141-162, 7, (Editors: Bertoni, E. and Fontana, M. and Gabrielli, L. and Signorelli, S. and Vespe, M.), Springer International Publishing, 2023 (inbook)

ei

DOI [BibTex]

DOI [BibTex]


Synchronizing Machine Learning Algorithms, Realtime Robotic Control and Simulated Environment with o80
Synchronizing Machine Learning Algorithms, Realtime Robotic Control and Simulated Environment with o80

Berenz, V., Widmaier, F., Guist, S., Schölkopf, B., Büchler, D.

Robot Software Architectures Workshop (RSA) 2023, ICRA, 2023 (techreport)

Abstract
Robotic applications require the integration of various modalities, encompassing perception, control of real robots and possibly the control of simulated environments. While the state-of-the-art robotic software solutions such as ROS 2 provide most of the required features, flexible synchronization between algorithms, data streams and control loops can be tedious. o80 is a versatile C++ framework for robotics which provides a shared memory model and a command framework for real-time critical systems. It enables expert users to set up complex robotic systems and generate Python bindings for scientists. o80's unique feature is its flexible synchronization between processes, including the traditional blocking commands and the novel ``bursting mode'', which allows user code to control the execution of the lower process control loop. This makes it particularly useful for setups that mix real and simulated environments.

ei

arxiv poster link (url) [BibTex]

2022


no image
Proceedings of the Second Workshop on NLP for Positive Impact (NLP4PI)

Biester, L., Demszky, D., Jin, Z., Sachan, M., Tetreault, J., Wilson, S., Xiao, L., Zhao, J.

Association for Computational Linguistics, December 2022 (proceedings)

ei

link (url) [BibTex]

2022


link (url) [BibTex]


Magnetic Micro-/Nanopropellers  for Biomedicine
Magnetic Micro-/Nanopropellers for Biomedicine

Qiu, T., Jeong, M., Goyal, R., Kadiri, V., Sachs, J., Fischer, P.

In Field-Driven Micro and Nanorobots for Biology and Medicine, pages: 389-410, 16, (Editors: Sun, Y. and Wang, X. and Yu, J.), Springer, Cham, 2022 (inbook)

Abstract
In nature, many bacteria swim by rotating their helical flagella. A particularly promising class of artificial micro- and nano-robots mimic this propeller-like propulsion mechanism to move through fluids and tissues for applications in minimally-invasive medicine. Several fundamental challenges have to be overcome in order to build micro-machines that move similar to bacteria for in vivo applications. Here, we review recent advances of magnetically-powered micro-/nano-propellers. Four important aspects of the propellers – the geometrical shape, the fabrication method, the generation of magnetic fields for actuation, and the choice of biocompatible magnetic materials – are highlighted. First, the fundamental requirements are elucidated that arise due to hydrodynamics at low Reynolds (Re) number. We discuss the role that the propellers’ shape and symmetry play in realizing effective propulsion at low Re. Second, the additive nano-fabrication method Glancing Angle Deposition is discussed as a versatile technique to quickly grow large numbers of designer nano-helices. Third, systems to generate rotating magnetic fields via permanent magnets or electromagnetic coils are presented. And finally, the biocompatibility of the magnetic materials is discussed. Iron-platinum is highlighted due to its biocompatibility and its superior magnetic properties, which is promising for targeted delivery, minimally-invasive magnetic nano-devices and biomedical applications.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Life Improvement Science

Lieder, F., Prentice, M.

In Encyclopedia of Quality of Life and Well-Being Research, Springer, November 2022 (inbook)

re

DOI [BibTex]

DOI [BibTex]


no image
Causality, causal digital twins, and their applications

Schölkopf, B.

Machine Learning for Science: Bridging Data-Driven and Mechanistic Modelling (Dagstuhl Seminar 22382), (Editors: Berens, Philipp and Cranmer, Kyle and Lawrence, Neil D. and von Luxburg, Ulrike and Montgomery, Jessica), September 2022 (talk)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Proceedings of the First Conference on Causal Learning and Reasoning (CLeaR 2022)

Schölkopf, B., Uhler, C., Zhang, K.

177, Proceedings of Machine Learning Research, PMLR, April 2022 (proceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Observability Analysis of Visual-Inertial Odometry with Online Calibration of Velocity-Control Based Kinematic Motion Models

Li, H., Stueckler, J.

abs/2204.06651, CoRR/arxiv, 2022 (techreport)

Abstract
In this paper, we analyze the observability of the visual-inertial odometry (VIO) using stereo cameras with a velocity-control based kinematic motion model. Previous work shows that in general case the global position and yaw are unobservable in VIO system, additionally the roll and pitch become also unobservable if there is no rotation. We prove that by integrating a planar motion constraint roll and pitch become observable. We also show that the parameters of the motion model are observable.

ev

link (url) [BibTex]


no image
Causal Models for Dynamical Systems

Peters, J., Bauer, S., Pfister, N.

In Probabilistic and Causal Inference: The Works of Judea Pearl, pages: 671-690, 1, Association for Computing Machinery, 2022 (inbook)

ei

arXiv DOI [BibTex]

arXiv DOI [BibTex]


no image
Towards Causal Algorithmic Recourse

Karimi, A. H., von Kügelgen, J., Schölkopf, B., Valera, I.

In xxAI - Beyond Explainable AI: International Workshop, Held in Conjunction with ICML 2020, July 18, 2020, Vienna, Austria, Revised and Extended Papers, pages: 139-166, (Editors: Holzinger, Andreas and Goebel, Randy and Fong, Ruth and Moon, Taesup and Müller, Klaus-Robert and Samek, Wojciech), Springer International Publishing, 2022 (inbook)

ei plg

DOI [BibTex]

DOI [BibTex]


no image
CLEVR-X: A Visual Reasoning Dataset for Natural Language Explanations

Salewski, L., Koepke, A. S., Lensch, H. P. A., Akata, Z.

In xxAI - Beyond Explainable AI: International Workshop, Held in Conjunction with ICML 2020, July 18, 2020, Vienna, Austria, Revised and Extended Papers, pages: 69-88, (Editors: Holzinger, Andreas and Goebel, Randy and Fong, Ruth and Moon, Taesup and Müller, Klaus-Robert and Samek, Wojciech), Springer International Publishing, 2022 (inbook)

ei

DOI [BibTex]

DOI [BibTex]


no image
Causality for Machine Learning

Schölkopf, B.

In Probabilistic and Causal Inference: The Works of Judea Pearl, pages: 765-804, 1, Association for Computing Machinery, New York, NY, USA, 2022 (inbook)

ei

arXiv DOI [BibTex]

arXiv DOI [BibTex]

2021


no image
Physically Plausible Tracking & Reconstruction of Dynamic Objects

Strecke, M., Stückler, J.

KIT Science Week Scientific Conference & DGR-Days 2021, October 2021 (talk)

ev

[BibTex]

2021


[BibTex]


no image
Electriflow: Augmenting Books With Tangible Animation Using Soft Electrohydraulic Actuators

Purnendu, , Novack, S., Acome, E., Alistar, M., Keplinger, C., Gross, M. D., Bruns, C., Leithinger, D.

In ACM SIGGRAPH 2021 Labs, pages: 1-2, Association for Computing Machinery, SIGGRAPH 2021, August 2021 (inbook)

Abstract
We present Electriflow: a method of augmenting books with tangible animation employing soft electrohydraulic actuators. These actuators are compact, silent and fast in operation, and can be fabricated with commodity materials. They generate an immediate hydraulic force upon electrostatic activation without an external fluid supply source, enabling a simple and self-contained design. Electriflow actuators produce an immediate shape transition from flat to folded state which enabled their seamless integration into books. For the Emerging Technologies exhibit, we will demonstrate the prototype of a book augmented with the capability of tangible animation.

rm

Supplemental Material link (url) DOI [BibTex]

Supplemental Material link (url) DOI [BibTex]


no image
Proceedings of the 1st Workshop on NLP for Positive Impact

Field, A., Prabhumoye, S., Sap, M., Jin, Z., Zhao, J., Brockett, C.

Association for Computational Linguistics, August 2021 (proceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


Improving Human Decision-Making by Discovering Efficient Strategies for Hierarchical Planning
Improving Human Decision-Making by Discovering Efficient Strategies for Hierarchical Planning

Heindrich, L., Consul, S., Stojcheski, J., Lieder, F.

Tübingen, Germany, The first edition of Life Improvement Science Conference, June 2021 (talk) Accepted

Abstract
The discovery of decision strategies is an essential part of creating effective cognitive tutors that teach planning and decision-making skills to humans. In the context of bounded rationality, this requires weighing the benefits of different planning operations compared to their computational costs. For small decision problems, it has already been shown that near-optimal decision strategies can be discovered automatically and that the discovered strategies can be taught to humans to increase their performance. Unfortunately, these near-optimal strategy discovery algorithms have not been able to scale well to larger problems due to their computational complexity. In this talk, we will present recent work at the Rationality Enhancement Group to overcome the computational bottleneck of existing strategy discovery algorithms. Our approach makes use of the hierarchical structure of human behavior by decomposing sequential decision problems into two sub-problems: setting a goal and planning how to achieve it. An additional metacontroller component is introduced to switch the current goal when it becomes beneficial. The hierarchical decomposition enables us to discover near-optimal strategies for human planning in larger and more complex tasks than previously possible. We then show in online experiments that teaching the discovered strategies to humans improves their performance in complex sequential decision-making tasks.

re

Project Page [BibTex]

Project Page [BibTex]


Toward a Science of Effective Well-Doing
Toward a Science of Effective Well-Doing

Lieder, F., Prentice, M., Corwin-Renner, E.

May 2021 (techreport)

Abstract
Well-doing, broadly construed, encompasses acting and thinking in ways that contribute to humanity’s flourishing in the long run. This often takes the form of setting a prosocial goal and pursuing it over an extended period of time. To set and pursue goals in a way that is extremely beneficial for humanity (effective well-doing), people often have to employ critical thinking and far-sighted, rational decision-making in the service of the greater good. To promote effective well-doing, we need to better understand its determinants and psychological mechanisms, as well as the barriers to effective well-doing and how they can be overcome. In this article, we introduce a taxonomy of different forms of well-doing and introduce a conceptual model of the cognitive mechanisms of effective well-doing. We view effective well-doing as the upper end of a moral continuum whose lower half comprises behaviors that are harmful to humanity (ill-doing), and we argue that the capacity for effective well-doing has to be developed through personal growth (e.g., learning how to pursue goals effectively). Research on these phenomena has so far been scattered across numerous disconnected literatures from multiple disciplines. To bring these communities together, we call for the establishment of a transdisciplinary research field focussed on understanding and promoting effective well-doing and personal growth as well as understanding and reducing ill-doing. We define this research field in terms of its goals and questions. We review what is already known about these questions in different disciplines and argue that laying the scientific foundation for promoting effective well-doing is one of the most valuable contributions that the behavioral sciences can make in the 21st century.

re

Preprint Project Page [BibTex]


Scientific Report 2016 - 2021
Scientific Report 2016 - 2021
2021 (mpi_year_book)

Abstract
This report presents research done at the Max Planck Institute for Intelligent Systems from January2016 to November 2021. It is our fourth report since the founding of the institute in 2011. Dueto the fact that the upcoming evaluation is an extended one, the report covers a longer reportingperiod.This scientific report is organized as follows: we begin with an overview of the institute, includingan outline of its structure, an introduction of our latest research departments, and a presentationof our main collaborative initiatives and activities (Chapter1). The central part of the scientificreport consists of chapters on the research conducted by the institute’s departments (Chapters2to6) and its independent research groups (Chapters7 to24), as well as the work of the institute’scentral scientific facilities (Chapter25). For entities founded after January 2016, the respectivereport sections cover work done from the date of the establishment of the department, group, orfacility. These chapters are followed by a summary of selected outreach activities and scientificevents hosted by the institute (Chapter26). The scientific publications of the featured departmentsand research groups published during the 6-year review period complete this scientific report.

ei hi ps pi rm

Scientific Report 2016 - 2021 [BibTex]

2020


Optimal To-Do List Gamification
Optimal To-Do List Gamification

Stojcheski, J., Felso, V., Lieder, F.

ArXiv Preprint, 2020 (techreport)

Abstract
What should I work on first? What can wait until later? Which projects should I prioritize and which tasks are not worth my time? These are challenging questions that many people face every day. People’s intuitive strategy is to prioritize their immediate experience over the long-term consequences. This leads to procrastination and the neglect of important long-term projects in favor of seemingly urgent tasks that are less important. Optimal gamification strives to help people overcome these problems by incentivizing each task by a number of points that communicates how valuable it is in the long-run. Unfortunately, computing the optimal number of points with standard dynamic programming methods quickly becomes intractable as the number of a person’s projects and the number of tasks required by each project increase. Here, we introduce and evaluate a scalable method for identifying which tasks are most important in the long run and incentivizing each task according to its long-term value. Our method makes it possible to create to-do list gamification apps that can handle the size and complexity of people’s to-do lists in the real world.

re

link (url) DOI Project Page [BibTex]


Excursion Search for Constrained Bayesian Optimization under a Limited Budget of Failures
Excursion Search for Constrained Bayesian Optimization under a Limited Budget of Failures

Marco, A., Rohr, A. V., Baumann, D., Hernández-Lobato, J. M., Trimpe, S.

2020 (proceedings) In revision

Abstract
When learning to ride a bike, a child falls down a number of times before achieving the first success. As falling down usually has only mild consequences, it can be seen as a tolerable failure in exchange for a faster learning process, as it provides rich information about an undesired behavior. In the context of Bayesian optimization under unknown constraints (BOC), typical strategies for safe learning explore conservatively and avoid failures by all means. On the other side of the spectrum, non conservative BOC algorithms that allow failing may fail an unbounded number of times before reaching the optimum. In this work, we propose a novel decision maker grounded in control theory that controls the amount of risk we allow in the search as a function of a given budget of failures. Empirical validation shows that our algorithm uses the failures budget more efficiently in a variety of optimization experiments, and generally achieves lower regret, than state-of-the-art methods. In addition, we propose an original algorithm for unconstrained Bayesian optimization inspired by the notion of excursion sets in stochastic processes, upon which the failures-aware algorithm is built.

am ics

arXiv code (python) PDF [BibTex]


no image
TUM Flyers: Vision-Based MAV Navigation for Systematic Inspection of Structures

Usenko, V., Stumberg, L. V., Stückler, J., Cremers, D.

In Bringing Innovative Robotic Technologies from Research Labs to Industrial End-users: The Experience of the European Robotics Challenges, 136, pages: 189-209, Springer Tracts in Advanced Robotics, Springer International Publishing, 2020 (inbook)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Adopting the Boundary Homogenization Approximation from Chemical Kinetics to Motile Chemically Active Particles

Popescu, M. N., Uspal, W. E.

In Chemical Kinetics, pages: 517-540, (Editors: Lindenberg, Katja and Metzler, Ralf and Oshanin, Gleb), World Scientific, New Jersey, NJ, 2020 (incollection)

icm

DOI [BibTex]

DOI [BibTex]


no image
Soft Microrobots Based on Photoresponsive Materials

Palagi, S.

In Mechanically Responsive Materials for Soft Robotics, pages: 327-362, (Editors: Koshima, Hideko), Wiley-VCH, Weinheim, 2020 (incollection)

pf

DOI [BibTex]

DOI [BibTex]

2019


no image
Multivariate coupling estimation between continuous signals and point processes

Safavi, S., Logothetis, N., Besserve, M.

Neural Information Processing Systems 2019 - Workshop on Learning with Temporal Point Processes, December 2019 (talk)

ei

Talk video link (url) [BibTex]

2019


Talk video link (url) [BibTex]


no image
Nanomagnetismus im Röntgenlicht

Schütz, G.

In Vielfältige Physik, pages: 173-182, Springer Spektrum, Berlin, Heidelberg, 2019 (incollection)

mms

DOI [BibTex]

DOI [BibTex]


Scientific Report 2016 - 2018
Scientific Report 2016 - 2018
2019 (mpi_year_book)

Abstract
This report presents research done at the Max Planck Institute for Intelligent Systems from January 2016 to December 2018. It is our third report since the founding of the institute in 2011. This status report is organized as follows: we begin with an overview of the institute, including its organizational structure (Chapter 1). The central part of the scientific report consists of chapters on the research conducted by the institute’s departments (Chapters 2 to 5) and its independent research groups (Chapters 6 to 18), as well as the work of the institute’s central scientific facilities (Chapter 19). For entities founded after January 2016, the respective report sections cover work done from the date of the establishment of the department, group, or facility.

ei hi ps pi

Scientific Report 2016 - 2018 [BibTex]


Das Tier als Modell für Roboter, und Roboter als Modell für Tiere
Das Tier als Modell für Roboter, und Roboter als Modell für Tiere

Badri-Spröwitz, A.

In pages: 167-175, Springer, 2019 (incollection)

dlg

DOI [BibTex]

DOI [BibTex]

2018


Nanoscale robotic agents in biological fluids and tissues
Nanoscale robotic agents in biological fluids and tissues

Palagi, S., Walker, D. Q. T., Fischer, P.

In The Encyclopedia of Medical Robotics, 2, pages: 19-42, 2, (Editors: Desai, J. P. and Ferreira, A.), World Scientific, October 2018 (inbook)

Abstract
Nanorobots are untethered structures of sub-micron size that can be controlled in a non-trivial way. Such nanoscale robotic agents are envisioned to revolutionize medicine by enabling minimally invasive diagnostic and therapeutic procedures. To be useful, nanorobots must be operated in complex biological fluids and tissues, which are often difficult to penetrate. In this chapter, we first discuss potential medical applications of motile nanorobots. We briefly present the challenges related to swimming at such small scales and we survey the rheological properties of some biological fluids and tissues. We then review recent experimental results in the development of nanorobots and in particular their design, fabrication, actuation, and propulsion in complex biological fluids and tissues. Recent work shows that their nanoscale dimension is a clear asset for operation in biological tissues, since many biological tissues consist of networks of macromolecules that prevent the passage of larger micron-scale structures, but contain dynamic pores through which nanorobots can move.

pf

link (url) DOI [BibTex]

2018


link (url) DOI [BibTex]


Impact of Trunk Orientation  for Dynamic Bipedal Locomotion
Impact of Trunk Orientation for Dynamic Bipedal Locomotion

Drama, Ö.

Dynamic Walking Conference, May 2018 (talk)

Abstract
Impact of trunk orientation for dynamic bipedal locomotion My research revolves around investigating the functional demands of bipedal running, with focus on stabilizing trunk orientation. When we think about postural stability, there are two critical questions we need to answer: What are the necessary and sufficient conditions to achieve and maintain trunk stability? I am concentrating on how morphology affects control strategies in achieving trunk stability. In particular, I denote the trunk pitch as the predominant morphology parameter and explore the requirements it imposes on a chosen control strategy. To analyze this, I use a spring loaded inverted pendulum model extended with a rigid trunk, which is actuated by a hip motor. The challenge for the controller design here is to have a single hip actuator to achieve two coupled tasks of moving the legs to generate motion and stabilizing the trunk. I enforce orthograde and pronograde postures and aim to identify the effect of these trunk orientations on the hip torque and ground reaction profiles for different control strategies.

dlg

Impact of trunk orientation for dynamic bipedal locomotion [DW 2018] link (url) [BibTex]


no image
Haptics and Haptic Interfaces

Kuchenbecker, K. J.

In Encyclopedia of Robotics, (Editors: Marcelo H. Ang and Oussama Khatib and Bruno Siciliano), Springer, May 2018 (incollection)

Abstract
Haptics is an interdisciplinary field that seeks to both understand and engineer touch-based interaction. Although a wide range of systems and applications are being investigated, haptics researchers often concentrate on perception and manipulation through the human hand. A haptic interface is a mechatronic system that modulates the physical interaction between a human and his or her tangible surroundings. Haptic interfaces typically involve mechanical, electrical, and computational layers that work together to sense user motions or forces, quickly process these inputs with other information, and physically respond by actuating elements of the user’s surroundings, thereby enabling him or her to act on and feel a remote and/or virtual environment.

hi

DOI [BibTex]

DOI [BibTex]


no image
Detailed Dense Inference with Convolutional Neural Networks via Discrete Wavelet Transform

Ma, L., Stueckler, J., Wu, T., Cremers, D.

arxiv, 2018, arXiv:1808.01834 (techreport)

ev

[BibTex]

[BibTex]


no image
Maschinelles Lernen: Entwicklung ohne Grenzen?

Schölkopf, B.

In Mit Optimismus in die Zukunft schauen. Künstliche Intelligenz - Chancen und Rahmenbedingungen, pages: 26-34, (Editors: Bender, G. and Herbrich, R. and Siebenhaar, K.), B&S Siebenhaar Verlag, 2018 (incollection)

ei

[BibTex]

[BibTex]


no image
Methods in Psychophysics

Wichmann, F. A., Jäkel, F.

In Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience, 5 (Methodology), 7, 4th, John Wiley & Sons, Inc., 2018 (inbook)

ei

[BibTex]

[BibTex]


no image
Transfer Learning for BCIs

Jayaram, V., Fiebig, K., Peters, J., Grosse-Wentrup, M.

In Brain–Computer Interfaces Handbook, pages: 425-442, 22, (Editors: Chang S. Nam, Anton Nijholt and Fabien Lotte), CRC Press, 2018 (incollection)

ei

[BibTex]

[BibTex]


no image
Nanorobots propel through the eye

Wu, Z., Troll, J., Jeong, H., Qiang, W., Stang, M., Ziemssen, F., Wang, Z., Dong, M., Schnichels, S., Qiu, T., Fischer, P.

Max Planck Society, 2018 (mpi_year_book)

Abstract
Scientists at the Max Planck Institute for Intelligent Systems in Stuttgart developed specially coated nanometer-sized robots that could be moved actively through dense tissue like the vitreous of the eye. So far, the transport of such nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. Our work constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

pf

link (url) [BibTex]

link (url) [BibTex]

2017


Chapter 8 - Micro- and nanorobots in Newtonian and biological viscoelastic fluids
Chapter 8 - Micro- and nanorobots in Newtonian and biological viscoelastic fluids

Palagi, S., (Walker) Schamel, D., Qiu, T., Fischer, P.

In Microbiorobotics, pages: 133 - 162, 8, Micro and Nano Technologies, Second edition, Elsevier, Boston, March 2017 (incollection)

Abstract
Swimming microorganisms are a source of inspiration for small scale robots that are intended to operate in fluidic environments including complex biomedical fluids. Nature has devised swimming strategies that are effective at small scales and at low Reynolds number. These include the rotary corkscrew motion that, for instance, propels a flagellated bacterial cell, as well as the asymmetric beat of appendages that sperm cells or ciliated protozoa use to move through fluids. These mechanisms can overcome the reciprocity that governs the hydrodynamics at small scale. The complex molecular structure of biologically important fluids presents an additional challenge for the effective propulsion of microrobots. In this chapter it is shown how physical and chemical approaches are essential in realizing engineered abiotic micro- and nanorobots that can move in biomedically important environments. Interestingly, we also describe a microswimmer that is effective in biological viscoelastic fluids that does not have a natural analogue.

pf

link (url) DOI [BibTex]

2017


link (url) DOI [BibTex]


no image
Robot Learning

Peters, J., Lee, D., Kober, J., Nguyen-Tuong, D., Bagnell, J., Schaal, S.

In Springer Handbook of Robotics, pages: 357-394, 15, 2nd, (Editors: Siciliano, Bruno and Khatib, Oussama), Springer International Publishing, 2017 (inbook)

am ei

[BibTex]

[BibTex]


no image
Policy Gradient Methods

Peters, J., Bagnell, J.

In Encyclopedia of Machine Learning and Data Mining, pages: 982-985, 2nd, (Editors: Sammut, Claude and Webb, Geoffrey I.), Springer US, 2017 (inbook)

ei

link (url) [BibTex]

link (url) [BibTex]