
Customized Multi-Person Tracker

Liqian Ma1? Siyu Tang2,3? Michael J. Black2 Luc Van Gool1,4

1 KU-Leuven/PSI, TRACE (Toyota Res in Europe)
{liqian.ma, luc.vangool}@esat.kuleuven.be
2 Max Planck Institute for Intelligent Systems

{stang, black}@tuebingen.mpg.de
3 University of Tübingen
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Abstract. This work addresses the task of multi-person tracking in
crowded street scenes, where long-term occlusions pose a major challenge.
One popular way to address this challenge is to re-identify people before
and after occlusions using Convolutional Neural Networks (CNNs). To
achieve good performance, CNNs require a large amount of training data,
which is not available for multi-person tracking scenarios. Instead of
annotating large training sequences, we introduce a customized multi-
person tracker that automatically adapts its person re-identification CNNs
to capture the discriminative appearance patterns in a test sequence. We
show that a few high-quality training examples that are automatically
mined from the test sequence can be used to fine-tune pre-trained CNNs,
thereby teaching them to recognize the uniqueness of people’s appearance
in the test sequence. To that end, we introduce a hierarchical correlation
clustering (HCC) framework, in which we utilize an existing robust
correlation clustering tracking model, but with different graph structures
to generate local, reliable tracklets as well as globally associated tracks. We
deploy intuitive physical constraints on the local tracklets to generate the
high-quality training examples for customizing the person re-identification
CNNs. Our customized multi-person tracker achieves state-of-the-art
performance on the challenging MOT16 tracking benchmark.

Keywords: Tracking · Person re-identification · Adaptation.

1 Introduction

Tracking multiple people in unconstrained videos is crucial for many vision
applications, e.g. autonomous driving, visual surveillance, crowd analytics, etc.
Recent approaches for multiple-person tracking tend to use some form of tracking-
by-detection [2, 21,23,33,34], whereby a state-of-the-art person detector localizes
the targets in each frame. Then the task of the tracker is to associate those
detections over time. While achieving state-of-the-art tracking results, most
approaches still struggle with challenges such as long-term occlusions, appearance
changes, detection failures, etc.

? Equal contribution.
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One closely related task is person re-identification (re-ID), which associates
people across non-overlapping camera views. Major progress in re-ID has been
made recently through the use of Convolutional Neural Networks (CNNs), also
in the context of tracking [13, 17]. We argue that the full potential of CNNs
for re-ID has not yet been explored, due to the lack of proper training data
for the target sequences. The illumination conditions, resolution, frame-rate,
camera motion and angle can all significantly differ between training and target
sequences. Consequently, we would like to leverage the power of CNNs without
labeling huge amounts training data for multi-person tracking. Rather than train
networks in the traditional way, the key idea is to adapt them to each sequence.

Specifically, we propose an adaptation scheme to automatically customize a
sequence-specific multi-person tracker. As with any adaptative tracking scheme, it
is critical not to introduce tracking errors into the model, which lead to drift. The
key observation is that, once we obtain reliable local tracklets on a test sequence,
we can use an intuitive physical constraint that non-overlapping tracklets in the
same frame are very likely to contain different people. This allows us to harvest
high-quality training examples for adapting a generic re-ID CNN, with a low
risk of drift. Our experiments show that this customization approach produces
a significant improvement in associating people as well as in the final tracking
performance.

Generating reliable local tracklets in crowded sequences is not trivial. Since
person detection in such scenes can be quite noisy, resulting in false positive
detections and inaccurate localizations. In this work, we build on the recent
tracking formulations based on correlation clustering [26,30,31], otherwise known
as the minimum cost multicut problem. This leads us to a hierarchical data
association approach. At the lower level, we use the similarity measure from
robust patch matching [31] to produce reliable local tracks. This allows us to
automatically mine high-quality training samples for the re-ID CNNs from the
test sequence. At the higher level, the similarity measures generated by the
adapted re-ID CNNs provide a robust clustering of local tracks. We call this
two-pass tracking scheme Hierarchical Correlation Clustering (HCC). The HCC
framework, and the adaptation of the re-ID net, operationalize the customization:
The HCC produces local tracks, from which the training examples for adapting
the re-ID net are mined. The adapted re-ID net then generates much more
accurate similarity measures, which help the robust association of local tracks
and result in long-lived, persistent final tracks.

Contributions. We make the following contributions: (i) we propose an effec-
tive adaptation approach to automatically customize a multi-person tracker to
previously unseen crowded scenes. The customized tracker adapts itself to the
uniqueness of people’s appearance in a test sequence; (ii) we revisit the idea of
formulating tracking as a correlation clustering problem [30,31]. To facilitate the
reliable adaptation, we use a hierarchical tracking approach. We use different
graph construction schemes at different levels, yet the optimization problem re-
mains the same; (iii) we perform extensive experiments on the adaptation scheme
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and improve the state-of-the-art for the challenging MOT16 benchmark [22].
HCC is the top-performing method at the time of submission.

1.1 Related Work

Tracking-by-detection. Many multi-person tracking methods build on top
of tracking-by-detection [3, 27, 31, 34, 38]. Zhang et al. [38] formulate the data
association problem of multi-target tracking as a min-cost flow problem, where the
optimal solution is obtained in polynomial time. Pirsiavash et al. [23] also proposes
a network flow formulation, which can be solved by a successive shortest path
algorithm. Wang et al. [34] extend the network flow formulation to simultaneously
track interacting objects. Conceptually different from the network flow based
formulation, the tracking task is modeled as a correlation clustering problem
in [26, 30, 31] and in this work, where the detections are jointly associated within
and across frames.
Hierarchical data association Modeling tracking as a hierarchical data as-
sociation problem has been proposed in many works [6, 26, 30, 35]. In general,
detections are associated from neighboring frames to build a tracklet representa-
tion and then longer tracks are merged from the tracklets. In [35], the authors
propose a two-stage tracking method. For the first stage, they use bipartite-graph
matching to aggregate the local information to obtain local tracklets. For the
second stage, the association of the tracklets is formulated as a set cover problem.
Hierarchical data association has also been employed in [6], whereby the tracklets
are generated by greedy searching using an aggregated local flow descriptor as
the pairwise affinity measure. Our work differs in the way the local and the global
associations are formulated, namely as one and the same optimization problem,
thus substantially simplifying the overall tracking framework.
Learning the appearance model. Dehghan et al. [8] track multiple objects via
online learning, solving the detection and data association tasks simultaneously.
Several works explicitly model the appearance of targets. Kim et al. [13] introduce
an appearance model that combines long-term information and employs the
features generated by a generic DNN. Xian et al. [36] formulate multiple people
tracking as a Markov decision process, the policies of which are estimated from
the training data. Their appearance models follow the temporal evolution of the
targets. Leal-Taixé et al. [17] introduce several CNNs to model the similarity
between detection pairs.

One closely related work [15] learns discriminative appearance models using
simple physical constraints. They use hand-crafted features to model appearance
and measure the similarity with the χ2 distance. Our work differs in two respects:
first, we focus on adapting a generic ConvNet to test sequences, which is chal-
lenging since ConvNets can easily diverge given a few noisy training examples;
second, [15] utilizes the tracking framework proposed by [11], where the low-level,
middle-level and high-level data association are solved by a two-threshold strategy,
a Hungarian algorithm and an EM algorithm respectively, whereas our local and
global associations employ the same optimization method, again substantially
simplifying the overall tracking framework. A similar approach is proposed in [5]
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Fig. 1. Examples of feasible/infeasible solutions. The original graph is depicted in
(a), where V = u, v, w and E = uv, vw, uw. In (b) and (c), a solid line means joining
the nodes, a dotted line indicates that the edge is a cut. The decomposition in (b) is
infeasible, whereas that in (c) is valid, belonging to the feasible set.

for human pose estimation in a video sequence, where a generic ConvNet pose
estimator is adapted to a person-specific pose estimator by propagating labels
using dense optical flow and image-based matching. Unlike us, they focus on
single-person tracking.
Correlation clustering for tracking. Correlation clustering [9] based tracking
formulations have been proposed in [26, 30–32]. Their main advantage is that
the detections within and across frames can be jointly clustered, resulting in a
robust handling of noisy detections. The use of attractive and repulsive pairwise
edge potentials enables a uniform prior distribution for the number of persons,
which is determined by the solution of the problem. We extend this idea by using
different graph connectivities. Our hierarchical correlation clustering approach,
combined with the adaptation scheme, yields better tracking performance.

2 Tracking by Correlation Clustering

Here we introduce the general correlation clustering based tracking formulation
that follows [30] and [31]. We describe the model parameters, feasible set and
objective function to provide a basic understanding of the formulation and we
do not claim novelty with respect to the formulation.

For a target video, let G = (V,E) be an undirected graph whose nodes V
are the human detections in a batch of frames or even an entire video. The
edges E connect pairs of detections that hypothetically indicate the same target.
With respect to the graph, the output of our tracking algorithm is a partition
of G, where the node set V is partitioned into different connected components,
and each connected component corresponds to one target. The edges E′ ⊆ E
that straddle distinct components are the cuts of the graph. We define a binary
variable xe for each edge in the graph, where xe = 1 indicates that the edge e is
a cut and 0 otherwise. Obtaining the partition of G is equivalent to finding the
01-vector x ∈ {0, 1}E on the edge set.

Feasible solution. Not all the 01 labelings of the edges lead to valid graph
decompositions. As shown in Fig. 1 (b), xuv and xuw join the nodes u, v, w,
indicating that all three are in the same cluster. Yet, xvw is a cut, implying v
and w should be in different clusters. To avoid such inconsistent edge labeling,
we introduce the cycle constraints defined in Eq. 1: for any cycles in the graph
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(a) From detections to local tracks by local
correlation clustering
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(b) From local tracks to global tracks by global
correlation clustering

Fig. 2. Illustration of the local and global graph. A dotted line indicates that the
edge is a cut. For simplicity, not all the edges are drawn. In (a), the detection graph
is partitioned into 7 components, indicating 7 people. In (b), the tracks generated by
(a) are associated, resulting in 4 persons. The tracks belonging to the same person are
depicted in the same color. (Best viewed in color)

G, if one of its edges is labeled as a cut (xe = 1), then there must be at least one
more cut in the cycle.

∀C ∈ cycles(G)∀e ∈ C :

xe ≤
∑

e′∈C\{e}

xe′ . (1)

Objective function. Based on image observations, we compute pairwise features
for every edge in the graph. The edge features are denoted as f . We assume
independence of the feature vectors. Given the features f and the feasible set Z,
the conditional probability of the labeling vector x of the edges is given by

p(x|f, Z) ∝ p(Z|x)
∏
e∈E

p(xe|fe) (2)

where p(Z|x) gives positive and constant probability to every feasible solution
(x ∈ Z) and 0 to all infeasible solutions. Minimizing the negative log-likelihood
of Eq. 2, we obtain our objective function:

min
x∈{0,1}E

∑
e∈E

cexe (3)

with the costs ce defined as log 1−pe
pe

and pe defined as 1
1+exp(−〈θ,fe〉) .

Given the features fe extracted from a training sequence, the model parameter
θ is obtained by maximum likelihood estimation. To solve the instances of Eq. 3,
we apply a heuristic approach proposed in [12].

3 Customized Multi-person Tracker

Here we present how to customize a multi-person tracker. Operationalizing the
customization requires two main components: a hierarchical tracking framework,
where we obtain reliable tracklets as well as the final tracks (Sec. 3.1) and an
adaptation scheme where we fine-tune a general re-ID net to a sequence-specific
model (Sec. 3.2).
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3.1 Hierarchical Correlation Clustering

The tracking framework introduced in Sec. 2 is general and allows different
kinds of graph connectivity. One case is to only connect the detections that are
in the neighboring frames. As the detections are close in time, the similarity
measures that are based on the local image patch matching are robust [31]. One
can therefore obtain high-quality reliable tracks by the tracking formulation
introduced in Sec. 2. The downside is that the tracks break when there are
occlusions and/or missing detections.

Another way of constructing the graph is to build a fully-connected graph
over the entire sequence. Then the detections before and after occlusions can
be clustered for the same person, or separated otherwise. By introducing recent,
advanced techniques for re-ID, it becomes possible to compute reasonable simi-
larity measures between the detections that are far apart in time, despite large
changes in appearance. However, as shown in our experiments, the domain gap
between the training sequences and the test sequence is substantial, meanwhile
training data for multi-person tracking is hard to obtain, therefore the direct
application of a state-of-the-art person re-ID model does not yield satisfactory
results. Moreover, since the feasible set of such a graph is huge, a few mistakes in
the similarity measures could lead to a bad decomposition, resulting in dramatic
tracking errors. For example, similar looking, but temporally distant, people
could be clustered together.

To utilize the advantages of different graph connectivity strategies and opera-
tionalize the tracker customization, we decouple the tracking problem into two
sub-problems: local data association and global data association. For detections
that are temporally close, we employ the robust similarity measure of [31]. We
construct the graph in a way that there are edges between detections that are
sufficiently close in time, as shown in Fig. 2 (a). By constraining the feasible set
of the optimization problem, we obtain reliable tracks of people before and after
occlusions. In the experiments, we show that our local tracks already achieve
reasonable tracking performance.

Furthermore, given reliable tracklets, we employ intuitive physical constraints
to mine positive and negative examples to adapt a generic re-ID net to the test
sequence. Without any ground truth information, the adapted re-ID net produces
significantly better similarity measures for the test sequence. Such similarity
measures facilitate a globally connected graph based on the local tracks (Fig. 2
(b)), which enables the re-ID even between long-term occlusions.

Local Clustering. We introduce a graph Glocal = (V,Elocal), where the edges
Elocal connect detections that are in the same image or that are close in time.
We apply the image patch matching based edge potential proposed in [31]. More
specifically, for a pair of images and every detection therein, we employ Deep
Matching [24] to generate a set of locally matched keypoints, denoted as Mi, where
i is the detection index. Then for pairs of detections, we compute the intersection
of the matched points as MI

ij = |Mi ∩Mj | and the union as MU
ij = |Mi ∪Mj |.

Based on MI
ij , MU

ij , and the detection confidences Ci and Cj , we define the
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pairwise feature f as (IOUMij
,minC , IOUMij

·minC , IOUMij

2,minC
2)>, where

minC is the minimum detection confidence between Ci and Cj , and IOUMij
is

the intersection over union of the matched keypoints, denoted as IOUMij =
MI

ij

MU
ij

.

Given the pairwise features f for the training sequences, we estimate the
model parameter θ via maximum likelihood estimation. On the test sequences,
we compute the cost ce on the edges (Elocal) using the corresponding features
and the learned parameter θ. By optimizing the objective function (Eq. 3) which
is defined on the graph Glocal, we obtain a decomposition of Glocal, in other
words, the clusters of detections. We obtain our local tracks by estimating a
smooth trajectory using the corresponding detections. Implementation details
are presented in the experiments.

Global Clustering. We return to the global clustering step. In order to bridge
local tracks split by long-term occlusions, we construct a fully connected graph
Gglobal = (V,Eglobal). Its node set contains all the local tracks generated from
the previous step. Computing reliable pairwise probabilities pe is key to global
clustering. To that end, we employ the person re-ID net to decide whether two
local tracks show the same person or not. Furthermore, we propose an adaptation
scheme to fine-tune the generic re-ID net to the test sequence without any ground
truth labels. We present the details of our re-ID net and the adaptation scheme
in the next section. Extensive experiments on learning to re-identify persons in a
test sequence are given in Sec. 4

3.2 Adapting a Generic Re-ID Net

We begin by describing the architecture of the re-ID net and then introduce
the approach to adapt a generic Re-ID net on a test sequence. The adaptation
pipeline is actually divided into three stages: The re-ID net is first trained
on the large re-ID dataset Market-1501 [39] with the initial weights that are
trained on ImageNet. Then the model is fine tuned on the training sequences
of the MOT15 [16] and MOT16 benchmarks [22], which are arguably the two
largest tracking datasets exhibiting diverse scenes. The last stage is the re-ID
net adaptation, which happens during testing time by finetuning the model
parameters with the mined pairwise examples from the test sequence.

Such adaptation could help the re-ID net in two ways: First, it helps to
adapt the model parameters to the test scene, which might be captured under
significantly different imaging conditions compared to the training sequences.
Second, the re-ID net has the opportunity to “see” the people in the test sequence
and learn about what makes people look the same or different. The adapted
re-ID net shows a significant improvement both for re-ID and tracking, cf. Sec. 4.

Network Architecture. For the person re-ID module, we adopt a Siamese CNN
architecture [4], which has been widely used for person/face verification [7,37].
Fig. 3 shows the architecture of our re-ID net. The convolutional neural network
(CNN) is used to extract a 1024-D feature vector x of the person image in each
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Fig. 3. Re-ID network architecture. The image pairs are passed into two weights sharing
CNN branches to extract the 1024-D feature vectors followed by the matching part
consisting of a subtraction layer, a 1024-D fully connected layer and a 2-D verification
layer. During offline training, the classification layers are added to the re-ID net to use
the identification info for network optimization.

branch. Then, the feature vector pair (x1, x2) is passed into an element-wise
subtraction layer f(x1, x2) to obtain the difference vector d. We test 3 different
types of non-linearities in the subtraction layer: rectified linear unit (ReLU)
f(x1, x2) = max(x1−x2, 0), absolute value non-linearity f(x1, x2) = |x1−x2| and
square value non-linearity f(x1, x2) = (x1 − x2)2. The ReLU operation performs
the best during the offline finetuning stage, and also costs less computation than
square value non-linearity. Then, the difference vector d is passed to a 1024-D
fully-connected layer followed by a 2-D output layer with a softmax operation.
Inspired by the joint face verification-classification in [28], we add a 1024-D fully-
connected layer followed by a N-D classification layer with a softmax operation
to classify the identity of each training image. In our experiments, we validate
that incorporating the identification information can significantly improve the
verification performance.

We use a weight-sharing GoogLeNet [29] in each CNN branch because of its
good performance and fewer parameters than other CNN models. In order to
make the CNNs more suitable for the pedestrian images, we modify the input
layer size from 224× 224× 3 to 224× 112× 3 and change the kernel size of the
last max-pooling layer from 7 × 7 to 7 × 4. Since there are two N-D auxiliary
classification subnets in each GoogLeNet, we minimize 7 cross entropy losses
including. the losses of 6 classification layers and 1 verification layer.

The classification layers are only used in the network training phase. In the
testing phase, the verification layer is used to calculate the similarities between
the image pairs. This also applies to the adaptation step, as we only optimize
the network with the verification loss, since tracklets without temporal overlap
may contain the same identities and we can not obtain identification information
about the test sequence. Furthermore, to reduce the computational burden, we
divide the network into two parts: feature extraction and matching (Fig. 3). First,
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Fig. 4. Training examples mined from test sequence. The two tracklets overlap tempo-
rally but not spatially, hence show two identities.

we feed-forward each image through one CNN branch and store its feature vector.
Then, the similarity of each feature vector pair is calculated with the matching
part, including the subtraction layer, fully connected layer, and verification layer.

Generic Re-ID Net Training. In order to train the re-ID net more efficiently,
the weights trained on ImageNet are used as initialization. Then, we finetune
the re-ID net with the training data of the large re-ID dataset Market-1501 [39],
which contains 1501 identities captured from 6 cameras. Accordingly, the number
of the nodes in the classification layer (Fig. 3) is set to N=1501.

The size of the training data from the tracking benchmarks is often quite small,
due to the expensive ground truth annotation. We use the training sequences
from the MOT15 and MOT16 benchmark to collect training images, except that
the MOT16-02 and MOT16-11 sequences from the MOT16 training set are left
for collecting test examples. We have in total 478 identities for finetuning our
re-ID model which is pre-trained on the Market-1501 dataset.

Adaptation on Test Sequences. Now we turn to the adaptation step, where
we mine training examples from the target video to finetune our re-ID net. As
mentioned in Sec. 3, the local clustering step of the tracking approach produces
local tracks of people when they are likely to be fully visible. These local tracks are
like spatio-temporal “curves” that can start and stop at any frame, depending on
the detections and the scene. An illustration of the local tracks is shown in Fig. 2
(b). The spatio-temporal locations of the local tracks enforce intuitive constraints:
if two tracks pass through the same frame but do not overlap spatially, they then
most probably correspond to different people in the video. An example is shown
in Fig. 4. The positive pairs are the detection images that come from the same
track, and the negative pairs are from the two tracks that have temporal overlap
but no spatial overlap.

To avoid including too many noisy training examples during the finetuning,
we discard 20% of the head and tail images of local tracks, as the starting and/or
the ending part of the tracks sometimes have inaccurate detection bounding
boxes. Furthermore, we compute the average detection score of the detections
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within a local track. Based on the average score, we learn the probability of the
local track to be a true positive on the MOT16 training sequences. During the
training example mining, we exclude the local tracks that are more likely to be
on the background of the scene by only considering the tracks whose probabilities
of being true positives are larger than 0.5. Two tracks without temporal overlap
may contain the same identity. We have no information about the identity of
the people in the video. Therefore, during the finetuning stage, we only use the
verification information, in other words, the classification subnet is not used.

The adapted re-ID net produces the cut/join probabilities between each pair
of local tracks. Then we use the probabilities to compute the costs of the objective
function (Eq. 3). Similar to the local clustering step, we solve the instances of
the optimization problem by the heuristic approach proposed in [12].

4 Experiments

In this section, we present our experiments with the proposed re-ID net (Sec.
4.1), the adaptation approach (Sec. 4.2) and multi-person tracking (Sec. 4.3).

4.1 Re-ID Net Architecture Evaluation

Training/test data collection. On the Market-1501 dataset, we train the
re-ID model using its standard training set. In order to evaluate the performance
of the re-ID net on the tracking data, we collect training and test examples from
the MOT15 and MOT16 training set, which contain 576 identities in total. We
randomly select 80% identities (460) from each sequence as the training set and
the rest 20% (116) as the test set. The MOT benchmark also provides person
detections on every frame. The detections are considered as true positives for a
certain identity if their intersection-over-union (IOU) with the ground truth of
the identity are larger than 0.5. Then the positive (negative) examples are pairs
of detections that are assigned to the same (different) identities.

Metric. The metric used in the following person re-identification experiments is
the verification accuracy.

Re-ID Net Implementation Details. On Market-1501, we train the re-ID
net for 80k iterations using the initial weights trained on ImageNet. Adam [14] is
used as the optimizer with β1 = 0.9 and β2 = 0.999. The initial learning rate is
set to 1e-4 and the minibatch size is 128. We use random left-right flips for data
augmentation.

Verification-Net and Classification-Net. In order to evaluate the effective-
ness of the proposed classification subnet of our re-ID net, we compare two
network architectures: using only the verification layer (V-Net) and using both
verification and classification layers (V+C-Net). In Tab. 1, the first two rows
show the verification accuracy of the two re-ID nets trained on Market-1501. The
mean accuracy of V+C-Net is 80.7% which is significantly higher than the result
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(68.8%) for V-Net. We further finetune both re-ID networks on the MOT training
data. In this case, the training and test data are quite similar as they are both
from the MOT benchmark. Nevertheless, the V+C-net still outperforms V-net
by 3.1%. These experiments suggest that training the classification task and the
verification task jointly improves the verification accuracy. Therefore we use the
V+C-Net in the following experiments.

Table 1. MOT16 Re-ID Accuracy (%)

Model Training PosAcc. NegAcc. Mean

V-Net Market-1501 65.5 72.0 68.8
V+C-Net Market-1501 90.4 70.9 80.7

V-Net Market-1501/MOT 100.0 90.2 95.1
V+C-Net Market-1501/MOT 98.0 98.4 98.2

4.2 Adaptation Evaluation

Setup. To evaluate the adaptation scheme of the re-ID net in the context of
multi-person tracking, we need to finetune the network on proper tracking test
sequences. Here, we choose the MOT16-02 and MOT16-11 sequences as the test
set. For the offline trained generic re-ID nets, we provide three different versions:
ImageNet model, the one fine tuned on Market-1501, the one further fine tuned
on the MOT training set (excluding MOT16-02 and MOT16-11)

For adapting the re-ID net on the test sequence, we employ two kinds of
training strategis: only finetuning the fully-connected layer (AdaptationFC),
and finetuning the whole network end-to-end (AdaptationE2E). The training
examples are mined using the tracks generated by the local correlation clustering
(HCCl). All the adapted models are obtained with 3 epochs to avoid overfitting.

Results. As shown in Tab. 2, of the two generic re-ID models, the one further fine
tuned on the MOT data improves the mean accuracy on MOT16-02 from 78.5%
to 84.8%. For the adaptation schemes, the end-to-end model (AdaptationE2E)
significantly improves the performance on MOT16-02 from 84.8% to 88.3%, where
the AdaptationFC decreases the accuracy to 82.9%. These results suggest that it
is important to adapt the CNN features to the test scene. We further perform
the adaptation on the models that are trained on the Market-1501 and ImageNet.
The results are significant: without finetuning the model on the tracking sequence
(MOT training set), the adaptation method already produces 88.0% accuracy;
even the model trained on ImageNet, which has never seen person re-ID data
before, already produces reasonable accuracy.

The same tendency is observed on the MOT16-11 sequence. Adapting the
model that is further trained on the MOT set performs the best (93.6%), and is
slightly better than the generic model that is trained on Market-1501 (93.3%).
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Table 2. Analysis on the adaptation approach

MOT16-02 MOT16-11

Model OfflineTraining PosAcc. NegAcc. Mean PosAcc. NegAcc. Mean

Generic Net Market-1501 82.6 73.4 78.0 82.7 81.3 82.0
Generic Net Market-1501/MOT 83.7 85.9 84.8 85.8 90.6 88.2
AdaptationFC Market-1501/MOT 76.4 89.4 82.9 88.2 88.0 88.1
AdaptationE2E Market-1501/MOT 83.1 93.4 88.3 91.8 95.4 93.6
AdaptationE2E Market-1501 82.6 93.4 88.0 91.7 94.9 93.3
AdaptationE2E ImageNet 78.4 87.3 82.9 78.9 85.7 82.3

These results clearly validate the effectiveness of the proposed adaptation ap-
proach. Even without the annotated tracking data, the re-ID net that is adapted
on the test sequence produces a good verification accuracy.

4.3 Tracking Experiments

We perform comparisons with recent tracking work on the challenging MOT16
Benchmark [22]. The benchmark contains a training and a test set, each with 7
sequences that are captured with different camera motion, and different imaging
and scene conditions. For the test sequences, the training sequences that are
captured under the same framerate and camera motion (moving/static) are
provided. The model parameter θ for local clustering are learned from the training
sequences that have the same framerate and camera motion (moving/static)
via maximum likelihood estimation. To validate the effectiveness of different
components of the proposed method, we select MOT16-02 and MOT16-11 as
validation set to perform our analysis, in line with the previous section.

Tracking Implementation Details. As the detections provided by the bench-
mark are very noisy, we could also obtain small clusters on the background. In
all the tracking experiments presented below, we remove the clusters whose sizes
are smaller than 5. Given the detection cluster of a target, we estimate its tracks
by using the code from [21] which estimates a spline curve for each target. We
also fill in the missing detections when there are gaps in time due to occlusion or
detection failures. However, when the gaps are too big, estimating the position
and scale of missing detections of the tracks becomes difficult. Therefore, we fill
in the missing detections within a certain temporal distance. In our experiments,
for the sequences captured by a moving camera, the missing detections are filled
in when the temporal gap is less than fps, where fps is the frame-rate of the
sequence. For the sequences captured by a static camera, the missing detections
are filled when the temporal gap is less than 2× fps. These hyper-parameters
are set according to the performance on the validation set.

Evaluation Metric. Following the MOT16 Benchmark, we apply the standard
CLEAR MOT metrics [1]. The most informative metric is the multiple object
tracking accuracy (MOTA) which is a combination of false positives (FP), false
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negatives (FN), and identity switches (IDs). Other important metrics are ID
F1 Score (IDF1) [25], mostly tracked (MT) tracks, mostly lost (ML) tracks,
fragmentation (FM), recall (Rcll) and precision (Prcn).

Comparison of tracking performance with local and global clustering
Setup. In this section, we compare the tracking performance of local (HCCl)
and global (HCCg) correlation clustering. The HCCl should generate reliable
tracks that are robust to detection noise and abrupt camera motion. Once the
target is fully occluded or missed by the detector within a short temporal window,
the tracks will be terminated and a new track will start when the target is visible
again. Given the local tracks, the global graph is constructed in such a way that
all the local tracks are connected to each other, to enable the re-ID of the target
within a much longer temporal window, even the whole sequence.

Results. It can be seen from Tab. 3 that on the MOT16-02 sequence, HCCl

achieves a MOTA of 19.5%. With the global clustering step, the MOTA is
increased to 20.3% with generic re-ID model, and is further improved to 21.3%
with the adapted re-ID model. Intuitively, the HCCl could produce more ID
switches and false negatives, because the underlying graph is constructed in the
way that only the detections close in time are connected. With a well trained re-ID
net and a reasonable filling in strategy, the HCCg should reduce the number of
ID switches and false negatives. Analyzing the data corroborates our hypotheses:
the number of ID switches goes from 62 (HCCl) to 33 (HCCg), suggesting the
effectiveness of the global correlation clustering step. Similar observation can be
made on the MOT16-11 sequence. The overall MOTA increases from 53.3% to
55.1%. The number of ID switches decreases from 24 to 8, indicating that the
majority of previously interrupted tracks are re-linked by the global clustering.

Comparison of tracking performance with the generic and adapted
re-ID net Setup. In this section, we compare the tracking performance of the
generic re-ID model (HCCggeneric) and the adapted re-ID model (HCCgadaptation).

For both of them, the local tracks are identical. For HCCggeneric, the similar-
ities between the local tracks are computed with the generic re-ID net; for
HCCgadaptation, the similarities between the local tracks are computed with the
adapted one. As shown in Tab. 2, the accuracy of the similarity measure indicates
the superior performance of the adapted model. It stands to reason that such
superiority should be translated into a better performance of the tracking task.

Results. It can be seen from Tab. 3 that for both the MOT16-02 and MOT16-11
sequences, the adapted model produces a better MOTA (20.3% to 21.3%, 54.2%
to 55.1% respectively). Besides, with the adapted model, we obtain better MOTP
and Prcn, which suggests that the overall tracking performance is superior.

Results on the MOT16 Benchmark. To compare with the state-of-the-art
multi-target tracking models, we evaluate our tracking model on the MOT16
test set. The evaluation is performed according to the benchmark and the results
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Table 3. Comparison of tracking performance: 1. local clustering vs global clustering;
2. generic vs. adapted re-ID net

Method MOT16-02 MOT16-11

FP FN IDs MOTA FP FN IDs MOTA

HCCl 507 13784 62 19.5 408 3861 24 53.2
HCCg

generic 1045 13120 43 20.3 429 3763 7 54.2

HCCg
adaptation 867 13131 33 21.3 352 3762 8 55.1

Table 4. Comparison on the MOT16 test set. Best in bold, second best in blue

Method MOTA IDF1 MT ML FP FN IDs Frag Hz Detector

MOTDT [19] 47.6 50.9 15.2% 38.3% 9253 85431 792 1858 20.6 Public
NLLMPa [18] 47.6 47.3 17.0% 40.4% 5844 89093 629 768 8.3 Public
FWT [10] 47.8 44.3 19.1% 38.2% 8886 85487 852 1534 0.6 Public
GCRA [20] 48.2 48.6 12.9% 41.1% 5104 88586 821 1117 2.8 Public
LMP [32] 48.8 51.3 18.2% 40.1% 6654 86245 481 595 0.5 Public
HCC 49.3 50.7 17.8% 39.9% 5333 86795 391 535 0.8 Public

are publicly available 5. In Tab. 4, we compare with all the published works.
Generally speaking, for the 9 metrics that are considered by the benchmark, our
model achieves the best performance on MOTA, IDs, Frag, and the second best
performance on FP. Such results suggest the advantages and effectiveness of the
proposed tracking approach.

5 Conclusion

In this paper, we address the challenging problem of tracking multiple people in
crowded scenes, where long-term occlusion is arguably the major challenge. To
that end, we propose an adaptation scheme that explores the modeling capability
of deep neural networks, by mining training examples from the target sequence.
The adapted neural network produces reliable similarity measures, which facilitate
person re-ID after long-term occlusion. Furthermore, we utilize an overall rigorous
formulation [30,31] to hierarchically link and associate people. The combination
of the tracking formulation and the adaptation scheme results in an effective
multi-person tracking approach that demonstrates a new state-of-the-art.
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