Header logo is


2024


no image
Language Models Can Reduce Asymmetry in Information Markets

Rahaman, N., Weiss, M., Wüthrich, M., Bengio, Y., Li, E., Pal, C., Schölkopf, B.

arXiv:2403.14443, March 2024, Published as: Redesigning Information Markets in the Era of Language Models, Conference on Language Modeling (COLM) (techreport)

Abstract
This work addresses the buyer's inspection paradox for information markets. The paradox is that buyers need to access information to determine its value, while sellers need to limit access to prevent theft. To study this, we introduce an open-source simulated digital marketplace where intelligent agents, powered by language models, buy and sell information on behalf of external participants. The central mechanism enabling this marketplace is the agents' dual capabilities: they not only have the capacity to assess the quality of privileged information but also come equipped with the ability to forget. This ability to induce amnesia allows vendors to grant temporary access to proprietary information, significantly reducing the risk of unauthorized retention while enabling agents to accurately gauge the information's relevance to specific queries or tasks. To perform well, agents must make rational decisions, strategically explore the marketplace through generated sub-queries, and synthesize answers from purchased information. Concretely, our experiments (a) uncover biases in language models leading to irrational behavior and evaluate techniques to mitigate these biases, (b) investigate how price affects demand in the context of informational goods, and (c) show that inspection and higher budgets both lead to higher quality outcomes.

ei

link (url) [BibTex]

2024


link (url) [BibTex]


no image
Interpreting How Large Language Models Handle Facts and Counterfactuals through Mechanistic Interpretability

Ortu, F.

University of Trieste, Italy, March 2024 (mastersthesis)

ei

[BibTex]


no image
Learning a Terrain- and Robot-Aware Dynamics Model for Autonomous Mobile Robot Navigation

Achterhold, J., Guttikonda, S., Kreber, J. U., Li, H., Stueckler, J.

CoRR abs/2409.11452, 2024, Preprint submitted to Robotics and Autonomous Systems Journal. https://arxiv.org/abs/2409.11452 (techreport) Submitted

Abstract
Mobile robots should be capable of planning cost-efficient paths for autonomous navigation. Typically, the terrain and robot properties are subject to variations. For instance, properties of the terrain such as friction may vary across different locations. Also, properties of the robot may change such as payloads or wear and tear, e.g., causing changing actuator gains or joint friction. Autonomous navigation approaches should thus be able to adapt to such variations. In this article, we propose a novel approach for learning a probabilistic, terrain- and robot-aware forward dynamics model (TRADYN) which can adapt to such variations and demonstrate its use for navigation. Our learning approach extends recent advances in meta-learning forward dynamics models based on Neural Processes for mobile robot navigation. We evaluate our method in simulation for 2D navigation of a robot with uni-cycle dynamics with varying properties on terrain with spatially varying friction coefficients. In our experiments, we demonstrate that TRADYN has lower prediction error over long time horizons than model ablations which do not adapt to robot or terrain variations. We also evaluate our model for navigation planning in a model-predictive control framework and under various sources of noise. We demonstrate that our approach yields improved performance in planning control-efficient paths by taking robot and terrain properties into account.

ev

preprint [BibTex]

preprint [BibTex]


no image
A Pontryagin Perspective on Reinforcement Learning

Eberhard, O., Vernade, C., Muehlebach, M.

Max Planck Institute for Intelligent Systems, 2024 (techreport)

lds

link (url) [BibTex]

link (url) [BibTex]


no image
Distributed Event-Based Learning via ADMM

Er, D., Trimpe, S., Muehlebach, M.

Max Planck Institute for Intelligent Systems, 2024 (techreport)

lds

link (url) [BibTex]

link (url) [BibTex]


no image
Incremental Few-Shot Adaptation for Non-Prehensile Object Manipulation using Parallelizable Physics Simulators

Baumeister, F., Mack, L., Stueckler, J.

CoRR abs/2409.13228, CoRR, 2024, Submitted to IEEE International Conference on Robotics and Automation (ICRA) 2025 (techreport) Submitted

Abstract
Few-shot adaptation is an important capability for intelligent robots that perform tasks in open-world settings such as everyday environments or flexible production. In this paper, we propose a novel approach for non-prehensile manipulation which iteratively adapts a physics-based dynamics model for model-predictive control. We adapt the parameters of the model incrementally with a few examples of robot-object interactions. This is achieved by sampling-based optimization of the parameters using a parallelizable rigid-body physics simulation as dynamic world model. In turn, the optimized dynamics model can be used for model-predictive control using efficient sampling-based optimization. We evaluate our few-shot adaptation approach in several object pushing experiments in simulation and with a real robot.

ev

preprint supplemental video link (url) [BibTex]

preprint supplemental video link (url) [BibTex]

2023


Fairness in Machine Learning: Limitations and Opportunities
Fairness in Machine Learning: Limitations and Opportunities

Barocas, S., Hardt, M., Narayanan, A.

MIT Press, December 2023 (book)

Abstract
An introduction to the intellectual foundations and practical utility of the recent work on fairness and machine learning. Fairness and Machine Learning introduces advanced undergraduate and graduate students to the intellectual foundations of this recently emergent field, drawing on a diverse range of disciplinary perspectives to identify the opportunities and hazards of automated decision-making. It surveys the risks in many applications of machine learning and provides a review of an emerging set of proposed solutions, showing how even well-intentioned applications may give rise to objectionable results. It covers the statistical and causal measures used to evaluate the fairness of machine learning models as well as the procedural and substantive aspects of decision-making that are core to debates about fairness, including a review of legal and philosophical perspectives on discrimination. This incisive textbook prepares students of machine learning to do quantitative work on fairness while reflecting critically on its foundations and its practical utility.• Introduces the technical and normative foundations of fairness in automated decision-making• Covers the formal and computational methods for characterizing and addressing problems• Provides a critical assessment of their intellectual foundations and practical utility• Features rich pedagogy and extensive instructor resources

sf

link (url) [BibTex]

2023


link (url) [BibTex]


no image
Denoising Representation Learning for Causal Discovery

Sakenyte, U.

Université de Genèva, Switzerland, December 2023, external supervision (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Navigating the Ocean of Biases: Political Bias Attribution in Language Models via Causal Structures

Jenny, D.

ETH Zurich, Switzerland, November 2023, external supervision (thesis)

ei

[BibTex]

[BibTex]


no image
Efficient Sampling from Differentiable Matrix Elements

Kofler, A.

Technical University of Munich, Germany, September 2023 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Intrinsic complexity and mechanisms of expressivity of cortical neurons

Spieler, A. M.

University of Tübingen, Germany, March 2023 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
CausalEffect Estimation by Combining Observational and Interventional Data

Kladny, K.

ETH Zurich, Switzerland, February 2023 (mastersthesis)

lds ei

[BibTex]

[BibTex]


no image
Towards Generative Machine Teaching

Qui, Z.

Technical University of Munich, Germany, February 2023 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
ArchiSound: Audio Generation with Diffusion

Schneider, F.

ETH Zurich, Switzerland, January 2023, external supervision (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Generation and Quantification of Spin in Robot Table Tennis

Dittrich, A.

University of Stuttgart, Germany, January 2023 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Natural Language Processing for Policymaking

Jin, Z., Mihalcea, R.

In Handbook of Computational Social Science for Policy, pages: 141-162, 7, (Editors: Bertoni, E. and Fontana, M. and Gabrielli, L. and Signorelli, S. and Vespe, M.), Springer International Publishing, 2023 (inbook)

ei

DOI [BibTex]

DOI [BibTex]


Synchronizing Machine Learning Algorithms, Realtime Robotic Control and Simulated Environment with o80
Synchronizing Machine Learning Algorithms, Realtime Robotic Control and Simulated Environment with o80

Berenz, V., Widmaier, F., Guist, S., Schölkopf, B., Büchler, D.

Robot Software Architectures Workshop (RSA) 2023, ICRA, 2023 (techreport)

Abstract
Robotic applications require the integration of various modalities, encompassing perception, control of real robots and possibly the control of simulated environments. While the state-of-the-art robotic software solutions such as ROS 2 provide most of the required features, flexible synchronization between algorithms, data streams and control loops can be tedious. o80 is a versatile C++ framework for robotics which provides a shared memory model and a command framework for real-time critical systems. It enables expert users to set up complex robotic systems and generate Python bindings for scientists. o80's unique feature is its flexible synchronization between processes, including the traditional blocking commands and the novel ``bursting mode'', which allows user code to control the execution of the lower process control loop. This makes it particularly useful for setups that mix real and simulated environments.

ei

arxiv poster link (url) [BibTex]

2022


no image
Proceedings of the Second Workshop on NLP for Positive Impact (NLP4PI)

Biester, L., Demszky, D., Jin, Z., Sachan, M., Tetreault, J., Wilson, S., Xiao, L., Zhao, J.

Association for Computational Linguistics, December 2022 (proceedings)

ei

link (url) [BibTex]

2022


link (url) [BibTex]


Magnetic Micro-/Nanopropellers  for Biomedicine
Magnetic Micro-/Nanopropellers for Biomedicine

Qiu, T., Jeong, M., Goyal, R., Kadiri, V., Sachs, J., Fischer, P.

In Field-Driven Micro and Nanorobots for Biology and Medicine, pages: 389-410, 16, (Editors: Sun, Y. and Wang, X. and Yu, J.), Springer, Cham, 2022 (inbook)

Abstract
In nature, many bacteria swim by rotating their helical flagella. A particularly promising class of artificial micro- and nano-robots mimic this propeller-like propulsion mechanism to move through fluids and tissues for applications in minimally-invasive medicine. Several fundamental challenges have to be overcome in order to build micro-machines that move similar to bacteria for in vivo applications. Here, we review recent advances of magnetically-powered micro-/nano-propellers. Four important aspects of the propellers – the geometrical shape, the fabrication method, the generation of magnetic fields for actuation, and the choice of biocompatible magnetic materials – are highlighted. First, the fundamental requirements are elucidated that arise due to hydrodynamics at low Reynolds (Re) number. We discuss the role that the propellers’ shape and symmetry play in realizing effective propulsion at low Re. Second, the additive nano-fabrication method Glancing Angle Deposition is discussed as a versatile technique to quickly grow large numbers of designer nano-helices. Third, systems to generate rotating magnetic fields via permanent magnets or electromagnetic coils are presented. And finally, the biocompatibility of the magnetic materials is discussed. Iron-platinum is highlighted due to its biocompatibility and its superior magnetic properties, which is promising for targeted delivery, minimally-invasive magnetic nano-devices and biomedical applications.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Life Improvement Science

Lieder, F., Prentice, M.

In Encyclopedia of Quality of Life and Well-Being Research, Springer, November 2022 (inbook)

re

DOI [BibTex]

DOI [BibTex]


no image
Investigating Independent Mechanisms in Neural Networks

Liang, W.

Université Paris-Saclay, France, October 2022 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Multi-Target Multi-Object Manipulation using Relational Deep Reinforcement Learning

Feil, M.

Technnical University Munich, Germany, September 2022 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Independent Mechanism Analysis for High Dimensions

Sliwa, J.

University of Tübingen, Germany, September 2022, (Graduate Training Centre of Neuroscience) (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Patterns, Predictions, and Actions: Foundations of Machine Learning

Hardt, M., Recht, B.

Princeton University Press, August 2022 (book)

Abstract
An authoritative, up-to-date graduate textbook on machine learning that highlights its historical context and societal impacts Patterns, Predictions, and Actions introduces graduate students to the essentials of machine learning while offering invaluable perspective on its history and social implications. Beginning with the foundations of decision making, Moritz Hardt and Benjamin Recht explain how representation, optimization, and generalization are the constituents of supervised learning. They go on to provide self-contained discussions of causality, the practice of causal inference, sequential decision making, and reinforcement learning, equipping readers with the concepts and tools they need to assess the consequences that may arise from acting on statistical decisions. Provides a modern introduction to machine learning, showing how data patterns support predictions and consequential actions Pays special attention to societal impacts and fairness in decision making Traces the development of machine learning from its origins to today Features a novel chapter on machine learning benchmarks and datasets Invites readers from all backgrounds, requiring some experience with probability, calculus, and linear algebra An essential textbook for students and a guide for researchers

sf

link (url) [BibTex]

link (url) [BibTex]


no image
On the Adversarial Robustness of Causal Algorithmic Recourse

Dominguez-Olmedo, R.

University of Tübingen, Germany, August 2022 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Independent Mechanism Analysis in High-Dimensional Observation Spaces

Ghosh, S.

ETH Zurich, Switzerland, June 2022 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Proceedings of the First Conference on Causal Learning and Reasoning (CLeaR 2022)

Schölkopf, B., Uhler, C., Zhang, K.

177, Proceedings of Machine Learning Research, PMLR, April 2022 (proceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Observability Analysis of Visual-Inertial Odometry with Online Calibration of Velocity-Control Based Kinematic Motion Models

Li, H., Stueckler, J.

abs/2204.06651, CoRR/arxiv, 2022 (techreport)

Abstract
In this paper, we analyze the observability of the visual-inertial odometry (VIO) using stereo cameras with a velocity-control based kinematic motion model. Previous work shows that in general case the global position and yaw are unobservable in VIO system, additionally the roll and pitch become also unobservable if there is no rotation. We prove that by integrating a planar motion constraint roll and pitch become observable. We also show that the parameters of the motion model are observable.

ev

link (url) [BibTex]


no image
Causal Models for Dynamical Systems

Peters, J., Bauer, S., Pfister, N.

In Probabilistic and Causal Inference: The Works of Judea Pearl, pages: 671-690, 1, Association for Computing Machinery, 2022 (inbook)

ei

arXiv DOI [BibTex]

arXiv DOI [BibTex]


no image
Towards Causal Algorithmic Recourse

Karimi, A. H., von Kügelgen, J., Schölkopf, B., Valera, I.

In xxAI - Beyond Explainable AI: International Workshop, Held in Conjunction with ICML 2020, July 18, 2020, Vienna, Austria, Revised and Extended Papers, pages: 139-166, (Editors: Holzinger, Andreas and Goebel, Randy and Fong, Ruth and Moon, Taesup and Müller, Klaus-Robert and Samek, Wojciech), Springer International Publishing, 2022 (inbook)

ei plg

DOI [BibTex]

DOI [BibTex]


no image
CLEVR-X: A Visual Reasoning Dataset for Natural Language Explanations

Salewski, L., Koepke, A. S., Lensch, H. P. A., Akata, Z.

In xxAI - Beyond Explainable AI: International Workshop, Held in Conjunction with ICML 2020, July 18, 2020, Vienna, Austria, Revised and Extended Papers, pages: 69-88, (Editors: Holzinger, Andreas and Goebel, Randy and Fong, Ruth and Moon, Taesup and Müller, Klaus-Robert and Samek, Wojciech), Springer International Publishing, 2022 (inbook)

ei

DOI [BibTex]

DOI [BibTex]


no image
Causality for Machine Learning

Schölkopf, B.

In Probabilistic and Causal Inference: The Works of Judea Pearl, pages: 765-804, 1, Association for Computing Machinery, New York, NY, USA, 2022 (inbook)

ei

arXiv DOI [BibTex]

arXiv DOI [BibTex]


no image
Voltage dependent investigations on the spin polarization of layered heterostructues

Miller, M.

Universität Stuttgart, Stuttgart, 2022 (mastersthesis)

mms

[BibTex]

[BibTex]

2021


no image
Learning Neural Causal Models with Active Interventions

Scherrer, N.

ETH Zurich, Switzerland, November 2021 (mastersthesis)

ei

[BibTex]

2021


[BibTex]


no image
Study of the Interventional Consistency of Autoencoders

Lanzillotta, G.

ETH Zurich, Switzerland, October 2021 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Electriflow: Augmenting Books With Tangible Animation Using Soft Electrohydraulic Actuators

Purnendu, , Novack, S., Acome, E., Alistar, M., Keplinger, C., Gross, M. D., Bruns, C., Leithinger, D.

In ACM SIGGRAPH 2021 Labs, pages: 1-2, Association for Computing Machinery, SIGGRAPH 2021, August 2021 (inbook)

Abstract
We present Electriflow: a method of augmenting books with tangible animation employing soft electrohydraulic actuators. These actuators are compact, silent and fast in operation, and can be fabricated with commodity materials. They generate an immediate hydraulic force upon electrostatic activation without an external fluid supply source, enabling a simple and self-contained design. Electriflow actuators produce an immediate shape transition from flat to folded state which enabled their seamless integration into books. For the Emerging Technologies exhibit, we will demonstrate the prototype of a book augmented with the capability of tangible animation.

rm

Supplemental Material link (url) DOI [BibTex]

Supplemental Material link (url) DOI [BibTex]


no image
Proceedings of the 1st Workshop on NLP for Positive Impact

Field, A., Prabhumoye, S., Sap, M., Jin, Z., Zhao, J., Brockett, C.

Association for Computational Linguistics, August 2021 (proceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


Toward a Science of Effective Well-Doing
Toward a Science of Effective Well-Doing

Lieder, F., Prentice, M., Corwin-Renner, E.

May 2021 (techreport)

Abstract
Well-doing, broadly construed, encompasses acting and thinking in ways that contribute to humanity’s flourishing in the long run. This often takes the form of setting a prosocial goal and pursuing it over an extended period of time. To set and pursue goals in a way that is extremely beneficial for humanity (effective well-doing), people often have to employ critical thinking and far-sighted, rational decision-making in the service of the greater good. To promote effective well-doing, we need to better understand its determinants and psychological mechanisms, as well as the barriers to effective well-doing and how they can be overcome. In this article, we introduce a taxonomy of different forms of well-doing and introduce a conceptual model of the cognitive mechanisms of effective well-doing. We view effective well-doing as the upper end of a moral continuum whose lower half comprises behaviors that are harmful to humanity (ill-doing), and we argue that the capacity for effective well-doing has to be developed through personal growth (e.g., learning how to pursue goals effectively). Research on these phenomena has so far been scattered across numerous disconnected literatures from multiple disciplines. To bring these communities together, we call for the establishment of a transdisciplinary research field focussed on understanding and promoting effective well-doing and personal growth as well as understanding and reducing ill-doing. We define this research field in terms of its goals and questions. We review what is already known about these questions in different disciplines and argue that laying the scientific foundation for promoting effective well-doing is one of the most valuable contributions that the behavioral sciences can make in the 21st century.

re

Preprint Project Page [BibTex]


no image
Robotic Surgery Training in AR: Multimodal Record and Replay

Krauthausen, F.

pages: 1-147, University of Stuttgart, Stuttgart, May 2021, Study Program in Software Engineering (mastersthesis)

hi

[BibTex]

[BibTex]


no image
Direct detection of spin Hall effect induced torques in platinum/ferromagnetic bilayer systems

Alten, F.

Universität Stuttgart, Stuttgart, January 2021 (mastersthesis)

mms

[BibTex]


no image
Reinforcement Learning Algorithms: Analysis and Applications

Belousov, B., H., A., Klink, P., Parisi, S., Peters, J.

883, Studies in Computational Intelligence, Springer International Publishing, 2021 (book)

ei

DOI [BibTex]

DOI [BibTex]

2020


no image
Hydromagnonics: Manipulation of magnonic systems with hydrogen

Sauter, R.

Universität Stuttgart, Stuttgart, December 2020 (mastersthesis)

mms

[BibTex]

2020


[BibTex]


no image
A Robotic Manipulation Benchmark for Causal Structure and Transfer Learning

Ahmed, O.

ETH Zurich, Switzerland, October 2020 (mastersthesis)

ei

[BibTex]

[BibTex]