Header logo is



no image
Language Models Can Reduce Asymmetry in Information Markets

Rahaman, N., Weiss, M., Wüthrich, M., Bengio, Y., Li, E., Pal, C., Schölkopf, B.

arXiv:2403.14443, March 2024, Published as: Redesigning Information Markets in the Era of Language Models, Conference on Language Modeling (COLM) (techreport)

Abstract
This work addresses the buyer's inspection paradox for information markets. The paradox is that buyers need to access information to determine its value, while sellers need to limit access to prevent theft. To study this, we introduce an open-source simulated digital marketplace where intelligent agents, powered by language models, buy and sell information on behalf of external participants. The central mechanism enabling this marketplace is the agents' dual capabilities: they not only have the capacity to assess the quality of privileged information but also come equipped with the ability to forget. This ability to induce amnesia allows vendors to grant temporary access to proprietary information, significantly reducing the risk of unauthorized retention while enabling agents to accurately gauge the information's relevance to specific queries or tasks. To perform well, agents must make rational decisions, strategically explore the marketplace through generated sub-queries, and synthesize answers from purchased information. Concretely, our experiments (a) uncover biases in language models leading to irrational behavior and evaluate techniques to mitigate these biases, (b) investigate how price affects demand in the context of informational goods, and (c) show that inspection and higher budgets both lead to higher quality outcomes.

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Koopman Spectral Analysis Uncovers the Temporal Structure of Spontaneous Neural Events

Shao, K., Xu, Y., Logothetis, N., Shen, Z., Besserve, M.

Computational and Systems Neuroscience Meeting (COSYNE), March 2024 (poster)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Learning a Terrain- and Robot-Aware Dynamics Model for Autonomous Mobile Robot Navigation

Achterhold, J., Guttikonda, S., Kreber, J. U., Li, H., Stueckler, J.

CoRR abs/2409.11452, 2024, Preprint submitted to Robotics and Autonomous Systems Journal. https://arxiv.org/abs/2409.11452 (techreport) Submitted

Abstract
Mobile robots should be capable of planning cost-efficient paths for autonomous navigation. Typically, the terrain and robot properties are subject to variations. For instance, properties of the terrain such as friction may vary across different locations. Also, properties of the robot may change such as payloads or wear and tear, e.g., causing changing actuator gains or joint friction. Autonomous navigation approaches should thus be able to adapt to such variations. In this article, we propose a novel approach for learning a probabilistic, terrain- and robot-aware forward dynamics model (TRADYN) which can adapt to such variations and demonstrate its use for navigation. Our learning approach extends recent advances in meta-learning forward dynamics models based on Neural Processes for mobile robot navigation. We evaluate our method in simulation for 2D navigation of a robot with uni-cycle dynamics with varying properties on terrain with spatially varying friction coefficients. In our experiments, we demonstrate that TRADYN has lower prediction error over long time horizons than model ablations which do not adapt to robot or terrain variations. We also evaluate our model for navigation planning in a model-predictive control framework and under various sources of noise. We demonstrate that our approach yields improved performance in planning control-efficient paths by taking robot and terrain properties into account.

ev

preprint [BibTex]

preprint [BibTex]


no image
A Pontryagin Perspective on Reinforcement Learning

Eberhard, O., Vernade, C., Muehlebach, M.

Max Planck Institute for Intelligent Systems, 2024 (techreport)

lds

link (url) [BibTex]

link (url) [BibTex]


no image
Distributed Event-Based Learning via ADMM

Er, D., Trimpe, S., Muehlebach, M.

Max Planck Institute for Intelligent Systems, 2024 (techreport)

lds

link (url) [BibTex]

link (url) [BibTex]


no image
Incremental Few-Shot Adaptation for Non-Prehensile Object Manipulation using Parallelizable Physics Simulators

Baumeister, F., Mack, L., Stueckler, J.

CoRR abs/2409.13228, CoRR, 2024, Submitted to IEEE International Conference on Robotics and Automation (ICRA) 2025 (techreport) Submitted

Abstract
Few-shot adaptation is an important capability for intelligent robots that perform tasks in open-world settings such as everyday environments or flexible production. In this paper, we propose a novel approach for non-prehensile manipulation which iteratively adapts a physics-based dynamics model for model-predictive control. We adapt the parameters of the model incrementally with a few examples of robot-object interactions. This is achieved by sampling-based optimization of the parameters using a parallelizable rigid-body physics simulation as dynamic world model. In turn, the optimized dynamics model can be used for model-predictive control using efficient sampling-based optimization. We evaluate our few-shot adaptation approach in several object pushing experiments in simulation and with a real robot.

ev

preprint supplemental video link (url) [BibTex]

preprint supplemental video link (url) [BibTex]

2023


Hydraulically Amplified Self-healing Electrostatic Actuators
Hydraulically Amplified Self-healing Electrostatic Actuators

Keplinger, C. M., Acome, E. L., Kellaris, N. A., Mitchell, S. K.

(US Patent 11795979B2), October 2023 (patent)

Abstract
An electro-hydraulic actuator includes a deformable shell defining an enclosed internal cavity and containing a liquid dielectric, first and second electrodes on first and second sides, respectively, of the enclosed internal cavity. An electrostatic force between the first and second electrodes upon application of a voltage to one of the electrodes draws the electrodes towards each other to displace the liquid dielectric within the enclosed internal cavity. The shell includes active and inactive areas such that the electrostatic forces between the first and second electrodes displaces the liquid dielectric within the enclosed internal cavity from the active area of the shell to the inactive area of the shell. The first and second electrodes, the deformable shell, and the liquid dielectric cooperate to form a self-healing capacitor, and the liquid dielectric is configured for automatically filling breaches in the liquid dielectric resulting from dielectric breakdown.

rm

link (url) [BibTex]

2023


link (url) [BibTex]


High Strain Peano Hydraulically Amplified Self-Healing Electrostatic (HASEL) Transducers
High Strain Peano Hydraulically Amplified Self-Healing Electrostatic (HASEL) Transducers

Keplinger, C. M., Wang, X., Mitchell, S. K.

(US Patent App. 18/138,621), August 2023 (patent)

Abstract
High strain hydraulically amplified self-healing electrostatic transducers having increased maximum theoretical and practical strains are disclosed. In particular, the actuators include electrode configurations having a zipping front created by the attraction of the electrodes that is configured orthogonally to a strain axis along which the actuators. This configuration produces increased strains. In turn, various form factors for the actuator configuration are presented including an artificial circular muscle and a strain amplifying pulley system. Other actuator configurations are contemplated that include independent and opposed electrode pairs to create cyclic activation, hybrid electrode configurations, and use of strain limiting layers for controlled deflection of the actuator.

rm

link (url) [BibTex]


Capacitive Self-Sensing for Electrostatic Transducers with High Voltage Isolation
Capacitive Self-Sensing for Electrostatic Transducers with High Voltage Isolation

Correll, N., Ly, K. D., Kellaris, N. A., Keplinger, C. M.

(US Patent App. 17/928,453), June 2023 (patent)

Abstract
Transducer systems disclosed herein include self-sensing capabilities. In particular, electrostatic transducers include a low voltage electrode and a high voltage electrode. A low voltage sensing unit is coupled with the low voltage electrode of the electrostatic transducer. The low voltage sensing unit is configured to measure a capacitance of the electrostatic transducer, from which displacement of the electrostatic transducer may be calculated. High voltage drive signals received by the high voltage electrode during actuation may be isolated from the low voltage sensing unit. The isolation may be provided by dielectric material of the electrostatic transducer, a voltage suppression component, and/or a voltage suppression module comprising a low impedance ground path. In the event of an electrical failure of the transducer, the low voltage sensing unit may be isolated from high voltages.

rm

link (url) [BibTex]

link (url) [BibTex]


High Strain Peano Hydraulically Amplified Self-healing Electrostatic (HASEL) Transducers
High Strain Peano Hydraulically Amplified Self-healing Electrostatic (HASEL) Transducers

Keplinger, C. M., Wang, X., Mitchell, S. K.

(US Patent 11635094), April 2023 (patent)

Abstract
High strain hydraulically amplified self-healing electrostatic transducers having increased maximum theoretical and practical strains are disclosed. In particular, the actuators include electrode configurations having a zipping front created by the attraction of the electrodes that is configured orthogonally to a strain axis along which the actuators. This configuration produces increased strains. In turn, various form factors for the actuator configuration are presented including an artificial circular muscle and a strain amplifying pulley system. Other actuator configurations are contemplated that include independent and opposed electrode pairs to create cyclic activation, hybrid electrode configurations, and use of strain limiting layers for controlled deflection of the actuator.

rm

link (url) [BibTex]


An Open-Source Modular Treadmill for Dynamic Force Measurement with Load Dependant Range Adjustment
An Open-Source Modular Treadmill for Dynamic Force Measurement with Load Dependant Range Adjustment

Sarvestani, A., Ruppert, F., Badri-Spröwitz, A.

2023 (unpublished) Submitted

Abstract
Ground reaction force sensing is one of the key components of gait analysis in legged locomotion research. To measure continuous force data during locomotion, we present a novel compound instrumented treadmill design. The treadmill is 1.7 m long, with a natural frequency of 170 Hz and an adjustable range that can be used for humans and small robots alike. Here, we present the treadmill’s design methodology and characterize it in its natural frequency, noise behavior and real-life performance. Additionally, we apply an ISO 376 norm conform calibration procedure for all spatial force directions and center of pressure position. We achieve a force accuracy of ≤ 5.6 N for the ground reaction forces and ≤ 13 mm in center of pressure position.

dlg

arXiv link (url) DOI [BibTex]


Synchronizing Machine Learning Algorithms, Realtime Robotic Control and Simulated Environment with o80
Synchronizing Machine Learning Algorithms, Realtime Robotic Control and Simulated Environment with o80

Berenz, V., Widmaier, F., Guist, S., Schölkopf, B., Büchler, D.

Robot Software Architectures Workshop (RSA) 2023, ICRA, 2023 (techreport)

Abstract
Robotic applications require the integration of various modalities, encompassing perception, control of real robots and possibly the control of simulated environments. While the state-of-the-art robotic software solutions such as ROS 2 provide most of the required features, flexible synchronization between algorithms, data streams and control loops can be tedious. o80 is a versatile C++ framework for robotics which provides a shared memory model and a command framework for real-time critical systems. It enables expert users to set up complex robotic systems and generate Python bindings for scientists. o80's unique feature is its flexible synchronization between processes, including the traditional blocking commands and the novel ``bursting mode'', which allows user code to control the execution of the lower process control loop. This makes it particularly useful for setups that mix real and simulated environments.

ei

arxiv poster link (url) [BibTex]


no image
Microfibers with mushroom-shaped tips for optimal adhesion

Sitti, M., Aksak, B.

2023, US Patent 11,613,674 (patent)

pi

[BibTex]

[BibTex]


Magnetic trap system and method of navigating a microscopic device
Magnetic trap system and method of navigating a microscopic device

Son, D., Ugurlu, M., Bluemer, P., Sitti, M.

2023, US Patent App. 17/871,598 (patent)

pi

[BibTex]


no image
Dry adhesives and methods for making dry adhesives

M Sitti, M. M. B. A.

2023, US Patent 11,773,298, 2023 (patent)

pi

[BibTex]

2022


no image
Proceedings of the Second Workshop on NLP for Positive Impact (NLP4PI)

Biester, L., Demszky, D., Jin, Z., Sachan, M., Tetreault, J., Wilson, S., Xiao, L., Zhao, J.

Association for Computational Linguistics, December 2022 (proceedings)

ei

link (url) [BibTex]

2022


link (url) [BibTex]


no image
DRY ADHESIVES AND METHODS FOR MAKING DRY ADHESIVES

Metin Sitti, Michael Murphy, Burak Aksak

December 2022, US Patent App. 17/895,334, 2022 (patent)

pi

[BibTex]

[BibTex]


Hydraulically Amplified Self-healing Electrostatic Transducers Harnessing Zipping Mechanism
Hydraulically Amplified Self-healing Electrostatic Transducers Harnessing Zipping Mechanism

Keplinger, C. M., Acome, E. L., Kellaris, N. A., Mitchell, S. K., Morrissey, T. G.

(US Patent 11486421B2), November 2022 (patent)

Abstract
Hydraulically-amplified, self-healing, electrostatic transducers that harness electrostatic and hydraulic forces to achieve various actuation modes. Electrostatic forces between electrode pairs of the transducers generated upon application of a voltage to the electrode pairs draws the electrodes in each pair towards each other to displace a liquid dielectric contained within an enclosed internal cavity of the transducers to drive actuation in various manners. The electrodes and the liquid dielectric form a self-healing capacitor whereby the liquid dielectric automatically fills breaches in the liquid dielectric resulting from dielectric breakdown. Due to the resting shape of the cavity, a zipping-mechanism allows for selectively actuating the electrodes to a desired extent by controlling the voltage supplied.

rm

link (url) [BibTex]

link (url) [BibTex]


Hydraulically Amplified Self-Healing Electrostatic (HASEL) Pumps
Hydraulically Amplified Self-Healing Electrostatic (HASEL) Pumps

Mitchell, S. K., Acome, E. L., Keplinger, C. M.

(US Patent App. 17/635,339), October 2022 (patent)

Abstract
A pumping system includes a conduit with an inlet region and an outlet region and a first pump coupled with the conduit between the inlet region and the outlet region. The first pump includes a first actuator chamber configured to house at least a first actuator, a first pump chamber aligned along a longitudinal axis of the conduit, wherein the first pump chamber is in fluid communication with the inlet region and the outlet region, and a first flexible diaphragm separating the first actuator chamber from the first pump chamber. Methods for operating the pumping system are also disclosed.

rm

link (url) [BibTex]

link (url) [BibTex]


no image
Causality, causal digital twins, and their applications

Schölkopf, B.

Machine Learning for Science: Bridging Data-Driven and Mechanistic Modelling (Dagstuhl Seminar 22382), (Editors: Berens, Philipp and Cranmer, Kyle and Lawrence, Neil D. and von Luxburg, Ulrike and Montgomery, Jessica), September 2022 (talk)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Hydraulically Amplified Self-healing Electrostatic Actuators
Hydraulically Amplified Self-healing Electrostatic Actuators

Keplinger, C. M., Acome, E. L., Kellaris, N. A., Mitchell, S. K.

(US Patent 11408452), August 2022 (patent)

Abstract
An electro-hydraulic actuator includes a deformable shell defining an enclosed internal cavity and containing a liquid dielectric, first and second electrodes on first and second sides, respectively, of the enclosed internal cavity. An electrostatic force between the first and second electrodes upon application of a voltage to one of the electrodes draws the electrodes towards each other to displace the liquid dielectric within the enclosed internal cavity. The shell includes active and inactive areas such that the electrostatic forces between the first and second electrodes displaces the liquid dielectric within the enclosed internal cavity from the active area of the shell to the inactive area of the shell. The first and second electrodes, the deformable shell, and the liquid dielectric cooperate to form a self-healing capacitor, and the liquid dielectric is configured for automatically filling breaches in the liquid dielectric resulting from dielectric breakdown.

rm

link (url) [BibTex]

link (url) [BibTex]


Composite Layering of Hydraulically Amplified Self-Healing Electrostatic Transducers
Composite Layering of Hydraulically Amplified Self-Healing Electrostatic Transducers

Keplinger, C. M., Mitchell, S. K., Kellaris, N. A., Rothemund, P.

(US Patent App. 17436455), May 2022 (patent)

Abstract
A hydraulically amplified self-healing electrostatic (HASEL) transducer includes a composite, multi-layered structure. In an example, a HASEL transducer includes a dielectric layer including at least one fluid dielectric layer. The dielectric layer includes a first side and a second side opposing the first side. The HASEL transducer further includes a first electrode disposed at the first side of the dielectric layer, a second electrode disposed at the second side of the dielectric layer, a first outer layer disposed at the first electrode opposite the dielectric layer, and a second outer layer disposed at the second electrode opposite the dielectric layer. The first outer layer and second outer layer exhibit different mechanical and electrical properties from the dielectric layer.

rm

link (url) [BibTex]

link (url) [BibTex]


no image
Proceedings of the First Conference on Causal Learning and Reasoning (CLeaR 2022)

Schölkopf, B., Uhler, C., Zhang, K.

177, Proceedings of Machine Learning Research, PMLR, April 2022 (proceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Observability Analysis of Visual-Inertial Odometry with Online Calibration of Velocity-Control Based Kinematic Motion Models

Li, H., Stueckler, J.

abs/2204.06651, CoRR/arxiv, 2022 (techreport)

Abstract
In this paper, we analyze the observability of the visual-inertial odometry (VIO) using stereo cameras with a velocity-control based kinematic motion model. Previous work shows that in general case the global position and yaw are unobservable in VIO system, additionally the roll and pitch become also unobservable if there is no rotation. We prove that by integrating a planar motion constraint roll and pitch become observable. We also show that the parameters of the motion model are observable.

ev

link (url) [BibTex]

2021


no image
Physically Plausible Tracking & Reconstruction of Dynamic Objects

Strecke, M., Stückler, J.

KIT Science Week Scientific Conference & DGR-Days 2021, October 2021 (talk)

ev

[BibTex]

2021


[BibTex]


Skinned multi-infant linear body model
Skinned multi-infant linear body model

Hesse, N., Pujades, S., Romero, J., Black, M.

(US Patent 11,127,163, 2021), September 2021 (patent)

Abstract
A computer-implemented method for automatically obtaining pose and shape parameters of a human body. The method includes obtaining a sequence of digital 3D images of the body, recorded by at least one depth camera; automatically obtaining pose and shape parameters of the body, based on images of the sequence and a statistical body model; and outputting the pose and shape parameters. The body may be an infant body.

ps

[BibTex]

[BibTex]


no image
Proceedings of the 1st Workshop on NLP for Positive Impact

Field, A., Prabhumoye, S., Sap, M., Jin, Z., Zhao, J., Brockett, C.

Association for Computational Linguistics, August 2021 (proceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


Promoting metacognitive learning through systematic reflection
Promoting metacognitive learning through systematic reflection

Frederic Becker, , Lieder, F.

The first edition of Life Improvement Science Conference, June 2021 (poster)

Abstract
Human decision-making is sometimes systematically biased toward suboptimal decisions. For example, people often make short-sighted choices because they don't give enough weight to the long-term consequences of their actions. Previous studies showed that it is possible to overcome such biases by teaching people a more rational decision strategy through instruction, demonstrations, or practice with feedback. The benefits of these approaches tend to be limited to situations that are very similar to those used during the training. One way to overcome this limitation is to create general tools and strategies that people can use to improve their decision-making in any situation. Here we propose one such approach, namely directing people to systematically reflect on how they make their decisions. In systematic reflection, past experience is re-evaluated with the intention to learn. In this study, we investigate how reflection affects how people learn to plan and whether reflective learning can help people to discover more far-sighted planning strategies. In our experiment participants solve a series of 30 planning problems where the immediate rewards are smaller and therefore less important than long-term rewards. Building on Wolfbauer et al. (2020), the experimental group is guided by four reflection prompts asking the participant to describe their planning strategy, the strategy's performance, and his or her emotional response, insights, and intention to change their strategy. The control group practices planning without reflection prompts. Our pilot data suggest that systematic reflection helps people to more rapidly discover adaptive planning strategies. Our findings suggest that reflection is useful not only for helping people learn what to do in a specific situation but also for helping people learn how to think about what to do. In future work, we will compare the effects of different types of reflection on the subsequent changes in people's decision strategies. Developing apps that prompt people to reflect on their decisions may be a promising approach to accelerating cognitive growth and promoting lifelong learning.

re

[BibTex]

[BibTex]


Improving Human Decision-Making by Discovering Efficient Strategies for Hierarchical Planning
Improving Human Decision-Making by Discovering Efficient Strategies for Hierarchical Planning

Heindrich, L., Consul, S., Stojcheski, J., Lieder, F.

Tübingen, Germany, The first edition of Life Improvement Science Conference, June 2021 (talk) Accepted

Abstract
The discovery of decision strategies is an essential part of creating effective cognitive tutors that teach planning and decision-making skills to humans. In the context of bounded rationality, this requires weighing the benefits of different planning operations compared to their computational costs. For small decision problems, it has already been shown that near-optimal decision strategies can be discovered automatically and that the discovered strategies can be taught to humans to increase their performance. Unfortunately, these near-optimal strategy discovery algorithms have not been able to scale well to larger problems due to their computational complexity. In this talk, we will present recent work at the Rationality Enhancement Group to overcome the computational bottleneck of existing strategy discovery algorithms. Our approach makes use of the hierarchical structure of human behavior by decomposing sequential decision problems into two sub-problems: setting a goal and planning how to achieve it. An additional metacontroller component is introduced to switch the current goal when it becomes beneficial. The hierarchical decomposition enables us to discover near-optimal strategies for human planning in larger and more complex tasks than previously possible. We then show in online experiments that teaching the discovered strategies to humans improves their performance in complex sequential decision-making tasks.

re

Project Page [BibTex]

Project Page [BibTex]


no image
Hydraulically amplified self-healing electrostatic actuators

Keplinger, C. M., Acome, E. L., Kellaris, N. A., Mitchell, S. K.

(US Patent 10995779), May 2021 (patent)

Abstract
Hydraulically-amplified, self-healing, electrostatic actuators that harness electrostatic and hydraulic forces to achieve various actuation modes. Electrostatic forces between electrode pairs of the actuators generated upon application of a voltage to the electrode pairs draws the electrodes in each pair towards each other to displace a liquid dielectric contained within an enclosed internal cavity of the actuators to drive actuation in various manners. The electrodes and the liquid dielectric form a self-healing capacitor whereby the liquid dielectric automatically fills breaches in the liquid dielectric resulting from dielectric breakdown.

rm

link (url) [BibTex]

link (url) [BibTex]


Toward a Science of Effective Well-Doing
Toward a Science of Effective Well-Doing

Lieder, F., Prentice, M., Corwin-Renner, E.

May 2021 (techreport)

Abstract
Well-doing, broadly construed, encompasses acting and thinking in ways that contribute to humanity’s flourishing in the long run. This often takes the form of setting a prosocial goal and pursuing it over an extended period of time. To set and pursue goals in a way that is extremely beneficial for humanity (effective well-doing), people often have to employ critical thinking and far-sighted, rational decision-making in the service of the greater good. To promote effective well-doing, we need to better understand its determinants and psychological mechanisms, as well as the barriers to effective well-doing and how they can be overcome. In this article, we introduce a taxonomy of different forms of well-doing and introduce a conceptual model of the cognitive mechanisms of effective well-doing. We view effective well-doing as the upper end of a moral continuum whose lower half comprises behaviors that are harmful to humanity (ill-doing), and we argue that the capacity for effective well-doing has to be developed through personal growth (e.g., learning how to pursue goals effectively). Research on these phenomena has so far been scattered across numerous disconnected literatures from multiple disciplines. To bring these communities together, we call for the establishment of a transdisciplinary research field focussed on understanding and promoting effective well-doing and personal growth as well as understanding and reducing ill-doing. We define this research field in terms of its goals and questions. We review what is already known about these questions in different disciplines and argue that laying the scientific foundation for promoting effective well-doing is one of the most valuable contributions that the behavioral sciences can make in the 21st century.

re

Preprint Project Page [BibTex]


no image
An electric machine with two-phase planar Lorentz coils and a ring-shaped Halbach array for high torque density and high-precision applications

Nguyen, V., Javot, B., Kuchenbecker, K. J.

(EP21170679.1), April 2021 (patent)

Abstract
An electric machine, in particular a motor or a generator, comprising a rotor and a stator, wherein the rotor comprises a planar, ring-shaped rotor base element and the stator comprises a planar ring-shaped stator base element, wherein the rotor base element and the stator base element are aligned along an axial axis (Z) of the electric machine, wherein a plurality of magnet elements are arranged around the circumference of the ring-shaped rotor base element forming a Halbach magnet-ring assembly, wherein the Halbach magnet-ring assembly generates a magnetic field (BR) with axial and azimuthal components, wherein a plurality of coils are arranged around the circumference (C) of the ring-shaped stator base element.

hi

Project Page [BibTex]


no image
Hydraulically Amplified Self-Healing Electrostatic Transducers Harnessing Zipping Mechanism

Keplinger, C. M., Acome, E. L., Kellaris, N. A., Mitchell, S. K., Morrissey, T. G.

(US Patent 20210003149A1), January 2021 (patent)

Abstract
Hydraulically-amplified, self-healing, electrostatic transducers that harness electrostatic and hydraulic forces to achieve various actuation modes. Electrostatic forces between electrode pairs of the transducers generated upon application of a voltage to the electrode pairs draws the electrodes in each pair towards each other to displace a liquid dielectric contained within an enclosed internal cavity of the transducers to drive actuation in various manners. The electrodes and the liquid dielectric form a self-healing capacitor whereby the liquid dielectric automatically fills breaches in the liquid dielectric resulting from dielectric breakdown. Due to the resting shape of the cavity, a zipping-mechanism allows for selectively actuating the electrodes to a desired extent by controlling the voltage supplied.

rm

link (url) [BibTex]

link (url) [BibTex]


Sensor Arrangement for Sensing Forces and Methods for Fabricating a Sensor Arrangement and Parts Thereof
Sensor Arrangement for Sensing Forces and Methods for Fabricating a Sensor Arrangement and Parts Thereof

Sun, H., Martius, G., Kuchenbecker, K. J.

(PCT/EP2021/050230), Max Planck Institute for Intelligent Systems, Max Planck Ring 4, January 2021 (patent)

Abstract
The invention relates to a vision-based haptic sensor arrangement for sensing forces, to a method for fabricating a top portion of a sensor arrangement, and to a method for fabricating a sensor arrangement.

al hi

Project Page [BibTex]

Project Page [BibTex]


Method for force inference, method for training a feed-forward neural network, force inference module, and sensor arrangement
Method for force inference, method for training a feed-forward neural network, force inference module, and sensor arrangement

Sun, H., Martius, G., Kuchenbecker, K. J.

(PCT/EP2021/050231), Max Planck Institute for Intelligent Systems, Max Planck Ring 4, January 2021 (patent)

Abstract
The invention relates to a method for force inference of a sensor arrangement for sensing forces, to a method for training a feed-forward neural network, to a force inference module, and to a sensor arrangement.

al hi

Project Page [BibTex]

Project Page [BibTex]


Slippery micropropellers penetrate the vitreous humor
Slippery micropropellers penetrate the vitreous humor

Wu, Z., Qiu, T., Fischer, P.

(US20210170056A1), 2021 (patent)

Abstract
Microparticles actively propel through the vitreous humour and reach the retina in porcine eyes. The slippery micro helical propellers are constructed by the combination of glancing angle deposition technique and the fusion of the slippery liquid layer. The magnetically propulsion in the vitreous humour relies on the matched size of the propeller to the collagen network of the vitreous, and the anti-adhesion coating of the collagen fiber bundles. Clinical optical coherence tomography observed the displacement of the slippery micropropellers through the vitreous to the macular area on the retina. The slippery micropropellers realize the controllable massive movements to the retina in 30 mins, while exerting the travelling distance of above one centimeter. The injection of the slippery micropropellers, the magnetically-powered controllable propulsion in the vitreous, and the optical coherence tomography imaging technique, constitute an intact method for rapid targeted ocular delivery, providing a promising approach towards ophthalmologic applications.

pf

[BibTex]


no image
Magnetic trap system and method of navigating a microscopic device

Sitti, M., Son, D., Bluemler, P.

2021, EP Prio. Patent App. 21 187 691.7 (patent)

pi

[BibTex]

[BibTex]


Magnetic field generator
Magnetic field generator

Qiu, T., Fischer, P.

(US20210228298A1), 2021 (patent)

Abstract
A magnetic field generator that comprises at least three groups of magnets, the magnetic moment of each magnet being rotatable about a rotation axis, wherein each group comprises at least two magnets, and each group has an orientation in the sense that the rotation axes of the magnetic moments of the magnets of the same group extend in the group's orientation. The orientations of the different groups are linearly independent.

pf

[BibTex]

[BibTex]