Header logo is


2024


no image
Language Models Can Reduce Asymmetry in Information Markets

Rahaman, N., Weiss, M., Wüthrich, M., Bengio, Y., Li, E., Pal, C., Schölkopf, B.

arXiv:2403.14443, March 2024, Published as: Redesigning Information Markets in the Era of Language Models, Conference on Language Modeling (COLM) (techreport)

Abstract
This work addresses the buyer's inspection paradox for information markets. The paradox is that buyers need to access information to determine its value, while sellers need to limit access to prevent theft. To study this, we introduce an open-source simulated digital marketplace where intelligent agents, powered by language models, buy and sell information on behalf of external participants. The central mechanism enabling this marketplace is the agents' dual capabilities: they not only have the capacity to assess the quality of privileged information but also come equipped with the ability to forget. This ability to induce amnesia allows vendors to grant temporary access to proprietary information, significantly reducing the risk of unauthorized retention while enabling agents to accurately gauge the information's relevance to specific queries or tasks. To perform well, agents must make rational decisions, strategically explore the marketplace through generated sub-queries, and synthesize answers from purchased information. Concretely, our experiments (a) uncover biases in language models leading to irrational behavior and evaluate techniques to mitigate these biases, (b) investigate how price affects demand in the context of informational goods, and (c) show that inspection and higher budgets both lead to higher quality outcomes.

ei

link (url) [BibTex]

2024


link (url) [BibTex]


no image
Learning a Terrain- and Robot-Aware Dynamics Model for Autonomous Mobile Robot Navigation

Achterhold, J., Guttikonda, S., Kreber, J. U., Li, H., Stueckler, J.

CoRR abs/2409.11452, 2024, Preprint submitted to Robotics and Autonomous Systems Journal. https://arxiv.org/abs/2409.11452 (techreport) Submitted

Abstract
Mobile robots should be capable of planning cost-efficient paths for autonomous navigation. Typically, the terrain and robot properties are subject to variations. For instance, properties of the terrain such as friction may vary across different locations. Also, properties of the robot may change such as payloads or wear and tear, e.g., causing changing actuator gains or joint friction. Autonomous navigation approaches should thus be able to adapt to such variations. In this article, we propose a novel approach for learning a probabilistic, terrain- and robot-aware forward dynamics model (TRADYN) which can adapt to such variations and demonstrate its use for navigation. Our learning approach extends recent advances in meta-learning forward dynamics models based on Neural Processes for mobile robot navigation. We evaluate our method in simulation for 2D navigation of a robot with uni-cycle dynamics with varying properties on terrain with spatially varying friction coefficients. In our experiments, we demonstrate that TRADYN has lower prediction error over long time horizons than model ablations which do not adapt to robot or terrain variations. We also evaluate our model for navigation planning in a model-predictive control framework and under various sources of noise. We demonstrate that our approach yields improved performance in planning control-efficient paths by taking robot and terrain properties into account.

ev

preprint [BibTex]

preprint [BibTex]


no image
A Pontryagin Perspective on Reinforcement Learning

Eberhard, O., Vernade, C., Muehlebach, M.

Max Planck Institute for Intelligent Systems, 2024 (techreport)

lds

link (url) [BibTex]

link (url) [BibTex]


no image
Distributed Event-Based Learning via ADMM

Er, D., Trimpe, S., Muehlebach, M.

Max Planck Institute for Intelligent Systems, 2024 (techreport)

lds

link (url) [BibTex]

link (url) [BibTex]


no image
Incremental Few-Shot Adaptation for Non-Prehensile Object Manipulation using Parallelizable Physics Simulators

Baumeister, F., Mack, L., Stueckler, J.

CoRR abs/2409.13228, CoRR, 2024, Submitted to IEEE International Conference on Robotics and Automation (ICRA) 2025 (techreport) Submitted

Abstract
Few-shot adaptation is an important capability for intelligent robots that perform tasks in open-world settings such as everyday environments or flexible production. In this paper, we propose a novel approach for non-prehensile manipulation which iteratively adapts a physics-based dynamics model for model-predictive control. We adapt the parameters of the model incrementally with a few examples of robot-object interactions. This is achieved by sampling-based optimization of the parameters using a parallelizable rigid-body physics simulation as dynamic world model. In turn, the optimized dynamics model can be used for model-predictive control using efficient sampling-based optimization. We evaluate our few-shot adaptation approach in several object pushing experiments in simulation and with a real robot.

ev

preprint supplemental video link (url) [BibTex]

preprint supplemental video link (url) [BibTex]

2023


Fairness in Machine Learning: Limitations and Opportunities
Fairness in Machine Learning: Limitations and Opportunities

Barocas, S., Hardt, M., Narayanan, A.

MIT Press, December 2023 (book)

Abstract
An introduction to the intellectual foundations and practical utility of the recent work on fairness and machine learning. Fairness and Machine Learning introduces advanced undergraduate and graduate students to the intellectual foundations of this recently emergent field, drawing on a diverse range of disciplinary perspectives to identify the opportunities and hazards of automated decision-making. It surveys the risks in many applications of machine learning and provides a review of an emerging set of proposed solutions, showing how even well-intentioned applications may give rise to objectionable results. It covers the statistical and causal measures used to evaluate the fairness of machine learning models as well as the procedural and substantive aspects of decision-making that are core to debates about fairness, including a review of legal and philosophical perspectives on discrimination. This incisive textbook prepares students of machine learning to do quantitative work on fairness while reflecting critically on its foundations and its practical utility.• Introduces the technical and normative foundations of fairness in automated decision-making• Covers the formal and computational methods for characterizing and addressing problems• Provides a critical assessment of their intellectual foundations and practical utility• Features rich pedagogy and extensive instructor resources

sf

link (url) [BibTex]

2023


link (url) [BibTex]


no image
Navigating the Ocean of Biases: Political Bias Attribution in Language Models via Causal Structures

Jenny, D.

ETH Zurich, Switzerland, November 2023, external supervision (thesis)

ei

[BibTex]

[BibTex]


An Open-Source Modular Treadmill for Dynamic Force Measurement with Load Dependant Range Adjustment
An Open-Source Modular Treadmill for Dynamic Force Measurement with Load Dependant Range Adjustment

Sarvestani, A., Ruppert, F., Badri-Spröwitz, A.

2023 (unpublished) Submitted

Abstract
Ground reaction force sensing is one of the key components of gait analysis in legged locomotion research. To measure continuous force data during locomotion, we present a novel compound instrumented treadmill design. The treadmill is 1.7 m long, with a natural frequency of 170 Hz and an adjustable range that can be used for humans and small robots alike. Here, we present the treadmill’s design methodology and characterize it in its natural frequency, noise behavior and real-life performance. Additionally, we apply an ISO 376 norm conform calibration procedure for all spatial force directions and center of pressure position. We achieve a force accuracy of ≤ 5.6 N for the ground reaction forces and ≤ 13 mm in center of pressure position.

dlg

arXiv link (url) DOI [BibTex]


Synchronizing Machine Learning Algorithms, Realtime Robotic Control and Simulated Environment with o80
Synchronizing Machine Learning Algorithms, Realtime Robotic Control and Simulated Environment with o80

Berenz, V., Widmaier, F., Guist, S., Schölkopf, B., Büchler, D.

Robot Software Architectures Workshop (RSA) 2023, ICRA, 2023 (techreport)

Abstract
Robotic applications require the integration of various modalities, encompassing perception, control of real robots and possibly the control of simulated environments. While the state-of-the-art robotic software solutions such as ROS 2 provide most of the required features, flexible synchronization between algorithms, data streams and control loops can be tedious. o80 is a versatile C++ framework for robotics which provides a shared memory model and a command framework for real-time critical systems. It enables expert users to set up complex robotic systems and generate Python bindings for scientists. o80's unique feature is its flexible synchronization between processes, including the traditional blocking commands and the novel ``bursting mode'', which allows user code to control the execution of the lower process control loop. This makes it particularly useful for setups that mix real and simulated environments.

ei

arxiv poster link (url) [BibTex]

2022


no image
Causality, causal digital twins, and their applications

Schölkopf, B.

Machine Learning for Science: Bridging Data-Driven and Mechanistic Modelling (Dagstuhl Seminar 22382), (Editors: Berens, Philipp and Cranmer, Kyle and Lawrence, Neil D. and von Luxburg, Ulrike and Montgomery, Jessica), September 2022 (talk)

ei

link (url) DOI [BibTex]

2022


link (url) DOI [BibTex]


no image
Patterns, Predictions, and Actions: Foundations of Machine Learning

Hardt, M., Recht, B.

Princeton University Press, August 2022 (book)

Abstract
An authoritative, up-to-date graduate textbook on machine learning that highlights its historical context and societal impacts Patterns, Predictions, and Actions introduces graduate students to the essentials of machine learning while offering invaluable perspective on its history and social implications. Beginning with the foundations of decision making, Moritz Hardt and Benjamin Recht explain how representation, optimization, and generalization are the constituents of supervised learning. They go on to provide self-contained discussions of causality, the practice of causal inference, sequential decision making, and reinforcement learning, equipping readers with the concepts and tools they need to assess the consequences that may arise from acting on statistical decisions. Provides a modern introduction to machine learning, showing how data patterns support predictions and consequential actions Pays special attention to societal impacts and fairness in decision making Traces the development of machine learning from its origins to today Features a novel chapter on machine learning benchmarks and datasets Invites readers from all backgrounds, requiring some experience with probability, calculus, and linear algebra An essential textbook for students and a guide for researchers

sf

link (url) [BibTex]

link (url) [BibTex]


no image
Observability Analysis of Visual-Inertial Odometry with Online Calibration of Velocity-Control Based Kinematic Motion Models

Li, H., Stueckler, J.

abs/2204.06651, CoRR/arxiv, 2022 (techreport)

Abstract
In this paper, we analyze the observability of the visual-inertial odometry (VIO) using stereo cameras with a velocity-control based kinematic motion model. Previous work shows that in general case the global position and yaw are unobservable in VIO system, additionally the roll and pitch become also unobservable if there is no rotation. We prove that by integrating a planar motion constraint roll and pitch become observable. We also show that the parameters of the motion model are observable.

ev

link (url) [BibTex]

2021


no image
Physically Plausible Tracking & Reconstruction of Dynamic Objects

Strecke, M., Stückler, J.

KIT Science Week Scientific Conference & DGR-Days 2021, October 2021 (talk)

ev

[BibTex]

2021


[BibTex]


Improving Human Decision-Making by Discovering Efficient Strategies for Hierarchical Planning
Improving Human Decision-Making by Discovering Efficient Strategies for Hierarchical Planning

Heindrich, L., Consul, S., Stojcheski, J., Lieder, F.

Tübingen, Germany, The first edition of Life Improvement Science Conference, June 2021 (talk) Accepted

Abstract
The discovery of decision strategies is an essential part of creating effective cognitive tutors that teach planning and decision-making skills to humans. In the context of bounded rationality, this requires weighing the benefits of different planning operations compared to their computational costs. For small decision problems, it has already been shown that near-optimal decision strategies can be discovered automatically and that the discovered strategies can be taught to humans to increase their performance. Unfortunately, these near-optimal strategy discovery algorithms have not been able to scale well to larger problems due to their computational complexity. In this talk, we will present recent work at the Rationality Enhancement Group to overcome the computational bottleneck of existing strategy discovery algorithms. Our approach makes use of the hierarchical structure of human behavior by decomposing sequential decision problems into two sub-problems: setting a goal and planning how to achieve it. An additional metacontroller component is introduced to switch the current goal when it becomes beneficial. The hierarchical decomposition enables us to discover near-optimal strategies for human planning in larger and more complex tasks than previously possible. We then show in online experiments that teaching the discovered strategies to humans improves their performance in complex sequential decision-making tasks.

re

Project Page [BibTex]

Project Page [BibTex]


Toward a Science of Effective Well-Doing
Toward a Science of Effective Well-Doing

Lieder, F., Prentice, M., Corwin-Renner, E.

May 2021 (techreport)

Abstract
Well-doing, broadly construed, encompasses acting and thinking in ways that contribute to humanity’s flourishing in the long run. This often takes the form of setting a prosocial goal and pursuing it over an extended period of time. To set and pursue goals in a way that is extremely beneficial for humanity (effective well-doing), people often have to employ critical thinking and far-sighted, rational decision-making in the service of the greater good. To promote effective well-doing, we need to better understand its determinants and psychological mechanisms, as well as the barriers to effective well-doing and how they can be overcome. In this article, we introduce a taxonomy of different forms of well-doing and introduce a conceptual model of the cognitive mechanisms of effective well-doing. We view effective well-doing as the upper end of a moral continuum whose lower half comprises behaviors that are harmful to humanity (ill-doing), and we argue that the capacity for effective well-doing has to be developed through personal growth (e.g., learning how to pursue goals effectively). Research on these phenomena has so far been scattered across numerous disconnected literatures from multiple disciplines. To bring these communities together, we call for the establishment of a transdisciplinary research field focussed on understanding and promoting effective well-doing and personal growth as well as understanding and reducing ill-doing. We define this research field in terms of its goals and questions. We review what is already known about these questions in different disciplines and argue that laying the scientific foundation for promoting effective well-doing is one of the most valuable contributions that the behavioral sciences can make in the 21st century.

re

Preprint Project Page [BibTex]


no image
Reinforcement Learning Algorithms: Analysis and Applications

Belousov, B., H., A., Klink, P., Parisi, S., Peters, J.

883, Studies in Computational Intelligence, Springer International Publishing, 2021 (book)

ei

DOI [BibTex]

DOI [BibTex]

2020


Optimal To-Do List Gamification
Optimal To-Do List Gamification

Stojcheski, J., Felso, V., Lieder, F.

ArXiv Preprint, 2020 (techreport)

Abstract
What should I work on first? What can wait until later? Which projects should I prioritize and which tasks are not worth my time? These are challenging questions that many people face every day. People’s intuitive strategy is to prioritize their immediate experience over the long-term consequences. This leads to procrastination and the neglect of important long-term projects in favor of seemingly urgent tasks that are less important. Optimal gamification strives to help people overcome these problems by incentivizing each task by a number of points that communicates how valuable it is in the long-run. Unfortunately, computing the optimal number of points with standard dynamic programming methods quickly becomes intractable as the number of a person’s projects and the number of tasks required by each project increase. Here, we introduce and evaluate a scalable method for identifying which tasks are most important in the long run and incentivizing each task according to its long-term value. Our method makes it possible to create to-do list gamification apps that can handle the size and complexity of people’s to-do lists in the real world.

re

link (url) DOI Project Page [BibTex]


Computer Vision for Autonomous Vehicles: Problems, Datasets and State-of-the-Art
Computer Vision for Autonomous Vehicles: Problems, Datasets and State-of-the-Art

Janai, J., Güney, F., Behl, A., Geiger, A.

12(1-3), Foundations and Trends® in Computer Graphics and Vision, now Publishers Inc., Hanover, MA, 2020 (book)

Abstract
Recent years have witnessed enormous progress in AI-related fields such as computer vision, machine learning, and autonomous vehicles. As with any rapidly growing field, it becomes increasingly difficult to stay up-to-date or enter the field as a beginner. While several survey papers on particular sub-problems have appeared, no comprehensive survey on problems, datasets, and methods in computer vision for autonomous vehicles has been published. This monograph attempts to narrow this gap by providing a survey on the state-of-the-art datasets and techniques. Our survey includes both the historically most relevant literature as well as the current state of the art on several specific topics, including recognition, reconstruction, motion estimation, tracking, scene understanding, and end-to-end learning for autonomous driving. Towards this goal, we analyze the performance of the state of the art on several challenging benchmarking datasets, including KITTI, MOT, and Cityscapes. Besides, we discuss open problems and current research challenges. To ease accessibility and accommodate missing references, we also provide a website that allows navigating topics as well as methods and provides additional information.

avg

pdf Project Page link DOI Project Page [BibTex]

pdf Project Page link DOI Project Page [BibTex]

2019


no image
Multivariate coupling estimation between continuous signals and point processes

Safavi, S., Logothetis, N., Besserve, M.

Neural Information Processing Systems 2019 - Workshop on Learning with Temporal Point Processes, December 2019 (talk)

ei

Talk video link (url) [BibTex]

2019


Talk video link (url) [BibTex]


no image
Automatic Segmentation and Labelling for Robot Table Tennis Time Series

Lutz, P.

Technical University Darmstadt, Germany, August 2019 (thesis)

ei

[BibTex]

[BibTex]


no image
Fluctuating interface with a pinning potential

Pranjić, Daniel

Universität Stuttgart, Stuttgart, 2019 (thesis)

icm

[BibTex]

[BibTex]


no image
Prototyping Micro- and Nano-Optics with Focused Ion Beam Lithography

Keskinbora, K.

SL48, pages: 46, SPIE.Spotlight, SPIE Press, Bellingham, WA, 2019 (book)

mms

DOI [BibTex]

DOI [BibTex]


no image
Controlling pattern formation in the confined Schnakenberg model

Beyer, David Bernhard

Universität Stuttgart, Stuttgart, 2019 (thesis)

icm

[BibTex]

[BibTex]


HPLC separation of ligand-exchanged gold clusters with atomic precision
HPLC separation of ligand-exchanged gold clusters with atomic precision

Itzigehl, Selina

Univ. of Stuttgart, 2019 (thesis)

pf

[BibTex]

[BibTex]

2018


Impact of Trunk Orientation  for Dynamic Bipedal Locomotion
Impact of Trunk Orientation for Dynamic Bipedal Locomotion

Drama, Ö.

Dynamic Walking Conference, May 2018 (talk)

Abstract
Impact of trunk orientation for dynamic bipedal locomotion My research revolves around investigating the functional demands of bipedal running, with focus on stabilizing trunk orientation. When we think about postural stability, there are two critical questions we need to answer: What are the necessary and sufficient conditions to achieve and maintain trunk stability? I am concentrating on how morphology affects control strategies in achieving trunk stability. In particular, I denote the trunk pitch as the predominant morphology parameter and explore the requirements it imposes on a chosen control strategy. To analyze this, I use a spring loaded inverted pendulum model extended with a rigid trunk, which is actuated by a hip motor. The challenge for the controller design here is to have a single hip actuator to achieve two coupled tasks of moving the legs to generate motion and stabilizing the trunk. I enforce orthograde and pronograde postures and aim to identify the effect of these trunk orientations on the hip torque and ground reaction profiles for different control strategies.

dlg

Impact of trunk orientation for dynamic bipedal locomotion [DW 2018] link (url) [BibTex]


no image
Detailed Dense Inference with Convolutional Neural Networks via Discrete Wavelet Transform

Ma, L., Stueckler, J., Wu, T., Cremers, D.

arxiv, 2018, arXiv:1808.01834 (techreport)

ev

[BibTex]

[BibTex]


no image
Pattern forming systems under confinement

Maihöfer, Michael

Universität Stuttgart, Stuttgart, 2018 (thesis)

icm

[BibTex]

[BibTex]


no image
Electrostatic interaction between colloids with constant surface potentials at fluid interfaces

Bebon, Rick

Universität Stuttgart, Stuttgart, 2018 (thesis)

icm

[BibTex]


no image
Non-equilibrium dynamics of a binary solvent around heated colloidal particles

Wilke, Moritz

Universität Stuttgart, Stuttgart, 2018 (thesis)

icm

[BibTex]

[BibTex]


no image
Monte Carlo study of colloidal structure formation at fluid interfaces

Meiler, Tim

Universität Stuttgart, Stuttgart, 2018 (thesis)

icm

[BibTex]

[BibTex]


DNA-linked gold nanoclusters
DNA-linked gold nanoclusters

Hornberger, Lea-Sophie

Univ. of Stuttgart, 2018 (thesis)

pf

[BibTex]

[BibTex]


no image
Surface structure of liquid crystals

Sattler, Alexander

Universität Stuttgart, Stuttgart, 2018 (thesis)

icm

[BibTex]

[BibTex]


HPLC-Trennung von Gold-clustern
HPLC-Trennung von Gold-clustern

Vogt, Pascal

Univ. of Stuttgart, 2018 (thesis)

pf

[BibTex]

[BibTex]

2017


no image
Elements of Causal Inference - Foundations and Learning Algorithms

Peters, J., Janzing, D., Schölkopf, B.

Adaptive Computation and Machine Learning Series, The MIT Press, Cambridge, MA, USA, 2017 (book)

ei

PDF link (url) [BibTex]

2017


PDF link (url) [BibTex]


no image
Non-equilibrium forces after temperature quenches in ideal fluids with conserved density

Hölzl, Christian

Universität Stuttgart, Stuttgart, 2017 (thesis)

icm

[BibTex]

[BibTex]


Enzyme activity and transport in biological media
Enzyme activity and transport in biological media

Troll, Jonas

Univ. of Stuttgart, 2017 (thesis)

pf

[BibTex]

[BibTex]


Mobile Microrobotics
Mobile Microrobotics

Sitti, M.

Mobile Microrobotics, The MIT Press, Cambridge, MA, 2017 (book)

Abstract
Progress in micro- and nano-scale science and technology has created a demand for new microsystems for high-impact applications in healthcare, biotechnology, manufacturing, and mobile sensor networks. The new robotics field of microrobotics has emerged to extend our interactions and explorations to sub-millimeter scales. This is the first textbook on micron-scale mobile robotics, introducing the fundamentals of design, analysis, fabrication, and control, and drawing on case studies of existing approaches. The book covers the scaling laws that can be used to determine the dominant forces and effects at the micron scale; models forces acting on microrobots, including surface forces, friction, and viscous drag; and describes such possible microfabrication techniques as photo-lithography, bulk micromachining, and deep reactive ion etching. It presents on-board and remote sensing methods, noting that remote sensors are currently more feasible; studies possible on-board microactuators; discusses self-propulsion methods that use self-generated local gradients and fields or biological cells in liquid environments; and describes remote microrobot actuation methods for use in limited spaces such as inside the human body. It covers possible on-board powering methods, indispensable in future medical and other applications; locomotion methods for robots on surfaces, in liquids, in air, and on fluid-air interfaces; and the challenges of microrobot localization and control, in particular multi-robot control methods for magnetic microrobots. Finally, the book addresses current and future applications, including noninvasive medical diagnosis and treatment, environmental remediation, and scientific tools.

pi

Mobile Microrobotics By Metin Sitti - Chapter 1 (PDF) link (url) [BibTex]

Mobile Microrobotics By Metin Sitti - Chapter 1 (PDF) link (url) [BibTex]


Propulsion of magnetic colloids at low Reynolds number
Propulsion of magnetic colloids at low Reynolds number

Segreto, Nico

Univ. of Stuttgart, 2017 (thesis)

pf

[BibTex]

[BibTex]


Design of a visualization scheme for functional connectivity data of Human Brain
Design of a visualization scheme for functional connectivity data of Human Brain

Bramlage, L.

Hochschule Osnabrück - University of Applied Sciences, 2017 (thesis)

zwe-sw

Bramlage_BSc_2017.pdf [BibTex]


no image
Electrostatic interaction between non-identical charged particles at an electrolyte interface

Schmetzer, Timo

Universität Stuttgart, Stuttgart, 2017 (thesis)

icm

[BibTex]

[BibTex]

2016


no image
Supplemental material for ’Communication Rate Analysis for Event-based State Estimation’

Ebner, S., Trimpe, S.

Max Planck Institute for Intelligent Systems, January 2016 (techreport)

am ics

PDF [BibTex]

2016


PDF [BibTex]

2015


no image
Distributed Event-based State Estimation

Trimpe, S.

Max Planck Institute for Intelligent Systems, November 2015 (techreport)

Abstract
An event-based state estimation approach for reducing communication in a networked control system is proposed. Multiple distributed sensor-actuator-agents observe a dynamic process and sporadically exchange their measurements and inputs over a bus network. Based on these data, each agent estimates the full state of the dynamic system, which may exhibit arbitrary inter-agent couplings. Local event-based protocols ensure that data is transmitted only when necessary to meet a desired estimation accuracy. This event-based scheme is shown to mimic a centralized Luenberger observer design up to guaranteed bounds, and stability is proven in the sense of bounded estimation errors for bounded disturbances. The stability result extends to the distributed control system that results when the local state estimates are used for distributed feedback control. Simulation results highlight the benefit of the event-based approach over classical periodic ones in reducing communication requirements.

am ics

arXiv [BibTex]

2015


arXiv [BibTex]


no image
Causal Inference for Empirical Time Series Based on the Postulate of Independence of Cause and Mechanism

Besserve, M.

53rd Annual Allerton Conference on Communication, Control, and Computing, September 2015 (talk)

ei

[BibTex]

[BibTex]