Header logo is


2018


A Value-Driven Eldercare Robot: Virtual and Physical Instantiations of a Case-Supported Principle-Based Behavior Paradigm
A Value-Driven Eldercare Robot: Virtual and Physical Instantiations of a Case-Supported Principle-Based Behavior Paradigm

Anderson, M., Anderson, S., Berenz, V.

Proceedings of the IEEE, pages: 1,15, October 2018 (article)

Abstract
In this paper, a case-supported principle-based behavior paradigm is proposed to help ensure ethical behavior of autonomous machines. We argue that ethically significant behavior of autonomous systems should be guided by explicit ethical principles determined through a consensus of ethicists. Such a consensus is likely to emerge in many areas in which autonomous systems are apt to be deployed and for the actions they are liable to undertake. We believe that this is the case since we are more likely to agree on how machines ought to treat us than on how human beings ought to treat one another. Given such a consensus, particular cases of ethical dilemmas where ethicists agree on the ethically relevant features and the right course of action can be used to help discover principles that balance these features when they are in conflict. Such principles not only help ensure ethical behavior of complex and dynamic systems but also can serve as a basis for justification of this behavior. The requirements, methods, implementation, and evaluation components of the paradigm are detailed as well as its instantiation in both a simulated and real robot functioning in the domain of eldercare.

am

link (url) DOI [BibTex]

2018



Playful: Reactive Programming for Orchestrating Robotic Behavior
Playful: Reactive Programming for Orchestrating Robotic Behavior

Berenz, V., Schaal, S.

IEEE Robotics Automation Magazine, 25(3):49-60, September 2018 (article) In press

Abstract
For many service robots, reactivity to changes in their surroundings is a must. However, developing software suitable for dynamic environments is difficult. Existing robotic middleware allows engineers to design behavior graphs by organizing communication between components. But because these graphs are structurally inflexible, they hardly support the development of complex reactive behavior. To address this limitation, we propose Playful, a software platform that applies reactive programming to the specification of robotic behavior.

am

playful website playful_IEEE_RAM link (url) DOI [BibTex]


ClusterNet: Instance Segmentation in RGB-D Images
ClusterNet: Instance Segmentation in RGB-D Images

Shao, L., Tian, Y., Bohg, J.

arXiv, September 2018, Submitted to ICRA'19 (article) Submitted

Abstract
We propose a method for instance-level segmentation that uses RGB-D data as input and provides detailed information about the location, geometry and number of {\em individual\/} objects in the scene. This level of understanding is fundamental for autonomous robots. It enables safe and robust decision-making under the large uncertainty of the real-world. In our model, we propose to use the first and second order moments of the object occupancy function to represent an object instance. We train an hourglass Deep Neural Network (DNN) where each pixel in the output votes for the 3D position of the corresponding object center and for the object's size and pose. The final instance segmentation is achieved through clustering in the space of moments. The object-centric training loss is defined on the output of the clustering. Our method outperforms the state-of-the-art instance segmentation method on our synthesized dataset. We show that our method generalizes well on real-world data achieving visually better segmentation results.

am

link (url) [BibTex]

link (url) [BibTex]


Real-time Perception meets Reactive Motion Generation
Real-time Perception meets Reactive Motion Generation

(Best Systems Paper Finalists - Amazon Robotics Best Paper Awards in Manipulation)

Kappler, D., Meier, F., Issac, J., Mainprice, J., Garcia Cifuentes, C., Wüthrich, M., Berenz, V., Schaal, S., Ratliff, N., Bohg, J.

IEEE Robotics and Automation Letters, 3(3):1864-1871, July 2018 (article)

Abstract
We address the challenging problem of robotic grasping and manipulation in the presence of uncertainty. This uncertainty is due to noisy sensing, inaccurate models and hard-to-predict environment dynamics. Our approach emphasizes the importance of continuous, real-time perception and its tight integration with reactive motion generation methods. We present a fully integrated system where real-time object and robot tracking as well as ambient world modeling provides the necessary input to feedback controllers and continuous motion optimizers. Specifically, they provide attractive and repulsive potentials based on which the controllers and motion optimizer can online compute movement policies at different time intervals. We extensively evaluate the proposed system on a real robotic platform in four scenarios that exhibit either challenging workspace geometry or a dynamic environment. We compare the proposed integrated system with a more traditional sense-plan-act approach that is still widely used. In 333 experiments, we show the robustness and accuracy of the proposed system.

am

arxiv video video link (url) DOI Project Page [BibTex]


Oncilla robot: a versatile open-source quadruped research robot with compliant pantograph legs
Oncilla robot: a versatile open-source quadruped research robot with compliant pantograph legs

Sproewitz, A., Tuleu, A., Ajallooeian, M., Vespignani, M., Moeckel, R., Eckert, P., D’Haene, M., Degrave, J., Nordmann, A., Schrauwen, B., Steil, J., Ijspeert, A. J.

Frontiers in Robotics and AI, 5(67), June 2018, arXiv: 1803.06259 (article)

Abstract
We present Oncilla robot, a novel mobile, quadruped legged locomotion machine. This large-cat sized, 5.1 robot is one of a kind of a recent, bioinspired legged robot class designed with the capability of model-free locomotion control. Animal legged locomotion in rough terrain is clearly shaped by sensor feedback systems. Results with Oncilla robot show that agile and versatile locomotion is possible without sensory signals to some extend, and tracking becomes robust when feedback control is added (Ajaoolleian 2015). By incorporating mechanical and control blueprints inspired from animals, and by observing the resulting robot locomotion characteristics, we aim to understand the contribution of individual components. Legged robots have a wide mechanical and control design parameter space, and a unique potential as research tools to investigate principles of biomechanics and legged locomotion control. But the hardware and controller design can be a steep initial hurdle for academic research. To facilitate the easy start and development of legged robots, Oncilla-robot's blueprints are available through open-source. [...]

dlg

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Rational metareasoning and the plasticity of cognitive control

Lieder, F., Shenhav, A., Musslick, S., Griffiths, T. L.

PLOS Computational Biology, 14(4):e1006043, Public Library of Science, April 2018 (article)

Abstract
The human brain has the impressive capacity to adapt how it processes information to high-level goals. While it is known that these cognitive control skills are malleable and can be improved through training, the underlying plasticity mechanisms are not well understood. Here, we develop and evaluate a model of how people learn when to exert cognitive control, which controlled process to use, and how much effort to exert. We derive this model from a general theory according to which the function of cognitive control is to select and configure neural pathways so as to make optimal use of finite time and limited computational resources. The central idea of our Learned Value of Control model is that people use reinforcement learning to predict the value of candidate control signals of different types and intensities based on stimulus features. This model correctly predicts the learning and transfer effects underlying the adaptive control-demanding behavior observed in an experiment on visual attention and four experiments on interference control in Stroop and Flanker paradigms. Moreover, our model explained these findings significantly better than an associative learning model and a Win-Stay Lose-Shift model. Our findings elucidate how learning and experience might shape people’s ability and propensity to adaptively control their minds and behavior. We conclude by predicting under which circumstances these learning mechanisms might lead to self-control failure.

re

Rational metareasoning and the plasticity of cognitive control DOI Project Page Project Page [BibTex]

Rational metareasoning and the plasticity of cognitive control DOI Project Page Project Page [BibTex]


no image
Distributed Event-Based State Estimation for Networked Systems: An LMI Approach

Muehlebach, M., Trimpe, S.

IEEE Transactions on Automatic Control, 63(1):269-276, January 2018 (article)

am ics

arXiv (extended version) DOI Project Page [BibTex]

arXiv (extended version) DOI Project Page [BibTex]


no image
Over-Representation of Extreme Events in Decision Making Reflects Rational Use of Cognitive Resources

Lieder, F., Griffiths, T. L., Hsu, M.

Psychological Review, 125(1):1-32, January 2018 (article)

Abstract
People’s decisions and judgments are disproportionately swayed by improbable but extreme eventualities, such as terrorism, that come to mind easily. This article explores whether such availability biases can be reconciled with rational information processing by taking into account the fact that decision-makers value their time and have limited cognitive resources. Our analysis suggests that to make optimal use of their finite time decision-makers should over-represent the most important potential consequences relative to less important, put potentially more probable, outcomes. To evaluate this account we derive and test a model we call utility-weighted sampling. Utility-weighted sampling estimates the expected utility of potential actions by simulating their outcomes. Critically, outcomes with more extreme utilities have a higher probability of being simulated. We demonstrate that this model can explain not only people’s availability bias in judging the frequency of extreme events but also a wide range of cognitive biases in decisions from experience, decisions from description, and memory recall.

re

DOI [BibTex]

DOI [BibTex]


no image
Memristor-enhanced humanoid robot control system–Part I: theory behind the novel memcomputing paradigm

Ascoli, A., Baumann, D., Tetzlaff, R., Chua, L. O., Hild, M.

International Journal of Circuit Theory and Applications, 46(1):155-183, 2018 (article)

am

DOI [BibTex]

DOI [BibTex]


no image
A physical model for efficient ranking in networks

De Bacco, C., Larremore, D. B., Moore, C.

Science Advances, 4(7), American Association for the Advancement of Science, 2018 (article)

pio

Code Preprint link (url) DOI Project Page [BibTex]

Code Preprint link (url) DOI Project Page [BibTex]


no image
AreWater Smart Landscapes’ Contagious? An epidemic approach on networks to study peer effects

Brelsford, C., De Bacco, C.

Networks and Spatial Economics (NETS), pages: 1572-9427, 2018 (article)

pio

Preprint link (url) [BibTex]

Preprint link (url) [BibTex]


no image
The Computational Challenges of Pursuing Multiple Goals: Network Structure of Goal Systems Predicts Human Performance

Reichman, D., Lieder, F., Bourgin, D. D., Talmon, N., Griffiths, T. L.

PsyArXiv, 2018 (article)

Abstract
Extant psychological theories attribute people’s failure to achieve their goals primarily to failures of self-control, insufficient motivation, or lacking skills. We develop a complementary theory specifying conditions under which the computational complexity of making the right decisions becomes prohibitive of goal achievement regardless of skill or motivation. We support our theory by predicting human performance from factors determining the computational complexity of selecting the optimal set of means for goal achievement. Following previous theories of goal pursuit, we express the relationship between goals and means as a bipartite graph where edges between means and goals indicate which means can be used to achieve which goals. This allows us to map two computational challenges that arise in goal achievement onto two classic combinatorial optimization problems: Set Cover and Maximum Coverage. While these problems are believed to be computationally intractable on general networks, their solution can be nevertheless efficiently approximated when the structure of the network resembles a tree. Thus, our initial prediction was that people should perform better with goal systems that are more tree-like. In addition, our theory predicted that people’s performance at selecting means should be a U-shaped function of the average number of goals each means is relevant to and the average number of means through which each goal could be accomplished. Here we report on six behavioral experiments which confirmed these predictions. Our results suggest that combinatorial parameters that are instrumental to algorithm design can also be useful for understanding when and why people struggle to pursue their goals effectively.

re

DOI [BibTex]

DOI [BibTex]


no image
Memristor-enhanced humanoid robot control system–Part II: circuit theoretic model and performance analysis

Baumann, D., Ascoli, A., Tetzlaff, R., Chua, L. O., Hild, M.

International Journal of Circuit Theory and Applications, 46(1):184-220, 2018 (article)

am

DOI [BibTex]

DOI [BibTex]

2016


A New Perspective and Extension of the Gaussian Filter
A New Perspective and Extension of the Gaussian Filter

Wüthrich, M., Trimpe, S., Garcia Cifuentes, C., Kappler, D., Schaal, S.

The International Journal of Robotics Research, 35(14):1731-1749, December 2016 (article)

Abstract
The Gaussian Filter (GF) is one of the most widely used filtering algorithms; instances are the Extended Kalman Filter, the Unscented Kalman Filter and the Divided Difference Filter. The GF represents the belief of the current state by a Gaussian distribution, whose mean is an affine function of the measurement. We show that this representation can be too restrictive to accurately capture the dependences in systems with nonlinear observation models, and we investigate how the GF can be generalized to alleviate this problem. To this end, we view the GF as the solution to a constrained optimization problem. From this new perspective, the GF is seen as a special case of a much broader class of filters, obtained by relaxing the constraint on the form of the approximate posterior. On this basis, we outline some conditions which potential generalizations have to satisfy in order to maintain the computational efficiency of the GF. We propose one concrete generalization which corresponds to the standard GF using a pseudo measurement instead of the actual measurement. Extending an existing GF implementation in this manner is trivial. Nevertheless, we show that this small change can have a major impact on the estimation accuracy.

am ics

PDF DOI Project Page [BibTex]

2016


PDF DOI Project Page [BibTex]


no image
Probabilistic Inference for Determining Options in Reinforcement Learning

Daniel, C., van Hoof, H., Peters, J., Neumann, G.

Machine Learning, Special Issue, 104(2):337-357, (Editors: Gärtner, T., Nanni, M., Passerini, A. and Robardet, C.), European Conference on Machine Learning im Machine Learning, Journal Track, 2016, Best Student Paper Award of ECML-PKDD 2016 (article)

am ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
On designing an active tail for legged robots: simplifying control via decoupling of control objectives

Heim, S. W., Ajallooeian, M., Eckert, P., Vespignani, M., Ijspeert, A. J.

Industrial Robot: An International Journal, 43, pages: 338-346, Emerald Group Publishing Limited, 2016 (article)

dlg

Preprint [BibTex]

Preprint [BibTex]


no image
Stochastic search with Poisson and deterministic resetting

Bhat, U., De Bacco, C., Redner, S.

Journal of Statistical Mechanics: Theory and Experiment, 2016(8):083401, IOP Publishing, 2016 (article)

pio

Preprint link (url) [BibTex]

Preprint link (url) [BibTex]


ATRIAS: Design and validation of a tether-free 3D-capable spring-mass bipedal robot
ATRIAS: Design and validation of a tether-free 3D-capable spring-mass bipedal robot

Hubicki, C., Grimes, J., Jones, M., Renjewski, D., Spröwitz, A., Abate, A., Hurst, J.

{The International Journal of Robotics Research}, 35(12):1497-1521, Sage Publications, Inc., Cambridge, MA, 2016 (article)

dlg

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Dynamics of beneficial epidemics

Berdahl, A., Brelsford, C., De Bacco, C., Dumas, M., Ferdinand, V., Grochow, J. A., Hébert-Dufresne, L., Kallus, Y., Kempes, C. P., Kolchinsky, A., others,

arXiv preprint arXiv:1604.02096, 2016 (article)

pio

Preprint [BibTex]

Preprint [BibTex]


no image
Rare events statistics of random walks on networks: localisation and other dynamical phase transitions

De Bacco, C., Guggiola, A., Kühn, R., Paga, P.

Journal of Physics A: Mathematical and Theoretical, 49(18):184003, IOP Publishing, 2016 (article)

pio

Preprint link (url) [BibTex]

Preprint link (url) [BibTex]


no image
Event-based Sampling for Reducing Communication Load in Realtime Human Motion Analysis by Wireless Inertial Sensor Networks

Laidig, D., Trimpe, S., Seel, T.

Current Directions in Biomedical Engineering, 2(1):711-714, De Gruyter, 2016 (article)

am ics

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Momentum Control with Hierarchical Inverse Dynamics on a Torque-Controlled Humanoid

Herzog, A., Rotella, N., Mason, S., Grimminger, F., Schaal, S., Righetti, L.

Autonomous Robots, 40(3):473-491, 2016 (article)

Abstract
Hierarchical inverse dynamics based on cascades of quadratic programs have been proposed for the control of legged robots. They have important benefits but to the best of our knowledge have never been implemented on a torque controlled humanoid where model inaccuracies, sensor noise and real-time computation requirements can be problematic. Using a reformulation of existing algorithms, we propose a simplification of the problem that allows to achieve real-time control. Momentum-based control is integrated in the task hierarchy and a LQR design approach is used to compute the desired associated closed-loop behavior and improve performance. Extensive experiments on various balancing and tracking tasks show very robust performance in the face of unknown disturbances, even when the humanoid is standing on one foot. Our results demonstrate that hierarchical inverse dynamics together with momentum control can be efficiently used for feedback control under real robot conditions.

am mg

link (url) DOI [BibTex]


no image
Bioinspired Motor Control for Articulated Robots [From the Guest Editors]

Vitiello, Nicola, Ijspeert, Auke J, Schaal, S.

IEEE Robotics {\&} Automation Magazine, 23(1):20-21, 2016 (article)

am

[BibTex]

[BibTex]

2015


Sensory synergy as environmental input integration
Sensory synergy as environmental input integration

Alnajjar, F., Itkonen, M., Berenz, V., Tournier, M., Nagai, C., Shimoda, S.

Frontiers in Neuroscience, 8, pages: 436, 2015 (article)

Abstract
The development of a method to feed proper environmental inputs back to the central nervous system (CNS) remains one of the challenges in achieving natural movement when part of the body is replaced with an artificial device. Muscle synergies are widely accepted as a biologically plausible interpretation of the neural dynamics between the CNS and the muscular system. Yet the sensorineural dynamics of environmental feedback to the CNS has not been investigated in detail. In this study, we address this issue by exploring the concept of sensory synergy. In contrast to muscle synergy, we hypothesize that sensory synergy plays an essential role in integrating the overall environmental inputs to provide low-dimensional information to the CNS. We assume that sensor synergy and muscle synergy communicate using these low-dimensional signals. To examine our hypothesis, we conducted posture control experiments involving lateral disturbance with 9 healthy participants. Proprioceptive information represented by the changes on muscle lengths were estimated by using the musculoskeletal model analysis software SIMM. Changes on muscles lengths were then used to compute sensory synergies. The experimental results indicate that the environmental inputs were translated into the two dimensional signals and used to move the upper limb to the desired position immediately after the lateral disturbance. Participants who showed high skill in posture control were found to be likely to have a strong correlation between sensory and muscle signaling as well as high coordination between the utilized sensory synergies. These results suggest the importance of integrating environmental inputs into suitable low-dimensional signals before providing them to the CNS. This mechanism should be essential when designing the prosthesis’ sensory system to make the controller simpler

am

link (url) DOI [BibTex]

2015


link (url) DOI [BibTex]


no image
Active Reward Learning with a Novel Acquisition Function

Daniel, C., Kroemer, O., Viering, M., Metz, J., Peters, J.

Autonomous Robots, 39(3):389-405, 2015 (article)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Movement Primitive Attractor Goals and Sequential Skills from Kinesthetic Demonstrations

Manschitz, S., Kober, J., Gienger, M., Peters, J.

Robotics and Autonomous Systems, 74, Part A, pages: 97-107, 2015 (article)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Bayesian Optimization for Learning Gaits under Uncertainty

Calandra, R., Seyfarth, A., Peters, J., Deisenroth, M.

Annals of Mathematics and Artificial Intelligence, pages: 1-19, 2015 (article)

am ei

DOI [BibTex]

DOI [BibTex]


Exciting Engineered Passive Dynamics in a Bipedal Robot
Exciting Engineered Passive Dynamics in a Bipedal Robot

Renjewski, D., Spröwitz, A., Peekema, A., Jones, M., Hurst, J.

{IEEE Transactions on Robotics and Automation}, 31(5):1244-1251, IEEE, New York, NY, 2015 (article)

Abstract
A common approach in designing legged robots is to build fully actuated machines and control the machine dynamics entirely in soft- ware, carefully avoiding impacts and expending a lot of energy. However, these machines are outperformed by their human and animal counterparts. Animals achieve their impressive agility, efficiency, and robustness through a close integration of passive dynamics, implemented through mechanical components, and neural control. Robots can benefit from this same integrated approach, but a strong theoretical framework is required to design the passive dynamics of a machine and exploit them for control. For this framework, we use a bipedal spring–mass model, which has been shown to approximate the dynamics of human locomotion. This paper reports the first implementation of spring–mass walking on a bipedal robot. We present the use of template dynamics as a control objective exploiting the engineered passive spring–mass dynamics of the ATRIAS robot. The results highlight the benefits of combining passive dynamics with dynamics-based control and open up a library of spring–mass model-based control strategies for dynamic gait control of robots.

dlg

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
The average number of distinct sites visited by a random walker on random graphs

De Bacco, C., Majumdar, S. N., Sollich, P.

Journal of Physics A: Mathematical and Theoretical, 48(20):205004, IOP Publishing, 2015 (article)

pio

Preprint link (url) [BibTex]

Preprint link (url) [BibTex]


no image
The edge-disjoint path problem on random graphs by message-passing

Altarelli, F., Braunstein, A., Dall’Asta, L., De Bacco, C., Franz, S.

PloS one, 10(12):e0145222, Public Library of Science, 2015 (article)

pio

Code Preprint link (url) Project Page [BibTex]

Code Preprint link (url) Project Page [BibTex]


no image
Model-Based Strategy Selection Learning

Lieder, F., Griffiths, T. L.

The 2nd Multidisciplinary Conference on Reinforcement Learning and Decision Making, 2015 (article)

Abstract
Humans possess a repertoire of decision strategies. This raises the question how we decide how to decide. Behavioral experiments suggest that the answer includes metacognitive reinforcement learning: rewards reinforce not only our behavior but also the cognitive processes that lead to it. Previous theories of strategy selection, namely SSL and RELACS, assumed that model-free reinforcement learning identifies the cognitive strategy that works best on average across all problems in the environment. Here we explore the alternative: model-based reinforcement learning about how the differential effectiveness of cognitive strategies depends on the features of individual problems. Our theory posits that people learn a predictive model of each strategy’s accuracy and execution time and choose strategies according to their predicted speed-accuracy tradeoff for the problem to be solved. We evaluate our theory against previous accounts by fitting published data on multi-attribute decision making, conducting a novel experiment, and demonstrating that our theory can account for people’s adaptive flexibility in risky choice. We find that while SSL and RELACS are sufficient to explain people’s ability to adapt to a homogeneous environment in which all decision problems are of the same type, model-based strategy selection learning can also explain people’s ability to adapt to heterogeneous environments and flexibly switch to a different decision-strategy when the situation changes.

re

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
The optimism bias may support rational action

Lieder, F., Goel, S., Kwan, R., Griffiths, T. L.

NIPS 2015 Workshop on Bounded Optimality and Rational Metareasoning, 2015 (article)

re

[BibTex]

[BibTex]


no image
Non-equilibrium statistical mechanics of the heat bath for two Brownian particles : Internal degrees of freedom found where there shouldn’t be (Special Issue on New Challenges in Complex Systems Science)

De Bacco, C., Baldovin, F., Orlandini, E.

理工研報告特集号 : ASTE : advances in science, technology and environmentology : special issue, 11, pages: 111-113, 早稲田大学理工学術院総合研究所 (理工学研究所), March 2015 (article)

pio

link (url) [BibTex]

link (url) [BibTex]


no image
Rational use of cognitive resources: Levels of analysis between the computational and the algorithmic

Griffiths, T. L., Lieder, F., Goodman, N. D.

Topics in Cognitive Science, 7(2):217-229, Wiley, 2015 (article)

re

[BibTex]

[BibTex]

2008


Learning to Move in Modular Robots using Central Pattern Generators and Online Optimization
Learning to Move in Modular Robots using Central Pattern Generators and Online Optimization

Spröwitz, A., Moeckel, R., Maye, J., Ijspeert, A. J.

The International Journal of Robotics Research, 27(3-4):423-443, 2008 (article)

Abstract
This article addresses the problem of how modular robotics systems, i.e. systems composed of multiple modules that can be configured into different robotic structures, can learn to locomote. In particular, we tackle the problems of online learning, that is, learning while moving, and the problem of dealing with unknown arbitrary robotic structures. We propose a framework for learning locomotion controllers based on two components: a central pattern generator (CPG) and a gradient-free optimization algorithm referred to as Powell's method. The CPG is implemented as a system of coupled nonlinear oscillators in our YaMoR modular robotic system, with one oscillator per module. The nonlinear oscillators are coupled together across modules using Bluetooth communication to obtain specific gaits, i.e. synchronized patterns of oscillations among modules. Online learning involves running the Powell optimization algorithm in parallel with the CPG model, with the speed of locomotion being the criterion to be optimized. Interesting aspects of the optimization include the fact that it is carried out online, the robots do not require stopping or resetting and it is fast. We present results showing the interesting properties of this framework for a modular robotic system. In particular, our CPG model can readily be implemented in a distributed system, it is computationally cheap, it exhibits limit cycle behavior (temporary perturbations are rapidly forgotten), it produces smooth trajectories even when control parameters are abruptly changed and it is robust against imperfect communication among modules. We also present results of learning to move with three different robot structures. Interesting locomotion modes are obtained after running the optimization for less than 60 minutes.

dlg

link (url) DOI [BibTex]

2008


link (url) DOI [BibTex]


no image
Learning to control in operational space

Peters, J., Schaal, S.

International Journal of Robotics Research, 27, pages: 197-212, 2008, clmc (article)

Abstract
One of the most general frameworks for phrasing control problems for complex, redundant robots is operational space control. However, while this framework is of essential importance for robotics and well-understood from an analytical point of view, it can be prohibitively hard to achieve accurate control in face of modeling errors, which are inevitable in com- plex robots, e.g., humanoid robots. In this paper, we suggest a learning approach for opertional space control as a direct inverse model learning problem. A first important insight for this paper is that a physically cor- rect solution to the inverse problem with redundant degrees-of-freedom does exist when learning of the inverse map is performed in a suitable piecewise linear way. The second crucial component for our work is based on the insight that many operational space controllers can be understood in terms of a constrained optimal control problem. The cost function as- sociated with this optimal control problem allows us to formulate a learn- ing algorithm that automatically synthesizes a globally consistent desired resolution of redundancy while learning the operational space controller. From the machine learning point of view, this learning problem corre- sponds to a reinforcement learning problem that maximizes an immediate reward. We employ an expectation-maximization policy search algorithm in order to solve this problem. Evaluations on a three degrees of freedom robot arm are used to illustrate the suggested approach. The applica- tion to a physically realistic simulator of the anthropomorphic SARCOS Master arm demonstrates feasibility for complex high degree-of-freedom robots. We also show that the proposed method works in the setting of learning resolved motion rate control on real, physical Mitsubishi PA-10 medical robotics arm.

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Adaptation to a sub-optimal desired trajectory

M. Mistry, E. A. G. L. T. Y. S. S. M. K.

Advances in Computational Motor Control VII, Symposium at the Society for Neuroscience Meeting, Washington DC, 2008, 2008, clmc (article)

am

PDF [BibTex]

PDF [BibTex]


no image
Operational space control: A theoretical and emprical comparison

Nakanishi, J., Cory, R., Mistry, M., Peters, J., Schaal, S.

International Journal of Robotics Research, 27(6):737-757, 2008, clmc (article)

Abstract
Dexterous manipulation with a highly redundant movement system is one of the hallmarks of hu- man motor skills. From numerous behavioral studies, there is strong evidence that humans employ compliant task space control, i.e., they focus control only on task variables while keeping redundant degrees-of-freedom as compliant as possible. This strategy is robust towards unknown disturbances and simultaneously safe for the operator and the environment. The theory of operational space con- trol in robotics aims to achieve similar performance properties. However, despite various compelling theoretical lines of research, advanced operational space control is hardly found in actual robotics imple- mentations, in particular new kinds of robots like humanoids and service robots, which would strongly profit from compliant dexterous manipulation. To analyze the pros and cons of different approaches to operational space control, this paper focuses on a theoretical and empirical evaluation of different methods that have been suggested in the literature, but also some new variants of operational space controllers. We address formulations at the velocity, acceleration and force levels. First, we formulate all controllers in a common notational framework, including quaternion-based orientation control, and discuss some of their theoretical properties. Second, we present experimental comparisons of these approaches on a seven-degree-of-freedom anthropomorphic robot arm with several benchmark tasks. As an aside, we also introduce a novel parameter estimation algorithm for rigid body dynamics, which ensures physical consistency, as this issue was crucial for our successful robot implementations. Our extensive empirical results demonstrate that one of the simplified acceleration-based approaches can be advantageous in terms of task performance, ease of parameter tuning, and general robustness and compliance in face of inevitable modeling errors.

am

link (url) [BibTex]

link (url) [BibTex]


no image
A library for locally weighted projection regression

Klanke, S., Vijayakumar, S., Schaal, S.

Journal of Machine Learning Research, 9, pages: 623-626, 2008, clmc (article)

Abstract
In this paper we introduce an improved implementation of locally weighted projection regression (LWPR), a supervised learning algorithm that is capable of handling high-dimensional input data. As the key features, our code supports multi-threading, is available for multiple platforms, and provides wrappers for several programming languages.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Optimization strategies in human reinforcement learning

Hoffmann, H., Theodorou, E., Schaal, S.

Advances in Computational Motor Control VII, Symposium at the Society for Neuroscience Meeting, Washington DC, 2008, 2008, clmc (article)

am

PDF [BibTex]

PDF [BibTex]