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Abstract
Humans constantly interact with objects to accomplish tasks. To understand such interactions, computers need
to reconstruct these in 3D from images of whole bodies manipulating objects, e.g., for grasping, moving and
using the latter. This involves key challenges, such as occlusion between the body and objects, motion blur, depth
ambiguities, and the low image resolution of hands and graspable object parts. To make the problem tractable, the
community has followed a divide-and-conquer approach, focusing either only on interacting hands, ignoring the
body, or on interacting bodies, ignoring the hands. However, these are only parts of the problem. On the contrary,
recent work focuses on the whole problem. The GRAB dataset addresses whole-body interaction with dexterous
hands but captures motion via markers and lacks video, while the BEHAVE dataset captures video of body-object
interaction but lacks hand detail. We address the limitations of prior work with InterCap, a novel method that
reconstructs interacting whole-bodies and objects from multi-view RGB-D data, using the parametric whole-body
SMPL-X model and known object meshes. To tackle the above challenges, InterCap uses two key observations:
(i) Contact between the body and object can be used to improve the pose estimation of both. (ii) Consumer-level
Azure Kinect cameras let us set up a simple and flexible multi-view RGB-D system for reducing occlusions, with
spatially calibrated and temporally synchronized cameras. With our InterCap method we capture the InterCap
dataset, which contains 10 subjects (5 males and 5 females) interacting with 10 daily objects of various sizes and
affordances, including contact with the hands or feet. To this end, we introduce a new data-driven hand motion
prior, as well as explore simple ways for automatic contact detection based on 2D and 3D cues. In total, InterCap
has 223 RGB-D videos, resulting in 67,357 multi-view frames, each containing 6 RGB-D images, paired with
pseudo ground-truth 3D body and object meshes. Our InterCap method and dataset fill an important gap in the
literature and support many research directions. Data and code are available at https://intercap.is.tue.mpg.de.

1 Introduction
A long-standing goal of Computer Vision is to under-
stand human actions from videos. Given a video,
people effortlessly figure out what objects exist in it,
the spatial layout of objects, and the pose of humans.
Moreover, they deeply understand the depicted action.
What is the subject doing? Why are they doing this?
What is their goal? How do they achieve this? To
empower computers with the ability to infer such
abstract concepts from pixels, we need to capture rich
datasets and to devise appropriate algorithms.

Since humans live in a 3D world, their physical
actions involve interacting with objects. Think of how
often one goes to the kitchen, grabs a cup of water,
and drinks from it. This involves contacting the floor
with the feet, contacting the cup with the hand, moving
the hand and cup together while maintaining contact,
and drinking while the lips contact the cup. Thus, to
understand human actions, it is necessary to reason in
3D about humans and objects jointly.

There is significant prior work on estimating 3D
humans without taking into account objects (Bogo
et al, 2016) and estimating 3D objects without taking
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Fig. 1 Humans interact with objects to accomplish tasks. To understand such interactions we need the tools to reconstruct them from whole-
body videos in 4D, i.e., as 3D meshes in motion. Existing methods struggle, due to the strong occlusions, motion blur, and low-resolution of
hands and object structures in such videos. Moreover, they mostly focus on the main body, ignoring the hands and objects. We develop InterCap,
a novel method that reconstructs plausible interacting whole-body and object meshes from multi-view RGB-D videos, using contact constraints
to account for strong ambiguities. With this we capture the rich InterCap dataset of 223 RGB-D videos (67,357 multi-view frames, with 6 Azure
Kinects) containing 10 subjects (5 fe-/males) interacting with 10 objects of various sizes and affordances; note the hand-object grasps.

into account humans (Zollhöfer et al, 2018). There is
even recent work on inserting bodies into 3D scenes
such that their interactions appear realistic (Zhang
et al, 2020c; Li et al, 2019; Hassan et al, 2021). But
there is little work on estimating 3D humans interact-
ing with scenes and moving objects, in which contact
is explicitly modeled and exploited. To study this
problem, we need a dataset of videos with rich human-
object interactions and reliable 3D ground truth.

PROX (Hassan et al, 2019) takes a step in this
direction by estimating the 3D body in a known 3D
scene. The scene mesh provides information that helps
resolve human pose ambiguities commonly encoun-
tered when a single camera is used. However, PROX
involves only coarse interactions of bodies, static
scenes with no moving objects, and no dexterous fin-
gers. The recent BEHAVE dataset (Bhatnagar et al,
2022) uses multi-view RGB-D data to capture humans
interacting with objects, but does not include detailed
hand pose or fine hand-object contact. Finally, the
GRAB dataset (Taheri et al, 2020) captures the kind
of detailed hand-object and whole-body-object inter-
action that we seek but is captured using marker-based
Motion Capture (MoCap) and, hence, lacks images.

We argue that what is needed is a new dataset of
RGB videos containing natural human-object inter-
action in which the whole body is tracked reliably,
the hand pose is captured, objects are also tracked,
and the hand-object contact is realistic; see Fig. 1.
This is challenging, and requires technical innova-
tion to create. To that end, we design a system that

uses multiple RGB-D sensors that are spatially cali-
brated and temporally synchronized. To build this data
we fit the SMPL-X body model, which has articu-
lated hands, by extending the PROX (Hassan et al,
2019) method to use multi-view data and grasping
hand-pose priors. We also track the 3D objects with
which the person interacts. The objects used in this
work are representative of items one finds in daily life.
We obtain accurate 3D models for each object with
a handheld Artec scanner. Altogether we collect 223
sequences (67,357 multi-view frames, each contain-
ing 6 RGB-D images), with 10 subjects (5 males, 5
females) interacting with 10 everyday objects.

The problem, however, is that separately estimat-
ing the body and objects is not sufficient to ensure
accurate 3D body-object contact. Consequently, a key
innovation of this work is to estimate these jointly,
while exploiting information about contact. Objects
do not move independently, so, when they move, it
means the body is in contact. We define likely con-
tact regions on objects and on the body. Then, given
frames with known likely contacts, we enforce con-
tact between the body and the object when estimating
the body and object poses. The resulting method pro-
duces natural body poses, hand poses, and object
poses. Uniquely, it provides detailed pseudo ground-
truth contact information between the whole body and
objects in RGB video.

In summary, our major contributions are as fol-
lows: (1) We develop a novel Motion-Capture method
utilizing multiple RGB-D cameras. It is relatively
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lightweight and flexible, yet accurate enough, thus
suitable for data capture of daily scenarios. (2) We
extend previous work on fitting SMPL-X to images
to fit it to multi-view RGB-D data while taking into
account body-object contact. (3) We capture a novel
dataset that contains whole-body human motions and
interaction with objects, as well as multi-view RGB-D
imagery. (4) We train a new hand motion prior that
improves the smoothness and realism of the recon-
structed motion. (5) We explore automatic human-
object interaction detection by developing two base-
lines; their accuracy is around 80% on our dataset.

This article is an extension of our InterCap confer-
ence paper (Huang et al, 2022b); the two latter con-
tributions above are new over the conference paper,
while we also provide additional discussion and tech-
nical details. Our InterCap data and code are available
at https://intercap.is.tue.mpg.de.

2 Related Work
There is a large literature on estimating 3D human
pose and shape from images or videos (Bogo et al,
2016; Pavlakos et al, 2019; Choutas et al, 2020;
Kanazawa et al, 2018; Kocabas et al, 2020; Varol et al,
2017; Mehta et al, 2017; Omran et al, 2018; Kolo-
touros et al, 2019; Kanazawa et al, 2019; Rempe et al,
2021; Dwivedi et al, 2024). For an exhaustive discus-
sion, please see the surveys by (Tian et al, 2022; Wang
et al, 2021; Sarafianos et al, 2016). Here we focus
on the work most closely related to ours, particularly
as it concerns, or enables, capturing human-object
interaction.

MoCap from Multi-view Videos and IMUs.
Markerless MoCap from multi-view videos (Liu et al,
2011; De Aguiar et al, 2008; Huang et al, 2017, 2022a;
Joo et al, 2018) is widely studied and commercial
solutions exist (e.g., Theia Markerless, DeepMotion,
The Captury). Compared with traditional marker-
based MoCap, markerless MoCap offers advantages
of convenience, applicability in outdoor environments,
non-intrusiveness, and greater flexibility. However,
traditional MoCap methods, both marker-based and
markerless ones, focus on extracting a 3D skeleton.
This is useful for several applications, such as biome-
chanics, gaming or fitness. However, skeletons do not
suffice for our goal of reasoning about body-scene
contact. To enable that, we need to capture the full
body surface.

Various 3D human representations have been pro-
posed, with recent work focused on learning a para-
metric mesh-based model of body shape from large-
scale collections of 3D scans (Anguelov et al, 2005;
Loper et al, 2015; Romero et al, 2017; Pavlakos et al,
2019; Osman et al, 2020; Xu et al, 2020; Osman et al,
2022). Here we use the SMPL-X model (Pavlakos
et al, 2019) because it contains fully-articulated hands,
which are critical for reasoning about object manip-
ulation. The body parameters are often estimated by
fitting the 3D generative model to various 2D cues,
such as joints detected by neural networks (Cao et al,
2019; Wei et al, 2016; Newell et al, 2016) or silhou-
ettes (Rhodin et al, 2016; Xu et al, 2018; Alldieck
et al, 2018). Though effective, these monocular video-
based methods suffer from depth ambiguity and occlu-
sions. To address this, researchers combine IMUs with
videos to obtain better results (von Marcard et al,
2018; Pons-Moll et al, 2010), reaching even real-time
performance (Malleson et al, 2017).

Many methods estimate 3D bodies from multi-
view images but focus on skeletons and not 3D bodies
(He et al, 2020; Iskakov et al, 2019; Qiu et al, 2019;
Tu et al, 2020; Dong et al, 2019, 2021a; Zhang et al,
2020b). Recent work addresses 3D body shape esti-
mation from multiple views (Huang et al, 2017; Dong
et al, 2021b; Zhang et al, 2021b). Most related to
our work are two recent datasets. The RICH dataset
(Huang et al, 2022a), fits SMPL-X bodies to multi-
view RGB videos taken both indoors and outdoors.
The method uses a detailed 3D scan of the scene and
models the contact between the body and the world.
RICH does not include any object motion; the scenes
are completely rigid. In contrast, BEHAVE (Bhatna-
gar et al, 2022) contains SMPL bodies interacting with
3D objects that move. We go beyond this to integrate
novel contact constraints and to capture hand pose,
which is critical for human-object interaction. More-
over, BEHAVE focuses on large objects like boxes and
chairs, whereas we have a wider range of object sizes,
including smaller objects like cups.

Human-Object Interaction. There has been a
lot of work on modeling or analyzing human-object
interactions (Yao and Fei-Fei, 2010; Hamer et al,
2009; Oikonomidis et al, 2011; Rogez et al, 2015;
Tzionas et al, 2016; Hampali et al, 2020; Hasson
et al, 2019; Karunratanakul et al, 2020; Bhatnagar
et al, 2022). A detailed discussion is out of the scope
of this work. Here, we focus on modeling and ana-
lyzing human-object interaction in 3D space. Most
existing work, however, only focuses on estimating
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hand pose (Hasson et al, 2019; Hampali et al, 2020;
Hasson et al, 2020; Romero et al, 2010; Tzionas and
Gall, 2013), ignoring the strong relationship between
body motion, hand motion, and object motion. Recent
work considers whole-body motion. For example, the
GRAB (Taheri et al, 2020) and ARCTIC (Fan et al,
2023) datasets provide detailed whole-body motion
(in a parametric SMPL-X body format) and object
motion, for rigid and articulated objects, respectively.
Unfortunately, these methods are based on marker-
based MoCap and usually do not include videos.
Here we focus on tracking the whole-body motion,
object motion, and the detailed hand-object contact to
provide ground-truth 3D information in RGB video.

Joint Modeling of Humans and Scenes. There is
some prior work addressing human-object contact in
both static images and video. For example, PHOSA
(Zhang et al, 2020a) estimates a 3D body and a 3D
object with plausible interaction from a single RGB
image. Our focus here, however, is on dynamic scenes.
Motivated by the observation that natural human
motions always happen inside 3D scenes, researchers
have proposed to model human motion jointly with the
surrounding environment (Hassan et al, 2019; Savva
et al, 2016; Cao et al, 2020; Yi et al, 2022; Taheri
et al, 2024, 2022). In PROX (Hassan et al, 2019)
the contact between humans and scenes is explicitly
used to resolve ambiguities in pose estimation. The
approach avoids bodies interpenetrating scenes while
encouraging contact between the scene and nearby
body parts. Recently, IPMAN (Tripathi et al, 2023b)
extends PROX with a body-stability intuitive-physics
term. However, this works only for single frames and
interaction with the ground. Finally, HOT (Chen et al,
2023) detects contact automatically as 2D heatmaps in
the image, while DECO (Tripathi et al, 2023a) detects
3D body contact given a natural color image.

Prior work also infers the most plausible position
and pose of humans given a 3D scene (Zhang et al,
2020c; Li et al, 2019; Hassan et al, 2021). Recently,
MOVER (Yi et al, 2022) estimates the 3D scene and
the 3D human directly from a static monocular video
in which a person interacts with the scene. While
the 3D scene is ambiguous and the human motion is
ambiguous, by exploiting contact, the method resolves
ambiguities, improving the estimates of both the scene
and the person. Unfortunately, this assumes a static
scene and does not model hand-object manipulation.

Datasets. Traditionally, MoCap is performed
using marker-based systems inside lab environments.
An approach for this uses MoSh (Loper et al, 2014)

to fit a SMPL or SMPL-X body to the markers (Mah-
mood et al, 2019). An advanced version of this is
used for GRAB (Taheri et al, 2020), for capturing
interaction and contact with rigid objects, by also
fitting object meshes to markers. Such approaches
typically lack synchronized RGB videos. Recently,
ARCTIC (Fan et al, 2023) extends GRAB’s approach
not only for interactions with articulated objects,
but also for capturing synchronized multi-view RGB
videos (including an egocentric camera). Moreover,
MoYo (Tripathi et al, 2023b) captures SMPL-X
meshes and RGB videos together with synchro-
nized pressure measurements with an instrumented
Yoga mat. The HumanEva (Sigal et al, 2010) and
Human3.6M (Ionescu et al, 2014) datasets com-
bine multi-view RGB video capture with synchro-
nized ground-truth 3D skeletons from marker-based
MoCap. These datasets lack ground-truth 3D body
meshes, are captured in a lab setting, and do not con-
tain human-object manipulation. 3DPW (von Marcard
et al, 2018) is the first in-the-wild dataset that jointly
features natural human appearance in video and accu-
rate 3D pose. However, this dataset does not track
objects or label human-object interaction.

PiGraphs (Savva et al, 2016) and PROX (Has-
san et al, 2019) provide both 3D scenes and human
motions but are relatively inaccurate, because they
rely on a single RGB-D camera. This makes these
datasets ill-suited as evaluation benchmarks. The
recent RICH dataset (Huang et al, 2022a) addresses
many of these issues with indoor and outdoor scenes,
accurate multi-view capture of SMPL-X body meshes,
3D scene scans, and human-scene contact. However,
RICH is not appropriate for our task, as it does not
include object manipulation. An alternative approach
is the one used by GTA-IM (Cao et al, 2020) and
SAIL-VOS (Hu et al, 2019), which generate synthetic
human-scene interaction data using either 3D graph-
ics or 2D videos. These datasets feature high-accuracy
ground truth but lack visual realism.

In summary, we believe that a 3D human-object
interaction dataset needs to have accurate hand poses
to be useful, since hands are how people most
often interact with objects. We compare our InterCap
dataset with other ones in Tab. 1.

3 InterCap Method
Our goal is to accurately estimate the human and
object motion throughout a video, without using
instrumentation like IMUs or optical markers. Our
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Name Real Mov. Accur. Dext. RGB D. # of # of # of # of
Data Obj. Poses Hands Seq. Img. Videos Views Img. Subj.

GTA-IM (Cao et al, 2020) ✗ ✗ ✓ ✗ ✓ ✓ 119 14-67 1M 50
SAIL-VOS (Hu et al, 2019) ✗ ✗ ✗ ✗ ✗ ✗ 201 1 111K ✗
HumanEva (Sigal et al, 2010) ✓ ✗ ✓ ✗ ✓ ✗ 56 4/7 80K 4
Human3.6M (Ionescu et al, 2014) ✓ ✗ ✓ ✗ ✓ ✗ 165 4 3M 11
AMASS (Mahmood et al, 2019) ✓ ✗ ✓ ✗ ✗ ✗ 11.2K ✗ ✗ 344
3DPW (von Marcard et al, 2018) ✓ ✗ ✓ ✗ ✓ ✗ 60 1 51K 5
GRAB (Taheri et al, 2020) ✓ ✓ ✓ ✓ ✗ ✗ 1.33K ✗ ✗ 10
ARCTIC (Fan et al, 2023) ✓ ✓ ✓ ✓ ✓ ✗ 242 8+1 1.2M 9
MoYo (Tripathi et al, 2023b) ✓ ✗ ✓ ✗ ✓ ✗ 200 8 1.7M 1
PiGraphs (Savva et al, 2016) ✓ ✗ ✗ ✗ ✓ ✓ 63 1 100K 5
PROX (Hassan et al, 2019) ✓ ✗ ✗ ✗ ✓ ✓ 20 1 100K 20
RICH (Huang et al, 2022a) ✓ ✗ ✓ ✗ ✓ ✗ 142 6-8 577K 22
BEHAVE (Bhatnagar et al, 2022) ✓ ✓ ✓ ✗ ✓ ✓ 321 4 15K 8
InterCap (ours) ✓ ✓ ✓ ✓ ✓ ✓ 223 6 400K 10

Table 1 Dataset statistics. Comparison of InterCap to existing datasets. We define three categories: (top) synthetic data, (middle)
marker-based data, (bottom) markerless data. InterCap achieves a practical balance between accuracy and flexibility of deploying the camera
setup. Here “#” stands for “number”, “Obj.” for “Objects”, “Seq.” for “Sequences”, “Img.” for “Images”, and “Subj.” for “Subjects”.

markerless motion-capture method is built on top of
the PROX-D method (Hassan et al, 2019), which uses
a single RGB-D camera to track the human motion in a
known 3D scene. To improve the body tracking accu-
racy we extend this method to use multiple RGB-D
cameras; here we use the latest Azure Kinect cameras.
The motivation is that multiple cameras observing
the body from different angles give more informa-
tion about the human and object motion. Moreover,
commodity RGB-D cameras are much more flexible
to deploy out of controlled lab scenarios than more
specialized devices.

The key technical challenge lies in accurately esti-
mating the 3D pose and translation of the objects while
a person interacts with them. In this work we focus on
10 variously-sized rigid objects common in daily life,
such as cups and chairs. Being rigid does not make the
tracking of the objects trivial because of the occlusion
by the body and hands. This issue is more severe for
small handheld objects like a cup, despite using many
cameras. While there is a rich literature on 6 DoF
object pose estimation, much of it ignores hand-object
interaction. Recent work in this direction is promis-
ing but still focuses on scenarios that are significantly
simpler than ours, cf. (Sun et al, 2022).

Similar to previous work on hand and object pose
estimation (Hampali et al, 2020) from RGB-D videos,
in this work we assume that the 3D meshes of the
objects are known in advance. To this end, we first
gather the 3D models of these objects from the Inter-
net whenever possible and scan the remaining objects
ourselves. To fit the known object models to image
data, we first preform semantic segmentation, find the
corresponding object regions in all camera views, and
fit the 3D mesh to the segmented object contours

via differentiable rendering. Since heavy occlusion
between humans and objects in some views may make
the segmentation results unreliable, aggregating seg-
mentation from all views boosts the object tracking
performance.

In the steps above, both the subject and object
are treated separately and processing is conducted
per frame, with no temporal smoothness or contact
constraint applied. This inevitably produces jittery
motions and heavy penetration between objects and
the body. Making matters worse, our human pose esti-
mation exploits OpenPose for 2D keypoint detection,
which struggles when the object occludes the body or
the hands interact with it. To mitigate this issue and
still get reasonable body, hand and object pose in these
challenging cases, we manually annotate the frames
where the body or the hand is in contact with the
object, as well as the body, hand and object vertices
that are most likely to be in contact. This manual anno-
tation can be tedious; automatic detection of contact is
an open problem (we explore this here with early base-
lines). We then explicitly encourage the labeled body
and hand vertices to be in contact with the labeled
object vertices. We find that this straightforward idea
works well in practice, yielding reasonable hand and
object poses. More details are discussed below.

3.1 Multi-Kinect Setup
We use 6 Azure Kinects to track the human and
object together, deployed in a “ring” layout in an
office; see Fig. 2. Multiple RGB-D cameras provide
a good balance between body tracking accuracy and
applicability to real scenarios, compared with costly
professional MoCap systems like Vicon, or cheap and
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Fig. 2 The setup of our 6 Azure Kinect cameras in an indoor space;
the area where the subject moves is highlighted with green color.

convenient but not-so-accurate monocular RGB cam-
eras. Moreover, this approach does not require apply-
ing any markers, making the images natural. Intrinsic
camera parameters are provided by the manufacturer.
Extrinsic camera parameters are obtained via cam-
era calibration with Azure Kinect’s API (Microsoft,
2022). However, these can be a bit noisy, as non-
neighbouring cameras in a sparse “ring” layout don’t
observe the calibration board well at the same time.
Thus, we manually refine in MeshLab the extrinsics by
comparing the point clouds for neighbouring cameras
for several iterations. The hardware synchronization
of Azure Kinects is empirically reasonable. Given the
calibration information, we choose a camera’s coor-
dinate frame as the master frame and transform the
point clouds from the other frames into the master one,
which is where we fit the SMPL-X and object models.

3.2 Sequential Object-Only Tracking
Object Segmentation. To track an object during
interaction, we need reliable visual cues about it
to compare with the 3D object model. To this
end, we perform semantic segmentation by applying
PointRend (Kirillov et al, 2020) to the images. We
then extract the object instances that correspond to the
categories of our objects; for examples see Fig. 3. We
assume that the subject interacts with a single object.
Note that, in contrast to previous approaches where the
objects occupy a large portion of the image (Hampali
et al, 2020; Hassan et al, 2019; Tzionas et al, 2016;
Oikonomidis et al, 2011), in our case the entire body
is visible, thus, the object takes up a small part of the
image and is often occluded by the body and hands;
our setting is much more challenging. We observe that
PointRend works reasonably well for large objects like
chairs, even with heavy occlusion between the object
and the human, while for small objects, like a bottle or
a cup, it struggles significantly due to occlusion.

In extreme cases, it is possible for the object to not
be detected in most of the views. But even when the
segmentation is good, the class label for the objects

Fig. 3 Object detection and segmentation via PointRend (Kirillov
et al, 2020) for all views; images cropped for visualization purposes.

may be wrong. To resolve this, we take two steps: (1)
For every frame, we detect all possible object segmen-
tation candidates and their labels. This step takes place
offline and only once. (2) During the object tracking
phase, for each view, we compare the rendering of the
tracked object from the ith frame with all the detected
segmentation candidates for the (i + 1)th frame, and
preserve only the candidate with the largest over-
lap ratio. This render-compare-and-preserve operation
takes place iteratively during tracking; we empirically
find that this works well in practice.

Object Tracking. Given object masks via seman-
tic segmentation over the whole sequence, we track
the object by fitting its model to observations via dif-
ferentiable rendering (Kato et al, 2018; Loper and
Black, 2014). This is similar to past work for hand-
object tracking (Hampali et al, 2020). We assume that
the object is rigid and its mesh is given. The configu-
ration of the rigid object in the tth frame is specified
via a 6D rotation and translation vector ξ. For initial-
ization, we manually obtain the configuration of the
object for the first frame by matching the object mesh
to the measured point clouds; the rest of the frames are
processed automatically. Let RS and RD be functions
that render a synthetic mask and depth image for the
tracked 3D object mesh, M . Let also S = {Sν} be the
observed object masks andD = {Dν} be correspond-
ing depth values for the current frame, where ν is the
camera view. Then, we minimize EO(ξ; S,D) =∑

view ν

λsegm∥(RS(ξ,M, ν)− Sν) ∗ Sν∥2F+

λdepth∥(RD(ξ,M, ν)−Dν) ∗ Sν∥2F ,
(1)

where the two terms compute how well the rendered
object mask and depth image match the detected mask
and observed depth over all views; the symbol ∗ is
an element-wise multiplication, ∥.∥F is the Frobenius
norm, and λsegm and λdepth are steering weights set
empirically. For simplicity, we assume that transfor-
mations from the master to other camera frames are
encoded in the rendering functionsRS , RD; we do not
denote these explicitly here.



Springer Nature 2021 LATEX template

Article Title 7

3.3 Sequential Human-Only Tracking
We estimate body shape and pose over the whole
sequence from multi-view RGB-D videos in a per-
frame manner. This is similar in spirit with PROX-D
(Hassan et al, 2019), but, in our case, there is no
3D scene constraint and multiple cameras are used.
The human pose and shape are optimized indepen-
dently in each frame. We use the SMPL-X (Pavlakos
et al, 2019) model to represent the 3D human body.
SMPL-X is a function that returns a water-tight mesh
given parameters for shape, β, pose, θ, facial expres-
sion, ψ, and translation, γ. We follow the common
practice of using a 10-dimensional space for shape, β,
and a 32-dimensional latent space in VPoser (Pavlakos
et al, 2019) to present body pose, θ.

We minimize the loss defined below. For each
frame we essentially extend the major loss terms used
in PROX (Hassan et al, 2019) to multiple views:
EB(β, θ, ψ, γ; K,Jest) = EJ + λDED+

λθbEθb + λθhEθh + λθfEθf+

λαEα + λβEβ + λEEE + λPEP ,

(2)

where EE , Eβ , Eθb , Eθh , Eθf are prior loss terms for
facial expressions (E), whole-body shape (β), and for
the pose (θ) of the body (b), hand (h), and face (f). And
Eα is a prior for extreme elbow and knee bending; for
detailed definitions see (Hassan et al, 2019). EJ is a
2D keypoint re-projection loss:

EJ (β, θ, γ; K,Jest) =∑
view ν

∑
joint i

kνi w
ν
i ρJ

(
Π ν
K

(
Rθγ(J(β)i)

)
− Jν

est,i

)
, (3)

where θ = {θb, θh, θf}, ν and i iterate through views
and joints, kνi and wν

i are the per-joint weight and
detection confidence, ρJ is a robust Geman-McClure
error function (Geman and McClure, 1987), Π ν

K is
the projection function with K camera parameters,
Rθγ(J(β)i) are the posed 3D joints of SMPL-X, and
Jν
est,i the detected 2D joints. The term ED is:

ED(β, θ, γ; K) =
∑

view ν

∑
p∈P ν

min
v∈V ν

b

∥v − p∥, (4)

where P ν is Azure Kinect’s segmented point cloud
for the ν th view, and V ν

b are SMPL-X vertices that
are visible in this view. This term measures how far
the estimated body mesh is from the combined point
clouds, so that we minimize this discrepancy. Note
that, unlike PROX, we have multiple point clouds
due to the multiple camera views, i.e., our ED is a
multi-view extension of PROX’s (Hassan et al, 2019)
loss. For each view we dynamically compute the vis-
ible body vertices, and “compare” them against the
segmented point cloud for that view.

Fig. 4 Virtual marker configuration used in our work to train hand
motion priors on the GRAB dataset (Taheri et al, 2020). The blue
spheres indicate the vertices chosen as the proxies for the markers.

Fig. 5 Annotation of likely body contact areas (red color).

Finally, the term EP penalizes self-
interpenetration of the SMPL-X body mesh; see
PROX (Hassan et al, 2019) for a more detailed and
formal definition of this:

EP(θ, β, γ) = EPself
(θ, β). (5)

3.4 Joint Human-Object Tracking Over
All Frames

We treat the result of the first rounds of optimiza-
tion (Sec. 3.2, 3.3) as initialization for refinement via
joint optimization of the body and the object over all
frames, subject to contact constraints.

For this we fix the body shape parameters, β, as
the mean body shape computed over all frames from
the first stage, as done in (Huang et al, 2017). Then,
we jointly optimize the object pose and translation, ξ,
body pose, θ, and body translation, γ, over all frames.
We add a temporal smoothness loss to reduce jitter for
both the human and the object. We also penalize the
body-object interpenetration, as done in PROX (Has-
san et al, 2019). A key difference is that in PROX the
scene is static, while here the object is free to move.
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Fig. 6 The objects of our InterCap dataset. Left: Color photos. Right: Annotations (shown in red) for likely contact areas on the objects.

To encourage contact, we annotate the body areas
that are most likely to be in contact with the objects
and, for each object, we annotate vertices most likely
to be contacted. These annotations are shown in Fig. 5
and Fig. 6-right, respectively, in red. We also anno-
tate the range (frame IDs) of sub-sequences where the
body is in contact with objects, and encourage con-
tact between them explicitly to get reasonable tracking
even when there is heavy interaction and occlusion
between hands and objects. Note that the latter manual
annotation is lightweight, as only the range of frames
where contact takes place is recorded.

Formally, we perform global optimization over all
T frames, and minimize a loss, E, that is composed
of an object (O) fitting loss, EO, a body (B) fitting
loss, EB , a motion smoothness prior (Zhang et al,
2021a) loss, ES , and a loss penalizing object acceler-
ation, EA. We also use a ground support loss, EG , that
encourages the human and the object to be above the
ground plane, i.e., to not penetrate it. Moreover, we
use a body-object contact loss, EC , that attaches the
body to the object for frames with contact. Last, we
use two smoothness terms EL and ER for the left and
right hand, respectively; note that, because hands are
smaller than other body parts, the keypoint detections
and depth values are noisy. This makes them more
prone to jitter. The loss E is defined as:

E =
1

T

∑
frame t

[
EO(Ξt; St,Dt) + EB(β

∗
,Θt,Ψt,Γt; Jest )

]
+

1

T

∑
frame t

[
EP(Θt, β

∗
,Γt) + EC(β

∗
,Θt,Ψt,Γt,Ξt,Mo)

]
+

λG

T

∑
frame t

[
EG(β

∗
,Θt,Ψt,Γt) + EG′ (Ξt,Mo)

]
+

λQ

T

∑
frame t

[
Qt ∗ EC′ (β

∗
,Θt,Ψt,Γt,Ξt,M

′
o)

]
+

λAEA(Ξ, T,Mo) + λSES(Θ,Ψ,Γ; β
∗
, T )+

λS

[
EL(Θ,Ψ,Γ; β

∗
, T ) + ER(Θ,Ψ,Γ; β

∗
, T )

]
,

(6)

where for all frames t = {1, . . . , T} of a sequence,
Θ = {θt} and Γ = {γt} are the body poses and

translations, respectively, Ψ = {ψt} are the facial
expressions, Ξ = {ξt} is the object rotations and
translations, S = {St} and D = {Dt} are masks and
depth patches, Jest = {Jest,t} are detected 2D key-
points, Mo is the object mesh, and β∗ the mean body
shape. The various energy terms are described in detail
in the following. The parameters λG , λQ, λS , and λA
are steering weights that are set empirically.

The object fitting term, EO, comes from Eq. 1 and
the body fitting term, EB , comes from Eq. 2, while,
under the hood, both go through all views, ν. The self-
penetration term, EP , comes from Eq. 5.

The ground-support terms, EG and EG′ , build on
the fact that no human or object vertex, respectively,
should be below the ground plane, and penalize any
vertex penetrating the ground. We estimate the ground
plane surface by fitting a plane to chosen floor points
in the observed point clouds. Let pG be a point on the
ground plane and nG be the corresponding normal;
both are defined once and offline. Then, the term EG
for body-ground penetration is defined as:

EG(β
∗,Θt,Ψt,Γt) =∥∥∥RL(nG ∗

(
pG −W (β∗,Θt,Ψt,Γt)

))∥∥∥2, (7)

whereRL is the ReLU function, and ∗ here is the inner
product of vectors. The term EG′ for object-ground
penetration follows a similar formulation:

EG′(Ξt,Mo) =
∥∥∥RL(nG ∗ (pG −W ′(Ξt,Mo)))

∥∥∥2. (8)

where W ′ denotes the operation of first rigidly
deforming the object according to Ξt and then con-
catenating the vertices into a single vector.

The contact term, EC , encourages the annotated
likely contact areas of the body (see Fig. 5) to contact
the object as in PROX (Hassan et al, 2019):

EC(β
∗,Θt,Ψt,Γt,Ξt,Mo) =

CD
(
H
(
W (Θt,Ψt,Γt, β

∗)
)
,

H ′(W ′(Ξt,Mo)
))
,

(9)
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where CD refers to the Chamfer Distance function,
H is a function that returns only the annotated body-
contact vertices of Fig. 5, H ′ returns for these body-
contact vertices the closest points on the object (taking
into account the entire object), W ′ deforms rigidly
the object as explained in the previous paragraph, and
W similarly (non-rigidly) deforms the SMPL-X mesh
and concatenates the vertices into a single vector. Note
that this term considers the entire object for estab-
lishing “general” contacts, but the hands are likely to
contact only certain object parts.

Then, the contact term, EC′ , focuses only on the
hands and only on a subset of each object according
to its affordances. Since grasps are delicate, they need
a higher accuracy than “general” contact (described
in the above paragraph), thus, we need to accurately
specify the frames that contain such contact. Thus,
we manually annotate binary vectors Q = {Qt},
t = {1, . . . , T}; Qt is set to 1 if in the tth frame
there is contact with a “graspable” object, and set to 0
otherwise.

The vertex acceleration term, EA, is a simple
hand-crafted motion prior that encourages smooth
motion trajectories for the object:

EA(Ξ; T,Mo) =
1

T − 2

T−1∑
t=2

∥∥∥W ′(Ξt−1,Mo)+

W ′(Ξt+1,Mo)− 2 ∗W ′(Ξt,Mo)
∥∥∥2

(10)

where Mo is the object mesh, and W ′ deforms the
object as described above.

The motion smoothness loss, ES , penalizes abrupt
position changes for body vertices. ES employs the
learned motion prior of LEMO (Zhang et al, 2021a)
and is defined as:

ES(Θ,Ψ,Γ, A; T, β
∗) =

∑T−1
t=1

∥∥zoptt+1 − zoptt

∥∥2
Q(T − 2)

,

(11)

where T is the sequence length, and Q is a constant
representing the number of virtual body-markers of
LEMO; see the paper of Zhang et al (2021a) for an
explanation (note that they use a different symbol).
Moreover, zoptt is the latent vector for the t-th frame
from LEMO’s pre-trained motion auto-encoder (FS):

Zopt = FS(X
opt
∆ ) = [zopt1 , zopt2 , ..., zoptT−1], (12)

where Xopt
∆ is a (concatenated) vector contain-

ing the temporal position change of LEMO’s vir-
tual body-markers. For more details, please refer to
LEMO (Zhang et al, 2021a).

Hands typically suffer more from jitter compared
to the rest of the body, due to noisy keypoint detec-
tions and depth values. Therefore, we add two addi-
tional smoothness loss terms for the left hand, EL,
and the right hand, ER. These are defined similarly
to the LEMO-style ES (see above paragraph), and
are trained separately for the left and right hand on
the GRAB (Taheri et al, 2020) dataset, which con-
tains accurate and realistic hand grasping motions.
We adopt the hand marker configuration proposed in
GRAB, as shown in Fig. 4. We use the default network
structure and parameter setting as in LEMO (and our
ES term described above). These two terms share the
same steering-weight value as ES in Eq. 6.

3.5 Optimization Details
Similar to the per-frame optimization in the first stages
(Sec. 3.2, 3.3), for the second stage (Sec. 3.4) we
use the L-BFGS optimization method (Nocedal and
Wright, 2006) with strong Wolfe line search. The
optimization stops when the loss plateaus (relative
decrease less than a threshold) or when the maximum
number of steps is reached; see values in the code.

For the second stage, the body shape parameters
are fixed as the mean of all per-frame shape param-
eters obtained in the first stage. Moreover, the body
pose for each frame is initialized with the correspond-
ing per-frame pose obtained in the first stage.

In our experiments the first stages take 3 to 5
minutes for a single frame, while trivially support-
ing parallel per-frame computation. In contrast, the
second stage takes around 20 hours for 1000 frames.

4 Automatic Interaction Detection
Contact has been used to improve 3D human pose
reconstruction (Hassan et al, 2019; Zhang et al, 2021a;
Rempe et al, 2021). Data-driven methods are still
at their infancy (Chen et al, 2023; Shimada et al,
2022). Instead, typically a distance heuristic is used
to “detect” contact (Hassan et al, 2019). However,
our setting features several challenging objects with a
small size, e.g., a cup, or thin parts, e.g., an umbrella.
In these cases, the initially reconstructed hands and
objects (Sec. 3.2, 3.3) are not accurate enough for
heuristics to work successfully. Thus, we manually
label each frame by visually inspecting the multi-
view images. Though effective, this practice does not
scale. Thus, below we explore ways for automatic
interaction “detection” with two baselines.



Springer Nature 2021 LATEX template

10 Article Title

“2D” baseline. A simple way is to compare the
segmentation masks of the human and the object for
all views of a frame. More formally, for each view, ν,
of a certain frame, we detect the binary body mask, Sb

ν ,
and object mask, So

ν , where a value of 1 denotes that
the pixel belongs to the body/object. Then, the number
of intersecting mask pixels for the view ν is given by:

xν = ∥Sb
ν ⊙ So

ν∥2F , (13)

where ⊙ is the Hadamard product and F the Frobe-
nius norm. Then, a binary flag, fν , indicating whether
there is contact for the ν-th view can be obtained by
comparing xν to an empirically-set threshold Tview:

fν =

{
1, if xν > Tview

0, otherwise.
(14)

A frame contains contact if the number of its views
with contact is bigger than an empirically-set thresh-
old, Tframe, namely:

∑
ν fν > Tframe. This method

depends on the quality of mask segmentation, the
image resolution, camera intrinsics and distance of the
subject to the camera. When object segmentation fails
due to heavy occlusions, the method is not applicable.
In our settings, we set Tview = 10 and Tframe = 2.

“3D” baseline. The first optimization stages
(Sec. 3.2, 3.3) produce an initial per-frame 3D recon-
struction for both the human and the object. Thus,
another criterion for detecting contact, can be whether
the 3D meshes of the human and object lie close
enough to each other in 3D space. More formally,
given the reconstructed 3D body mesh,Mb, and object
mesh, Mo, for a certain frame, we consider that these
are in contact when the closest Chamfer distance
between them is below an empirically-set threshold
Td = 1mm, namely: min(CD(Mb,Mo)) < Td.

5 InterCap Dataset
We use the proposed InterCap algorithm (Sec. 3) to
capture the InterCap dataset, which uniquely features
whole-body interactions with objects in multi-view
RGB-D videos.

Data-capture Protocol. We use 10 everyday
objects, shown in Fig. 6-left, that vary in size and
“afford” different interactions with the body, hands or
feet; we focus mainly on hand-object interactions. We
recruit 10 subjects (5 males and 5 females) that are
between 25-40 years old. The subjects are recorded
while interacting with 7 or more objects, according to
their time availability. Subjects are shown a sample
motion for each object and are instructed to interact

with objects as naturally as possible. However, they
are asked to avoid very fast interactions that cause
severe motion blur (Azure Kinect supports only up
to 30 FPS), or misalignment between the RGB and
depth images for each Kinect (due to technicalities
of RGB-D sensors). We capture up to 3 sequences
per object depending on object shape and functional-
ity, and by picking an interaction intent from the list
below, as in GRAB (Taheri et al, 2020):

• ”Pass”: The subject passes the object on to another
imaginary person standing on their left/right side; a
graspable area needs to be free for the other person
to grasp.

• ”Check”: The subject inspects visually the object
from several viewpoints by first picking it up and
then manipulating it with their hands to see several
sides of it.

• ”Use”: The subject uses the object in a natural
way that “agrees” with the object’s affordances and
functionality for everyday tasks.

We also capture each subject performing a freestyle
interaction of their choice. All subjects gave informed
written consent to publicly share their data for
research.

4D Reconstruction. Our InterCap method (Sec. 3)
takes as input multi-view RGB-D videos and out-
puts 4D meshes for the human and object, i.e.,
3D meshes over time. Humans are represented as
SMPL-X meshes (Pavlakos et al, 2019), while object
meshes are acquired with an Artec hand-held scan-
ner. Some dataset frames along with the reconstructed
meshes are shown in Fig. 1 and Fig. 7; see also the
video on our website. Reconstructions look natural,
with plausible contact between the human and the
object.

Dataset Statistics. InterCap has 223 RGB-D
videos with a total of 67,357 multi-view frames
(6 RGB-D images each). For a comparison with other
datasets, see Tab. 1.

6 Experiments
Contact Heatmaps. Figure 8-left shows contact
heatmaps on each object, across all subjects. We fol-
low the protocol of GRAB (Taheri et al, 2020), which
uses a proximity metric on reconstructed human and
object meshes. First, we compute per-frame binary
contact maps by thresholding (at 4.5mm) the distances
from each body vertex to the closest object surface
point. Then, we integrate these maps over time (and
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Fig. 7 Samples from our InterCap dataset, drawn from four sequences with different subjects and objects. The estimated 3D object and
SMPL-X human meshes have plausible contacts that agree with the input images. Best viewed zoomed in.

subjects) to get “heatmaps” encoding contact likeli-
hood. InterCap reconstructs human and object meshes
accurately enough so that contact heatmaps agree with
object affordances, e.g., the handle of the suitcase,
umbrella and tennis racquet are likely to be grasped,
the upper skateboard surface is likely to be con-
tacted by the foot, and the upper stool surface by the
buttocks.

Figure 8-right shows heatmaps on the body, com-
puted across all subjects and objects. Heatmaps show
that most of InterCap’s interactions involve mainly the
right hand. Contact on the palm looks realistic, and
is concentrated on the fingers and MCP joints. The
“false” contact on the dorsal side is attributed to our
challenging camera setup and interaction scenarios, as
well as some reconstruction jitter.

Penetration. We evaluate the penetration between
human and object meshes for all sequences of our
dataset. We follow the protocol of GRAB et al. (Taheri
et al, 2020); we first find the “contact frames” for
which there is at least minimal human-object contact,
and then report statistics for these. In Fig. 9-left we
show the distribution of penetrations, i.e., the num-
ber of “contact frames” (Y axis) with a certain mesh

penetration depth (X axis). In Fig. 9-right we show
the cumulative distribution of penetration, i.e., the per-
centage of “contact frames” (Y axis) for which mesh
penetration is below a threshold (X axis). Roughly
62% of “contact frames” have ≤ 7mm, 80% ≤ 9.8
mm, and 98% ≤ 35 mm mean penetration. The mean
penetration depth over all “contact frames” is 7.2
mm. In theory, being in contact means zero distance
between the deformed (compressed) body part and the
object. In practice, as SMPL-X does not model defor-
mation due to contact, penetration between body parts
and the object is unavoidable. We empirically find that
this amount of penetration is normally not noticeable,
thus acceptable for most applications that value visual
naturalness more than physical correctness.

Fitting Accuracy. For every frame, we compute
the distance from each mesh vertex to the closest
point-cloud (PCL) point; for each human or object
mesh we take into account only the respective PCL
area obtained with PointRend (Kirillov et al, 2020)
segmentation. The mean vertex-to-PCL distance is
19.05 mm for the body, and 18.14 mm for objects. In
comparison, PROX-D (Hassan et al, 2019), our base
method, achieves an error of 13.02 mm for the body.
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Left hand
(inner)

Left hand
(outer)

Right hand
(inner)

Right hand
(outer)

Fig. 8 Contact heatmaps for each object (across all subjects) and the human body (across all objects and subjects). Contact likelihood is color-
coded; high likelihood is shown with red, and low with blue. Color-coding is normalized separately for each object, the body, and each hand.

Baseline Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8 Sub 9 Sub 10 Mean

“2D”
71% 68% 71% 73% 69% 59% 67% 60% 75% 69% 68%
98% 94% 93% 99% 97% 85% 91% 100% 96% 98% 95%

“3D”
81% 77% 72% 76% 70% 82% 83% 82% 78% 73% 77%

100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Table 2 Evaluation of automatic interaction detection (Sec. 4) on InterCap. For each cell we report two metrics: (top) the detection accuracy,
namely, the percentage of frames correctly classified, and (bottom) the percentage of frames where the method is applicable, by successfully
segmenting both the body and the object (sometimes segmentation fails, mostly for the object). The manual contact annotation from InterCap
is used as the ground truth to evaluate the proposed two baseline methods: “2D” refers to the first baseline of Sec. 4 that is purely based on 2D
visual cues, while “3D” refers to the second baseline that uses the initial 3D body and object mesh reconstructions (from Sec. 3.2 and 3.3).
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Fig. 9 Statistics of human-object mesh penetration for all InterCap sequences. Left: The number of frames (Y-axis) with a certain penetration
depth (X-axis). Right: The percentage of frames (Y-axis) with a penetration depth below a threshold (X-axis). In the legend, “Max”, “Mean” and
“Median” refer to three ways of reporting the penetration for each frame, i.e., taking the maximum, mean and median value of the penetration
depth of all vertices, respectively.

Fig. 10 Ablation of contact term. Each pair of images shows results
wo/ (red) and w/ (green) the contact term. Encouraging contact
results in more natural hand poses and hand-object grasps.

Baseline Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Mean

“2D” 37% 62% 59% 56% 90% 63%
100% 100% 100% 100% 56% 94%

Table 3 Evaluation of automatic interaction detection (Sec. 4) on
the validation set of RICH (Huang et al, 2022a). We report the two
metrics of Tab. 2. Note that there is no “3D” baseline for RICH, as
estimating the full 3D scene from 2D images is too challenging.

This is expected since PROX-D is free to change the
body shape to fit each individual frame, while our
method estimates a single body shape for the whole
sequence. SMPLify-X (Pavlakos et al, 2019) achieves
a mean error of 79.54 mm, for VIBE the mean error is
55.59 mm, while ExPose gets an mean error of 71.78
mm. These numbers validate the effectiveness of our
method for body tracking. Note that these methods
are based on monocular RGB images only, so there

is not enough information for them to accurately esti-
mate the global position of the 3D body meshes. Thus
we first align the output meshes with the point clouds,
then compute the error. Note that the error is bounded
from below for two reasons: (1) it is influenced by
factory-design imperfections in the synchronization of
Azure Kinects, and (2) some vertices reflect body/ob-
ject areas that are occluded during interaction and their
closest PCL point is a wrong correspondence. Despite
this, InterCap empirically estimates reasonable bod-
ies, hands and objects in interaction, as reflected in the
contact heatmaps and penetration metrics above.

The hand smoothness terms EL and ER in Eq. 6
help recover more natural and less jittery hand motion
at the cost of increased run-time (roughly 15%
slower), compared with a simple acceleration penalty
loss. One may chose one over the other, depending on
the application and its major need (speed or accuracy).

Ablation of the Contact Term. Figure 10 shows
results with-/out our term that encourages body-
object contact; visualization“zooms” into hand-object
grasps. We see that encouraging contact yields more
natural hand poses and fewer interpenetrations. This
is backed up by the contact heatmaps and penetration
metrics discussed above.

Ablation of the Temporal Smoothing Term.
Figure 11 shows results with-/out our temporal
smoothing term. The plots show the acceleration of
a randomly-chosen vertex on the main body (upper
plot) and the right hand (bottom plot). For each plot,
we show results for 3 different motions, denoted with
a different color. The solid lines show results without
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Fig. 11 Ablation of the temporal smoothing term. Acceleration of
a random vertex on the back of the main body (upper plot) and the
right hand (bottom plot) with (dashed line) and without (solid line)
temporal smoothing for a random sequence over the first 175 frames.
Dashed lines (w/ temporal smoothing) correspond to lower accelera-
tion, i.e., less motion jitter. The average acceleration value (in m/s2

for 30 fps sequences) for the upper figure is 564.75 (wo/ smooth-
ing) and 148.69 (w/ smoothing), while for the lower figure it is
343.33 (wo/ smoothing) and 101.20 (w/ smoothing). Thus, smooth-
ing reduces jitter, however, there is still room for improvement.

the temporal smoothing term. The dashed lines of the
same color show the same motions with the smooth-
ing term; these are clearly smoother. We empirically
find that a learned motion prior in the style of Zhang
et al (2021a), for both the case of the body and the
hands, produces more natural motion dynamics than
handcrafted ones (Huang et al, 2017).

Discussion on Jitter. Despite the smoothing, some
jitter is still inevitable. We attribute this to two factors:
(1) OpenPose and PointRend are empirically rela-
tively sensitive to occlusions and illumination (e.g.,
reflections, shadows, poor lighting); the data terms for
fitting 3D models depend on these. (2) Azure Kinects
have a reasonable synchronization, yet, there is still
a small delay among cameras to avoid depth-camera
interference; the point cloud “gathered” across views

is a bit “patchy” as information pieces have a small
time difference. The jitter is more intense for hands
relatively to the body, due to their low image reso-
lution, motion blur, and coarse point clouds. Adding
our learned motion priors for the main body and the
hands encourages smoother and more natural motion
dynamics, however, balancing the data and prior terms
in the loss to also preserve contacts is tricky. Despite
the aforementioned challenges, InterCap is a good step
towards capturing everyday whole-body interactions
with commodity hardware. Future work will study
advanced motion and grasping priors.

Towards Automatic Interaction Detection.
Although we manually annotate the parts of the
sequences where the subject interacts with the object,
this does not scale. Thus, here we explore the auto-
matic detection of interaction in image sequences with
two baselines, as described in Sec. 4. We evaluate
the baselines on our InterCap dataset and the RICH
dataset (Huang et al, 2022a); the latter features accu-
rate poses and contact between humans and a static
scene. We show the results in Tab. 2 and 3, where
“2D” denotes the first and “3D” the second baseline of
Sec. 4. We see that the “3D” baseline outperforms the
“2D” one, for both the detection accuracy (percentage
of correctly classified frames) and the percentage of
frames for which the method is applicable (due to
effectively segmenting both the body and object).
However, the average accuracy is less than 80%, and
the maximal accuracy for all subjects is only slightly
greater than 80%. This is not so surprising, given
that accurate contact detection is challenging even
for human annotators. For the RICH dataset, where
no 3D meshes of (segmented) objects are available,
only the “2D” baseline is applicable. In this case the
average accuracy is around 60%. We conclude that an
automatic detection of contact is promising, but more
work to this end is necessary in the future.

7 Discussion
Here we focus on whole-body human interaction with
everyday rigid objects. We present a novel method,
called InterCap, that reconstructs such interactions
from multi-view full-body videos, including natural
hand poses and contact with objects. With this method,
we capture the novel InterCap dataset, with a variety
of people interacting with several common objects.
The dataset contains reconstructed 3D meshes for the
whole body and the object over time (i.e., 4D meshes),
as well as plausible contacts between them. In contrast
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to most previous work, our method uses no special
devices like optical markers or IMUs, but only sev-
eral consumer-level RGB-D cameras. Our setup is
lightweight and has the potential to be used in daily
scenarios. Our method recovers reasonable hand poses
even under strong occlusions from the object.
Extensions over Huang et al (2022b): We introduce
a new hand smoothness model to reduce the jitter com-
monly observed for hands; due to the hands’ small
size, both 2D joint detections and depth observations
tend to be noisy. We also explore simple automatic
contact detection based on 2D or 3D distances, but
conclude that a more involved approach is necessary.
Future work: In future work, we will study recon-
structing (Taheri et al, 2020; Fan et al, 2023; Bhat-
nagar et al, 2022; Lepetit, 2020) interactions with
smaller objects and dexterous manipulation, as well
as synthesizing such interactions (Taheri et al, 2024;
Braun et al, 2024; Wu et al, 2022). Finally, we will
explore learning-based contact detection from images
(Chen et al, 2023; Tripathi et al, 2023a; Brahmbhatt
et al, 2020; Narasimhaswamy et al, 2020).
Code and data: See https://intercap.is.tue.mpg.de.
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