Stability Analysis of Distributed Event-Based State Estimatio

Sebastian Trimpe

Abstract— An approach for distributed and event-based state |
estimation that was proposed in previous work [1] is analyzed

and extended to practical networked systems in this paper. [s][a] [s][A] [s][A]
Multiple sensor-actuator-agents observe a dynamic process, l T l T l T
sporadically exchange their measurements over a broadcast Computer] [Computer ol
network according to an event-based protocol, and estimate the oot Ezimaﬁon oot Egimaﬁon oot Ef“maﬁon
process state from the received data. The event-based apch Coprm=Tn WGl T Y
was shown in [1] to mimic a centralized Luenberger observer

up to guaranteed bounds, under the assumption of identical
estimates on all agents. This assumption, however, is unrealistic v v
(it is violated by a single packet drop or slight numerical Common Bus Network
inaccuracy) and removed herein. By means of a simulation
example, it is shown that non-identical estimates can actually

e, e et eoacue omputr, sevor (5)and Stutors (). o i
. ; - a dynamic system. Each agent estimates the state of the dynasbémsy
infrequent) exchange of the agents’ estimates and reset to tile  computes local control inputs, and decides when to communieiitethe
joint average. When the local estimates are used for feedback other units over a common bus network.

control, the stability guarantee for the estimation problem

extends to the event-based control system.
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v

Fig. 1. Networked control system. Multiple control agentacfe with an

decision: a measurement is broadcast only if the prediction
l. INTRODUCTION of this measurement is not accurate enough. Accordingly,

Event-based algorithms have recently received a lot ¢few measurement data is communicatety when needed.
attention in the controls community (see recent overview Stability of this event-based estimation method in the
articles [2]-[5]). With event-based methods, data is tnirs Sense of bounded estimation errors is proven in [1] under
ted between the components of a control systems only whée assumption of (exactly) identical estimates on all &gen
certainevents indicate that new data is required, for exampleClearly, this is an unrealistic assumption since even aing
to meet some control specification. This is in contrast t@acket drop, different initial conditions, or slight difemnces
traditional control systems, where communication betweefl the numerical computations may cause some estimates to
sensors, actuators, and controllers usually occurs atprediffer. Therefore, removing this assumption and estabigh
termined, periodic time instants. Event-based strategies the stability of the event-based estimation scheme under no
especially attractive when many components are connectiétal circumstances is essential for any practical impreme
over a shared network, such as in networked control systert@ion.

(NCSs) [6] or cyber-physical systems [7]. Herein, we study the case of non-identical estimates by

In this paper, we analyze and extend the distributed ar@troducing a (bounded) disturbance signal on each agent's
event-based state estimation method that was proposedeﬁimate. The disturbances are independent of each other
[1] for NCSs such as in Fig. 1, where multiple sensorand may hence cause the agents’ estimates to differ. Firstly
actuator-agents exchange data over a common bus. In tHg show by means of a simulation example that inter-agent
approach, the event-based estimator consists of a swgtchiflifferences in the estimates can actually destabilize yise s
Luenberger-type observer implemented on each agent of tim. Secondly, we propose a simple synchronous averaging
NCS, in combination with a threshold-based event generatigne€chanism to circumvent this, and establish stability ef th
mechanism, which triggers when local sensor measuremetftéer-agent error and thus the overall estimation system (i
are sent over the bus, see Fig. 2. The estimators are updala@ sense of bounded errors for bounded disturbances).
with data received from the bus, and since all agents have\When the event-based state estimate on each agent is used
access to this data and run the same estimation algorithfAr feedback control (as indicated in Fig. 2 in gray), one has
the agents’ state estimates are basically the same. Th@ydistributed event-based control system. This architectu
capture the common information in the network, and theivas successfully used in [1] to balance a cube on one of

predictions are used by the event generator for the triggeri its edges. We formally establish stability of the closedplo
control system in this paper by straightforward extensibn o

S. Trimpe is with the Autonomous Motion Department at the Maxthe analysis for the estimation problem.

giapfwg%ﬁlﬁgbfogggf”ggat JYstems, 72076ubingen, Germany  Rejated Work: The method proposed herein mainly falls
This work was supported in part by the Max Planck Society drel t into the category ofevent-based state estimation methods

Swiss National Science Foundation. since triggering decisions are based on the estimatiomperf

Accepted final version.  To appear in Proc. of the 53rd IEEE Conference on Decision and Control, 2014.

©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.



yi(k) Cy wi (k)
o= =R+ 3)
T yn (k) Cn wy (k)
Event H/_/ H/_/ H,—/
e —> Controller y(k) C w(k)
' A
St:te : with y;(k),w;(k) € RP: andp = Z;V:lpj. Similarly, we
Estimator : consider the decomposition of the input vector
A H
v ul(k) = [ul(k) uj(k) - uy(k)] (4)

C Bus Network . . . .
ommon =ue e wherew;(k) € R% is the input associated with ageyit

actuators, ang = Zé\;l g;. Without loss of generality, each
agentj is assumed to have both sensargk)) and actuators

Fig. 2. Components of the event-based control system impledent each
agent of the NCS in Fig. 1. Event-triggered communication dciated by

dashed arrows, and periodic communication by solid ones. Téwet-®ased (uj(k)) (if it has not, the corresponding dimensi@g or
estimator (shown in black) consists of tistate estimator and theevent

generator, which triggers the communication of local sensor measurementd7 may_pe Set to zero). We 9'_0 not mak_e any assumption
The common bus ensures that all agents receive the same measuren@ Stabilizability and detectability for the individual egs;

data as inputs to the estimators and hence establishes teoggisn the  that is, (4, Bj) may be not stabilizable, an¢A, Cj) not
network. An event-based controller results when the lostihate is used detectable

for feedback control (gray). In this case, the control iispaite assumed to
be shared between all agents (not shown) to be known to athatsirs.

The agents are connected over a broadcast network such
as in Fig. 1 and can exchange their measurements and inputs
with each other. They are assumed to be synchronized in time
mance. Event-based estimation problems with a single sengall have the same time inde¥. Network communication
and estimator node have been considered in [8]-[14], fe§ assumed instantaneous without delay.
example. Distributed event-based estimation problemb wit |n this paper, we focus on the estimation problem and the
an underlying broadcast communication architecture, sug¢Bduction of measurement communications. We assume that
as the one considered herein, are also discussed in [1%fe inputu(k) is known to all agents:

[17]. Related problems, where network communication is Assumption 1: All agents have access to the input
according to a graph topology, are treated in [18], [19]. The assumption is satisfied, for example, whes an exter-

When the state estimators are connected to state-feedbael reference signal. When the componentsre computed
controllers as shown in Fig. 2, this structure represents a#cally on different agents (such as in Sec. V where the local
event-based output-feedback control system. Related prob- estimates are used for control), Assumption 1 requires that
lems on event-based control with output measuremenfi§ese inputs are communicated between all agents.

(i.e. without full state measurements) have been congidere )
for example, in [20]-[24] for a single event-based controP- Centralized Observer-Based Control

loop, and in [25]-[27] for a distributed setting.

A centralized control system (i.e. one that has periodic

Notation: A matrix is called stable if all of its eigenvalues access to all measuremengék) and computes all inputs

have magnitude less than one. For an estimater (@f)
computed from measurement data until time &, we write
Z(k|¢). To simplify notation, we also writé (k) for z(k|k).

Il. PRELIMINARIES

In this section, we introduce the networked system an
summarize a standard (centralized) observer-based ton

u(k)) can be designed as the combination of a linear state
estimator and a state-feedback controller. Let

#(klk—1) = Ad(k—1|k—1) + Bu(k—1)
#(klk) = 2(klk—1) + L (y(k) — C &(k|k—1)),

(®)
(6)

ge the state estimator whose gdirnis chosen such thatf —

tE)C)A is stable; and let

design, which serves as the basis for the event-based estima

tion and control methods of this paper.

A. Networked System
Consider the discrete-time, linear, time-invariant syste
(k) =Ax(k—1)+ Bu(k—1) +v(k—1) (1)
y(k) = Ca(k) + w(k) )
with time index k£ (corresponding to a sampling tinig),

statexz(k) € R™, control inputu(k) € R?, measurement
y(k) € RP, disturbancesv(k) € R”, w(k) € RP, and

all matrices of corresponding dimensions. We assume that

(A, B) is stabilizable and A, C) is detectable.

u(k) = Fi(k) @)

be the state-feedback controller with gdihsuch thatA +

BF is stable (recall that:(k) = &(k|k)). The observer and
controller gainsZ and F' can be designed using standard
state-space design methods (see e.g. [28]). Notice that (6)
can be rewritten as

#(k) = 2(klk—1) + Y Li(yi(k) — Cia(klk—1)) (8)

where

L:[Ll,LQ,...,LN], LiERnXPi (9)

Let there beN agents, each of which measures a portioiis the decomposition of the estimator gain according to the

of y(k) by its local sensors; that is,

dimensions of the individual measuremepisk).



It is straightforward to establish the stability of the cen- IV. ANALYSIS
tralized closed-loop control system given by (1), (2), (), In contrast to the original approach in [1], the disturbance

and (7) from the stability of/—~LC)A and A+ BF. signalsd; cause the individual estimates to differ. Thus, the
I1l. DISTRIBUTED & EVENT-BASED ESTIMATION difference between any two agents’ estimates must be taken

into account in the stability analysis. The error dynamas f

the modified scheme are derived in Sec. IV-A. In Sec. IV-

event generator and a state estimator implemented on e twe _progosel a bsynchronousf avrirarl]glgg mdec;amsm fafhan
agent as shown in Fig. 2. To study stability for the Casgxdgr_ldsmrlw Ot'[ ],t' y means o \?Ibllc h gqns nelsVsCo €
of non-identical estimates in later sections, we augmest ghnaividual estimation errors 1S established in sec. 1v=L.

framework from [1] by introducing disturbance signals ona  Egtimation Error
the individual estimates.

The distributed and event-based state estimation meth
from [1] is summarized in this section. It consists of a

Lete;(k) := z(k)—2;(k) be the estimation error of agent
A. Event Generator J, and lete;; (k) := &;(k) — &;(k) be the inter-agent error of
whether or not the local measuremap(k) is sent to all (3), (11), (13) and straightforward manipulation,
other agents. The following rule is used for making this e;(k) = Aej(k—1) +v(k—1)

transmit decision:
. . - Z Ll(yz(k‘) - C,.f,‘](k'|k’—1))
transmltyj(k) <~ ||yj(k) — CJ.’E](kUC—].)” > 5j (10) .

ie{l,...,N}
whered; > 0 is a design parametef;;(k|k—1) is agent + Z Li(yi(k) — cij;j(k|k_1)) —d;(k) (14)
j’'s prediction of the stater(k) based on measurements il (k)

until time £—1 (to be defined in the next subsection), and

. - . = Ae;(k—1 k—1)— L(y(k) — Cz,;(klk—1
C;z;(k|k—1) is agentj's prediction of its measurement e )+l ) ((k) 2;(k] )

y; (k). Hence, measuremenpj(k) is transmitted if, and only + Li(yi(k) — Cytej(klk—1)) — d;(k) (15)
if, its prediction from the previous estimate deviates byreno icI(k)
than the tolerable thresholy. = (I-LC)Aej(k—1)+ (I-LC)v(k—1) — Lw(k)

We denote the indices of those agents that transmit their
measurement at time by I(k); that is, o
i€l(k
B. Sate Estimator iel(k)

Agentj’s state estimator recursively computes an estimatghere
Zj(k) of the system state(k) from the measurementgx)

+ Li(yi(k) — Cizi(k|k—1))

transmitted at timek: I(k) == (1,..., N)\ I(k)
2 (klk—1) = Az;(k—1|k—1) + Bu(k—1) (11) = (1|1 <i <N, |lyi(k) = Cizi(k[k=1)|| < &) (17)
2, (k|k) = 2, (k|k—1) +Z Li(yi(k) — Cij(k|k—1)) is the set of measurements that are not transmitted atitime
i€I(k)

Notice that the tern) _, . 7,y Li(yi(k)—CiZi(k|k—1)) in (16)
(12) is bounded because of El?). This observation is the key step

) ) . . . . in the stability proof in [1]. Indeed, under the assumption
whereL; is as defined in (9). That is, the estimator equationg, .+ a1 estimates are exactly identical, we haygk) = 0

and the gaind.; are the same as for the centralized esti_matcgnddj(k) — 0 for all k, and stability of the estimation error
5), (8)._The event-based estimator, however, updatestits € follows from (16) with (17) and(I — LC)A being stable.
mate with a subset of all measurements (compare SUMMatigile \ve need to establish in addition that the inter-agent

in (12) and (8)). _ __errorse;;(k) are bounded.
In [1], it is assumed that all agents’ estimates are idehtica -, (11) and (13), we obtain

(@7 (k) = (k) for all 4, 4, and k). Since this requires
perfect communication and computation, it is an unrealisti ¢;;(k)=Ae;;(k—1) —ZL@C@AEﬁ(k-l) +d;j(k) —d;(k)
assumption. To account for differences in the estimateas fro LeI(k)
@mperfect c_onditions, we introduce a disturbance sighal = (I =Ly Crpy) Acji(k—1) + d;(k) — di(k) (18)
in each estimate and replace (12) with
. . . where L) and Cy) denote the matrices constructed
&j(klk) = 2;(klk—=1)+ Y Li(y:(k) = Ci#j(klk=1))  from the corresponding submatricés and Cy, ¢ ¢ I(k).
(k) i€l (k) (13) Obviously, the inter-agent errasj;(k) is governed by the
J time-varying dynamics(/ — L) Crx))A, and we cannot
for the following analysis. The disturbancés are assumed simply infer stability of the event-based estimation from
bounded. stability of (I — LC)A as in [1]. In Sec. VI, an example



is presented where the inter-agent errors are unstablé&espvhere (20) is obtained by direct calculation analogous to
stability of (I —LC')A. Next, we present a straightforward (18), and (21) follows from (19). That is, is periodically
extension to actually ensure boundedness;gf). reset to) and evolves according to (20) in-between resetting
B. Synchronous Averaging Mechanism instants. Sincel, d;, and'(IfLI(k)CI(k))A are bounded,
. ) ) boundedness of; for all j € {1,..., N} follows.

The mter-a_gent erroreji(k) is thg difference between Sincez(k) = avg(e; (k)), we obtain from (16)
the state estimates by agentand j. We therefore have
full control over it: we can make it zero at any time by eé(k) = ([—LC)Ae(k—1)+ (I-LC)v(k—1) — Lw(k)

resetting the two agents’ state estimates to the same Vatue, N
. . + _ Ll i k) — Cz i klk—1
example, their average. Therefore, a straightforwardegya Ziel(k) (y (k) Zi(k ))
to guarantee bounded inter-agent errors is to periodically ,E :'ef(k) L;C;Ae;j(k—1) — d(k) (22)

reset all agents’ estimates to their joint average. Cledrlg
strategy increases the communication load on the netwiork. Where we used avg;; (k—1)) = avg; (2, (k—1)—2;(k—1)) =
however, the disturbances are small or only occur rarely, z(k—1)—;(k—1) = ¢;(k—1). Note that (22) fully describes
the required resetting period may be very large in comparisahe evolution ofe. In particular, the resetting (19) does not
to the underlying sampling time. affecte since, at resetting instait= kK, e(k+) = z(k) —
Let #;(k—) andi;(k+) denote agenj's estimate before L Zj,\’zl ij(k+) = z(k) — & Z?’:l(% S (k=) =
and after resetting, and lét € N pe the resetting period. ;) — %Zé\; Zo(k—) = e(k—). )
Each ageny implements the following synchronous averag- A input terms in (22) are boundeds, w, and d by
ing mechanism: fok a multiple of K, assumption ;. ;) Li(yi(k) — Cidi(k|k—1)) by the event-
transmiti; (k—); received; (k—),i € {1,...,N}\ {j};  triggering mechanism (see (17)); amd for all i by the
A X 1 N previous argument. Sincé(k) = (I — LC)Aé(k—1) is
seti;(k+) = avgdi(k—)) = & Zi:l 2;(k=)  (19)  exponentially stable, it follows that(k) is bounded for all

where avg denotes the average overMalagents as shown. k [29, Thm. 75, p. 218], which completes the proof. ®

We assume that the network capacity is such that the vy D|sSTRIBUTED & EVENT-BASED CONTROL
mutual exchange of the estimates can happen in one time ste[?

(as is the case for the system in [1]), and that no data is lost n this section, we analyze the.stabilit'y of the distributed
in the transfer (e.g. through appropriate low-level protsc event-based control system that is obtained when the com-

using acknowledgments) ponentsu; (k) of the control vector (4) are computed locally
g 9 ’ by the agents from their state estimaig$k) and the state-

C. Sability of the Estimation Error feedback law (7).
With the synchronous averaging mechanism, we can nowLet FT = [F[ ... F], F; € R%*", be the decomposi-
establish boundedness of the estimation error: tion of the state-feedback gain in (7) according to the input

Theorem 1. Assume that the disturbancesw, andd; are decomposition (4). Agenf implements
bounded and that/ — LC') A is stable. Then, all estimation s
errorse; resulting from the distributed event-based estimator u;(k) = F; 2;(k) (23)
(10), (11), (13) with synchronous averaging (19) are bodndewhich can be rewritten as; (k) = F; (z(k) — (k) —€;(k)).
for any initial conditionsz;(0) andz(0). From this and (1), it follows

For the proof and the later development, we define the fol-
lowing signals: the average estimaték) := avg(i;(k)) = (k) = (A+BF)z(k—1) + v(k—1)

+ Z;V:l z;(k), the average estimation errefk) := x(k) — — BFe(k—1) — ZN B, Fje;(k—1) (24)
z(k), and agentj's deviation from the average;(k) := j=1
z(k) — z;(k). where B = [B; ... By] with B; € R"*%. Update

Proof:  From the previous definitions;; (k) = (k) +  equations fore(k) and e;(k) were derived in the proof
€j(k), and we establish the claim by showing boundedness Theorem 1 in (22) and (20). The closed-loop system

of ¢;(k) ande(k). _ consisting of the plant (1), (3), the event-based estirsator
For the average estimatgk), we have from (11), (13), (10), (11), (13), (19), and the state-feedback control{2®)
z(klk—1) = AZ(k—1|k—1) + Bu(k—1) is fully described by the state-space equations (24), &1),

- - - - (20). We thus have the following result:
z(klk) = Z(klk=1) + Y Li(yi(k) — Ciz(k[k—1)) + d(k) Theorem 2: Assume that, w, andd; are bounded and

iel(k) that (I — LC)A and A+ BF are stable. Then, the state
wherez(k|k) = z(k), z(k|k—1) := avg(z;(k|k—1)), and (x(k),e(k),e1(k),...,en(k)) of the distributed event-based
(k) := avg(d,(k)). The dynamics of the errog;(k) = control system given by (1), (3), (10), (11), (13), (19), and
z(k) — &, (k) are therefore described by (23) is bounded for all initial conditions;(0) and z(0).
5 Proof: Theorem 1 establishes the boundedness by,
& (k) = UfLI(k)CI(k))AeJJ(kfl) (k) = d;(k) (20) e1(k), ..., ex(k). The statement then follows direcstf/ f);om
Ej(k-‘r) =0, fork=rK with somex € N (21) (24) andA+ BF being stable. u



VI. SIMULATION EXAMPLE fast tracking for the velocity feedback loops (see [30],][31

In this section, we present simulation results to highlighfor details). The state estimator equation (11) is modified
certain aspects of the analysis in previous sections. liicpar @ccordingly to include the additional input.
ular, we simulate random packet drops causing the agents’From (25) and (26), it follows thatA, C;) is not detectable
estimates to differ. As simulation example, we consider afP" any ¢ that is, communication between the agents is
inverted pendulum being balanced by two sensor-actuatdgduired for stable state estimation. _
agents. Matlab files to reproduce the simulations results of The noise variables(k) andw(k) are modeled as uniform
this section are available as supplementary material ® tHiandom variables. The sensor noise intensity is chosen com-

paper (contact the author or download from his web pageparable to the experiment [1] (noise on angle sengorg.,
Is negligible, noise on angular rate senggris significant).

A. Smulation Model To account for non-ideal actuation, we simulate input noise
We consider the inverted pendulum system depicted wniform in [—0.05,0.05] rad/s.
Fig. 3. The pendulum is to be stabilized about its upright In order to study non-identical estimates, we simulate ran-
position ¢ = 0) by appropriate motion of its two rotating dom packet drops: any measuremgyitk), y(k), ys (k) that
“arms.” The system can be regarded as an abstraction of tiseransmitted between agent 1 and 2 is lost with a probgbilit
Balancing Cube [30], which was used as the experiment@f 5%. Packet drops are represented by the disturbay(ée
platform in [1]. The Balancing Cube uses six rotating arm# (13) as follows: ify,(k), ¢ € I(k) is a measurement not
to balance its cubic structure on any of its edges or corner€ceived at agent, thend;; (k) = —Le(ye(k)—Coi; (k|k—1))
The arms represent the control units, which carry sensats accounts for the lost packet (however, we do not establish
actuators, and communicate with each other over a commbgundedness ofl; in this case, see Sec. VIl for further
bus as in Fig. 1. discussion). We assume that the communication required
A state-space model of the system linearized akput to perform the periodic averaging of estimates (19) is not
©1 = @2 = 0, which is used for state estimation, is given byaffected by data loss.

z(k) = Az(k—1) + Byu(k—1) + Bou(k—2) + v(k—1)  B. Event-Based Estimation & Control Design
y(k) = Cx(k) + w(k) The event-based control system presented in Sec. V is

applied to stabilize the pendulum abaut= 0. The two

with (see supplementary Matlab files for other matrices) control agents compute individual state estimates:) and

1 0 0 0 Zo(k) according to (11), (13), and apply the control (23).
A— 0 1 0 0 (25) The event trigger (10) is applied to each sensor measurement
~ | —=0.0001 —0.0001 1.0007 0.01 y1(k) to ys(k) individually. Agent 1 is responsible for
—0.0151 —0.0151 0.1492 1.0007 measuremeny; (k), and agent 2 decides for both(k) and
¥e) 100 0 ys(k) (i.e. @3(k|k—1) = @2(k|k—1) in (10)). We chose
c=\|cl =101 0 of, (26) 0; = 0.005 for all triggering thresholds, and& = 200 as
Oy 00 0 1 period for the synchronous averaging (19) (reset e2es)y

) The centralized observer (5), (6) and the state-feedback
statex = (¢1, 92, ¢, ¢), and samplingls = 1/100s. The controller (7), which form the basis of the event-based
model includes the effect of local feedback on the armmplementation, are designed from the linearized dynamics
velocities; and ¢,. The inputsu € R? are the reference using standard techniques, such that LC')A and A+ BF
velocities for these inner loops. The particular structafe are stable (see supplementary material for details).
the state equation, which also includes the input at time ] .

k—2, follows from a time-scale separation algorithm used t&- Simulation Results: Effect of Synchronous Averaging
compute an approximate system model assuming sufficiently Figures 4 and 5 show system trajectories and communica-
tion rates for a typical simulation of the event-based aantr
system. The communication rates are comparable to those
observed in the experiments in [1]. A= 10 s, an impulsive
disturbance onu; is applied. As expected, the communica-
tion rate for the corresponding angle measuremgngoes

up temporarily.

Figure 6 shows the inter-agent errey; for a different
segment of the same simulation (in blue), as well as for
a separate simulation, where synchronous resetting (19) is
disabled (in green). Without resetting, the inter-agenbrer
f 4 sendu 4 for the simulationg g diverge causing the control system to destabilize (the pend
el et e SySlr e o U Smielons T lum fals). This demonstrates that stabiy may be lost tue
angle against the vertical is denoted pyand two “arms” rotating relative small deviations in the agents’ estimates, which is negtect
to the pendulum with angleg; ands. in the analysis in [1] by assuming identical estimates.
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TABLE |
RMS ESTIMATION ERRORS AND COMMUNICATION RATES FOR
Time (s) SIMULATION WITH AND WITHOUT PACKET DROPS.
Fig. 4. Typical state and input trajectories for the simolatexample. . . . o
TOP: arm anglese; (blue) andz2 (green). MIDDLE: pendulum angle SlmuLatlon scenaro 5% packet drops, no packet drops
x3. BOTTOM: control inputsu; (blue) andus (green). Att = 10s, an Synchronous averaging (19 yes no
impulsive disturbance is applied on input. RMS estimation erroe; 5.53-10~3 5.31-10~3
RMS estimation erroes 5.34-1073 5.31-1073
© RMS inter-agent erroes; 1.47-1073 0
® Total communication rat&k 0.158 0.145
c
8
3
E simpler case of identical estimates is helpful to approxéma
E R : the estimation performance, while it is not sufficient to
3 ﬂ&“ guarantee stability as discussed before.
b P— £, L " Y WY . .
0 0 5 10 15 20 25 30 Table | also shows for both scenarios the total communica-

tion rateR, which is defined as the number of communicated
a5 G o ) 100 s units (measurements) averaged over the duration of the
Cimulation sxperiment s n Fig. 4 The rates are shown n iaegreer, €XPeriment and the number of sensors. Thabis, R < 1,

for the arm angle measurements andys, and in red for the pendulum andR = 1 means that all sensors communicate at every step.
angular rate measuremens. The black dots on the time axis indicate the The slight increase ifR for the packet drop case is due to
instants when the estimates are reset according to (19). the additional communication required for the synchronous
averaging (19) (one element df;(k—) is counted as one
measurement). Apart from this, the communication rates are
comparable.

Table | shows root mean square (RMS) values of the
individual estimation errorg; ande,, as well as the inter-
agent errorke; . The values represent the average over 1000 The key difference of this work compared to the event-
simulation runs, with one run representing 300 secondsased estimation framework presented in [1] is the removal
of balancing. In contrast to the simulation in Fig. 4, noof the assumption that all agents’ estimates are identical.
impulsive disturbance was applied (but process and senspiis assumption is not practical since it is violated, for
noise were still active). The table shows the results for thexample, as soon as a single packet is dropped or delayed,
simulation scenario discussed so far (with 5% packet drogr if initial conditions vary slightly. The simulation exaie
probability), as well as the case of no packet drops. For theerein shows that stability may actually be lost due to
latter, z; andz, are identical and no synchronous averaginguch differences in the agents’ estimates. In this paper, we
(19) is required, which corresponds to the analysis in [1]. established stability in the presence of inter-agent wifiees

Apparently, the RMS values efi ande, are only slightly by means of the synchronous averaging mechanism (19);
larger for the case with packet drops compared to théhat is, by periodically (but infrequently) resetting adjemts’
idealized case without data loss. Furthermore, the irdjena  estimates to their joint average.
errores; is relatively small. This indicates that analyzing the As a result, there are two types of communication in

Time (s)

D. Performance Comparison to Ideal Case

VIl. CONCLUDING REMARKS



this approach: event-based communication of measuremenis
according to the event triggers (10), and periodic exchafige
estimates for the synchronous averaging (19). Even thdughjg,
would be possible to design a stable estimation scheme with
the synchronous averaging mechanism alone, this typicaII}/1
requires periodic updates at a relatively high frequenC)[/, ]
which would be against the event-based communication
paradigm. Instead, the results herein suggest a differe%]
design philosophy: first, an event-based design is cartigd
making the idealizing assumption of zero inter-agent srror
(i.e. according to [1]). In a second stage, a synchronod3!
averaging mechanism is introduced in order to keep inter-
agent errors small and guarantee stability under practical
circumstances (proposed herein). In a scenario, where intét4!
agent differences occur infrequently, the synchronoustres
ting frequency can be small and most communication igs]
due to the event-triggering. Moreover, one can expect the
estimation performance to be comparable to the idealized
design (see simulation example in Sec. VI, esp. Table 1). [16]

Stability is established for bounded disturbandgsdriving
the inter-agent error (18). The assumption of bounded
seems realistic when representing errors from initiatrat
or computational accuracy, for example. In the simulation
experiment, the signal$; are used to model random packelﬂs]
drops (cf. Sec. VI-A). Even though boundednesd ofannot
be established in a deterministic sense for this case, tHé!
method still proves effective in stabilizing the inter-age
error in this example.

Alternative ways of stabilizing the inter-agent errors)(18
than the synchronous averaging proposed herein, as wgl
as avoiding the periodic communication of control inputs
(Assumption 1), are some topics for future work.

[17]

[20]
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