Header logo is

Approximate Bayesian Inference for Psychometric Functions using MCMC Sampling


Technical Report


In psychophysical studies the psychometric function is used to model the relation between the physical stimulus intensity and the observer's ability to detect or discriminate between stimuli of different intensities. In this report we propose the use of Bayesian inference to extract the information contained in experimental data estimate the parameters of psychometric functions. Since Bayesian inference cannot be performed analytically we describe how a Markov chain Monte Carlo method can be used to generate samples from the posterior distribution over parameters. These samples are used to estimate Bayesian confidence intervals and other characteristics of the posterior distribution. In addition we discuss the parameterisation of psychometric functions and the role of prior distributions in the analysis. The proposed approach is exemplified using artificially generate d data and in a case study for real experimental data. Furthermore, we compare our approach with traditional methods based on maximum-likelihood parameter estimation combined with bootstrap techniques for confidence interval estimation. The appendix provides a description of an implementation for the R environment for statistical computing and provides the code for reproducing the results discussed in the experiment section.

Author(s): Kuss, M. and Jäkel, F. and Wichmann, FA.
Number (issue): 135
Year: 2005
Day: 0

Department(s): Empirical Inference
Bibtex Type: Technical Report (techreport)

Institution: Max Planck Institute for Biological Cybernetics, Tübingen, Germany

Organization: Max-Planck-Gesellschaft
School: Biologische Kybernetik

Links: PDF


  title = {Approximate Bayesian Inference for Psychometric Functions using MCMC Sampling},
  author = {Kuss, M. and J{\"a}kel, F. and Wichmann, FA.},
  number = {135},
  organization = {Max-Planck-Gesellschaft},
  institution = {Max Planck Institute for Biological Cybernetics, T{\"u}bingen, Germany},
  school = {Biologische Kybernetik},
  year = {2005}