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In the perceptual sciences, experimenters study the
causal mechanisms of perceptual systems by probing
observers with carefully constructed stimuli. It has long
been known, however, that perceptual decisions are not
only determined by the stimulus, but also by internal
factors. Internal factors could lead to a statistical
influence of previous stimuli and responses on the
current trial, resulting in serial dependencies, which
complicate the causal inference between stimulus and
response. However, the majority of studies do not take
serial dependencies into account, and it has been
unclear how strongly they influence perceptual
decisions. We hypothesize that one reason for this
neglect is that there has been no reliable tool to quantify
them and to correct for their effects. Here we develop a
statistical method to detect, estimate, and correct for
serial dependencies in behavioral data. We show that
even trained psychophysical observers suffer from strong
history dependence. A substantial fraction of the
decision variance on difficult stimuli was independent of
the stimulus but dependent on experimental history. We
discuss the strong dependence of perceptual decisions
on internal factors and its implications for correct data
interpretation.

Introduction

In the perceptual sciences, one of the central goals is
to infer the causal mechanisms of perceptual systems by
probing human observers or animals with carefully
constructed or selected stimuli (Blackwell, 1952; Green
& Swets, 1966). In practice, a tacit assumption
underlying this approach is that the only systematic
causal determinant of the perceptual decision is the
presented stimulus in an individual trial, i.e., that each
response is not influenced by previous responses or
stimuli. This would imply that, given the stimulus,
different trials of an experiment are statistically
independent. While this assumption is undoubtedly
convenient, it may, nonetheless, not be appropriate.
Internal factors can lead to a statistical influence of
previous stimuli and responses on the current trial
(Green, 1964). In the current context, internal factors
are any factors that may influence an observer’s
decision other than the stimulus—internal dynamics,
attentional and motivational state, adaptation and
learning as well as the stimulus or response history in
the form of intertrial dependencies.

In principle, the existence of such intertrial depen-
dencies has been recognized long ago (Senders &
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Sowards, 1952; Verplanck, Collier, & Cotton, 1952;
Howarth & Bulmer, 1956; Green, 1964), and numerous
studies have reported correlations between successive
trials in experiments with human observers (Maljkovic
& Nakayama, 1994; Mori, 1998; Lages & Treisman,
2010; Bode et al., 2012). Multiple studies have
quantified correlations between responses (Howarth &
Bulmer, 1956; Mori & Ward, 1995; Mori, 1998; Lages
& Treisman, 1998, 2010; Maloney, Dal Martello,
Sahm, & Spillmann, 2005) or response times (Peeke &
Stone, 1972; Maljkovic & Nakayama, 1994; Wagen-
makers, Farrell, & Ratcliff, 2004; Otto & Mamassian,
2012). Some studies have suggested theoretical models
for interdependencies between successive trials in
particular tasks (Lockhead & King, 1983; Stewart,
Brown, & Chater, 2002, 2005; Maljkovic & Martini,
2005; Martini, 2010; Raviv, Ahissar, & Loewenstein,
2012) and tested signatures of model assumptions
(Green, Luce, & Duncan, 1977; Baird, Green, & Luce,
1980; Green, Luce, & Smith, 1980; Treisman &
Williams, 1984). Although there is some evidence
suggesting that the effect of sequential dependencies on
human psychometric functions is small (Verplanck &
Blough, 1958), studies with animals found that taking
intertrial dependencies into account was of critical
importance (Lau & Glimcher, 2005; Busse et al., 2011).

This substantial body of literature shows that the
existence of nonstimulus effects on perceptual decisions
is well established in principle. However, they are
commonly ignored in neuroscientific and psychophys-
ical research: We analyzed the 2011 volume of a high-
impact neuroscience journal (Nature Neuroscience) as
well as an established specialist journal for visual
psychophysics (Journal of Vision) and found that only 1
out of 54 ‘‘candidate’’ articles (Meier, Flister, &
Reinagel, 2011) checked and corrected for intertrial
dependence (for details, see Appendix A1). The vast
majority of articles did not explicitly state that they
assume trials to be independent but analyzed their data
as if they were. Thus, despite considerable evidence for
intertrial dependencies in experiments that were de-
signed to explicitly study them, these results are rarely
applied in practice. This is potentially problematic, as
nonstimulus determinants could lead to both spurious
correlations between behavior and measurements of
neural activity as well as (downward) biases in
estimates of psychophysical performance.

We hypothesize that the widespread neglect to
consider this effect is caused by three factors: First,
there has been no generally applicable method for
quantifying the effect of experimental history on
perceptual decisions in psychophysical tasks. Second,
there has been no systematic, direct quantification of
the magnitude of trial-by-trial, nonstimulus determi-
nants of perceptual decisions in the context of
psychophysics with trained observers. Therefore, it is

unknown what percentage of variance in typical
psychophysical data is caused by the stimulus and what
percentage can be attributed to task-irrelevant exper-
imental history. Third, although some early studies
reported to find a weak or no effect of intertrial
dependence on psychophysical thresholds (Senders &
Sowards, 1952; Verplanck & Blough, 1958), there have
been no generally applicable and practical methods for
quantifying and correcting such biases on a wide range
of psychophysical data. Thus, it is still an open
question how strong and problematic serial dependen-
cies are across typical psychophysical tasks.

Our focus here is on a unified statistical description
of the different types of history effects in binary
responses in single-stimulus or two-alternative forced-
choice (2AFC) designs. Using a range of different
psychophysical data sets from these paradigms, we will
show that our method finds systematic dependencies
between trials. Yet typical measures of psychophysical
performance, such as the psychometric function’s slope
and threshold, are hardly influenced by these depen-
dencies. By performing mathematical analysis of a
simplified model, we describe why classical psycho-
metric measures are robust to sequential dependencies.

Although the kind of data considered here (binary
responses) is common in psychophysics and widely
used to measure perceptual thresholds with psycho-
metric functions (e.g., Wichmann & Hill, 2001), there
are also alternative psychophysical paradigms (e.g.,
those based on ternary responses or rating tasks) that
are not compatible with this modeling framework. We
do not address the question of sequential dependence in
reaction times in visual search tasks, which have been
characterized, e.g., by Maljkovic and Martini (2005)
and Martini (2010). We also exclusively investigate
intertrial sequential dependencies in behavioral tasks in
which the experimenter assumes there to be none. This
is in contrast to experiments investigating other internal
factors violating the assumption of independent trials,
such as adaptation (Chopin & Mamassian, 2012) or
learning (Sugrue, Corrado, & Newsome, 2004; Corra-
do, Sugrue, Seung, & Newsome, 2005; Lau &
Glimcher, 2005; O’Doherty, Hampton, & Kim, 2007).
In such settings, the experimenter is explicitly interested
in behavioral changes over time and therefore aims to
induce and characterize these changes.

Methods

A statistical model for capturing serial
dependencies in psychophysical data

To study the causal influence of recent experimental
history on the perceptual decisions of observers, we
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need a statistical model that can capture the influence
of both the stimulus and previous trials on the
observed response. The psychometric function is a
commonly used model for psychophysical data, which
usually relates the probability of a correct response to
the presented stimulus intensity (Treutwein & Stras-
burger, 1999; Wichmann & Hill, 2001; Kuss, Jäkel, &
Wichmann, 2005). To model the effect of previous
trials on the response, we modify this common
formulation: We relate the probability of a particular
behavioral response rt to the presented stimulus
intensity s̃t. We used ‘‘signed’’ stimulus intensities s̃t :¼
stzt here, which consist of the product of the absolute
intensity of the stimulus st and an identity factor zt,
which codes when or where the target was presented.
For example, in the 2AFC task (Jäkel & Wichmann,
2006) considered below, we use the stimulus identity zt
¼1 to indicate that the second of two presented stimuli
contained a luminance increment (‘‘target’’) and set rt
¼ 1 if the observer also chose the second interval (zt¼
"1 or rt ¼"1 otherwise, see below and Appendix A2
for details). Choice models in psychophysics usually
have a bias term d, which captures a stimulus-
independent tendency of observers to choose a
particular response. To model sequential dependen-
cies, we simply assume that d is not constant but may
shift dependent on experimental history (Treisman &
Williams, 1984). This is in accordance with a large
number of experimental findings (Hock, Kelso, &
Schöner, 1993; Lages & Treisman, 1998, 2010; Lages
&Treisman, 2010) and previous modeling attempts
(Green et al., 1977; Ward, 1979; Green et al., 1980;
Lockhead & King, 1983; Corrado et al., 2005; Busse et
al., 2011; Bode et al., 2012; Goldfarb, Wong-Lin,
Schwemmer, Leonard, & Holmes, 2012; Raviv et al.,
2012). Concretely, we assume that the bias term d can
be written as a linear combination of ‘‘history
features,’’ i.e., summary statistics of the events on
preceding trials (Corrado et al., 2005; Busse et al.,
2011):1

dðhtÞ ¼ d0 þ
XK

k¼1

xkhkt ¼: d0 þ dhistðhtÞ: ð1Þ

Here, the vector hkt can be taken to be any feature of
the recent history that might potentially influence
behavioral responses. We say that a data set exhibits
history dependence if, given the current stimulus, the
current response is statistically dependent on previous
stimuli and previous responses, that is,
P(rt j s̃t,ht) 6¼ P(rt j s̃t).

In our analyses below, we set hkt to be a concate-
nation of the last seven responses and stimulus
identities, that is, ht ¼ (rt"1, . . ., rt"7, zt1 , . . ., zt"7), a
vector of dimensionality K ¼ 14.

The influence of history will then be modeled as a
weighted sum of these history features, i.e., the history
couplings xk in Equation 1 indicate how much the
respective response/stimulus influences the current
response. For example, x1 . 0 indicates that the
observer tended to repeat the previous response and x1

, 0 that there was a tendency to switch responses. Our
model captures covariations between the observer’s
responses and previous responses or stimuli. These
covariations could increase the variance of the resulting
responses in a block2 but could also lead to a decrease
in variance or even leave it unchanged.

In our model, the probability of choice rt¼ 1 (which
denotes a rightward or second-interval choice in the
context of 2AFC) is given by

Pðrt ¼ 1js̃t; htÞ ¼ cþ ð1" c" kÞg
!
d0 þ

XK

k¼1

xkhkt þ aumðs̃tÞ
"
: ð2Þ

Here, s̃t¼ ztst is the signed stimulus intensity, k and c
describe the probabilities of stimulus-independent
responses to the right (c) or to the left (k), and g(x) is a
sigmoid function. In the following, we chose the logistic
function g(x) ¼ 1/(1 þ exp(–x)), and d0 and a are the
offset and slope of the stimulus-dependent part of the
psychometric function. We note that an alternative
view of the model is to assume that observers implicitly
combine the stimulus with a trial-specific Bayesian
prior assumption about whether the next target is in the
first or second stimulus and that this prior probability
P(ztjht) depends on the recent stimulus history (Yu &
Cohen, 2008; Wilder, Jones, & Mozer, 2010).

In experiments with multiple experimental condi-
tions, we allowed the slope a to be different across
conditions but assumed that the history couplings xk

were constant across conditions. As our model
describes the probability of particular responses (not
the probability of the response being correct), we need
to introduce a sensory threshold m, which accounts for
the fact that observers perform at chance level
whenever the stimulus has an intensity less than some
sensory threshold m. We use the nonlinear threshold
function um, which maps all stimuli with an intensity of
less than m to zero (for details see Appendix A2 and
Figure A1).

This model also has a modified intercept term d0 that
can capture potential within-trial biases that are
unrelated to the experimental history (see, for example,
Ulrich & Vorberg, 2009, and Garcia-Perez & Alcala-
Quintana, 2011, for more detailed treatments of these
effects). In some cases, these within-trial biases are also
associated with differences in the observers’ sensitivity.
In that case, it would be possible to apply the model
separately to trials of each presentation order, which is
equivalent to the approach advocated in Garcia-Perez
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and Alcala-Quintana (2011). Our formulation could
also be used to include additional covariates in ht,
which describe the current trial and which, thus, could
be used to capture more complex within-trial effects,
but this is not pursued here.

We also note that alternative parameterizations
could be used to model the effect of history on the slope
of the psychometric function. To model effects on
slope, one could include features that are proportional
to st. For example, by including a feature of the form
st zt–1, one could make the slope dependent on the
position of the target in the previous trial.

It has been suggested that random guesses made by
‘‘undecided’’ observers on difficult trials in forced-
choice tasks could be a source of bias in psychophysical
data (Garcia-Perez & Alcala-Quintana, 2010). We did
not explicitly model such indecision responses. How-
ever, if observers did make guesses that are temporally
correlated, this could be captured by our history
features whereas a bias resulting from temporally
uncorrelated guesses would affect our intercept term.

All parameters of the model were estimated from
data using log-likelihood maximization (see below and
Appendix A3 for details). In synthetic data sets (which
satisfied our modeling assumptions), the model cor-
rectly identified the presence or absence and the
magnitude of history dependence (see Appendix,
Figures A2 through A5).

Parametrization of model and model-fitting

We modeled the influence of the previous seven
responses and stimulus identities. To avoid having to fit
14 parameters, we only considered history features that
could be described by a linear filtering process

hkt ¼
X7

t 0¼1

bkt 0yt"t 0 ;

where y ! {z, r} and the bkt 0 ¼ gt
0"1
k denote three

exponentially decaying filter kernels with decay
constants gk ! {0,1/2,1/4}, which are sensitive to
fluctuations at different time scales. Each of these
filters was applied to the response sequence and to the
stimulus sequence. As these basis functions are
strongly correlated, they would result in strongly
correlated history features, which can result in
numerical problems when trying to identify their
parameters from data. We, therefore, orthogonalized
the basis functions with respect to each other, i.e., we
ensured that they are of unit-norm and mutually
orthogonal (Paninski, Pillow, & Simoncelli, 2004),
resulting in new basis functions b

0

k. Our 14-dimen-
sional history feature ht thus lives in a six-dimensional
subspace with its first three components given by the

projections of the previous stimulus identities onto the
basis functions and the last three components given by
the projections of the previous responses. Although
our algorithm identifies the coefficients of these basis
functions, we report the effective history filters, which
can be reconstructed by multiplying the basis func-
tions with their matching coefficients. We find the
parameters a, d0, c, k, the sensory threshold m, and the
history weights x by maximizing the log-likelihood of
the data under the response probabilities predicted by
the model L¼

P
t log P(rt j s̃t, ht). This likelihood can

have multiple local maxima, and there are multiple
constraints on parameters (e.g., 0 & k & 1 – c), which
renders naive gradient-based approaches problematic.
We, therefore, used the expectation maximization
algorithm (Bishop, 2006), an iterative algorithm that is
guaranteed to find a (local) optimum for mixture
models (see Appendix A3 for details). Although this
algorithm cannot guarantee convergence to a global
optimum, we have found empirically that, by using a
modest number of restarts combined with heuristic
starting values, the algorithm typically converged to
parameters that explained our data well and were
close to the true parameters on simulations with
known ground truth.

Performance measures, correcting for history
effects and statistical tests

Performance of the models was quantified using the
log-likelihood of the data under the model
L¼

P
t log(P(rt j ht, s̃t)) across all trials indexed by t. In

each trial, the choice is influenced by the effect of the
stimulus dstim(st) ¼ a 'uv(s̃t) as well as the effect of the
history, dhist(ht) (Equation 2). We thus quantified the
relative influence of the history as the ratio between the
variance of the history influence and the sum of the
variances,

HistCont ¼ VartðdhistðhtÞÞ
VartðdhistðhtÞÞ þ Vartðdstimðs̃tÞÞ

100%;

where Vart indicates that the variance is determined
across all trials t. This measure quantifies to what
extent fluctuations in the internal decision variable can
be attributed to history, and we, therefore, refer to this
measure as ‘‘history contribution to variance in the
decision variable.’’ This measure quantifies the relative
contribution of the stimulus and the experimental
history to fluctuations of the decision variable but
does not model additional noise in the decision
process. Thus, if the stimulus intensity is 0, the
internal variance of s̃ will be zero as well, and the
decision variable will be 100%. We excluded blocks
with performance ,55%.
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To provide an absolute measure of the influence of
history dependence on behavioral choice, we com-
puted the accuracy of different models in predicting
behavior: In every trial t, the model provides two
probabilities, P(rt ¼ 1) and P(rt ¼"1). In order to
quantify how well a model predicted behavioral
choice, we said that the model predicted rt ¼ 1
whenever P(rt¼ 1) . P(rt¼"1), i.e., in which P(rt¼ 1)
. 0.5, and said that the model predicted rt ¼"1
otherwise. The percentage of correct predictions was
calculated by counting the number of correct predic-
tions. For the ‘‘history only’’ model, the parameter a
was set to zero. To correct the psychometric function
for the effect of errors attributable to serial depen-
dencies, we first fitted the full model (Equation 2) to
data and then extracted a psychometric function by
setting the history couplings x to zero. This model was
then compared to a conventional psychometric func-
tion (Equation 1). Confidence intervals for history
kernels were determined using a bootstrap procedure.
After the values of the history features in each trial
had been calculated, 2,000 bootstrap data sets of the
same size were sampled from the data with replace-
ment (Efron & Tibshirani, 1993). Confidence intervals
were defined as the 2.5 and 97.5 percentiles of this
distribution. As the full model has six more param-
eters than the history-free model, bootstrap samples
cannot be used to evaluate the statistical significance
of history features (as, on each bootstrap set, the full
model would have a higher likelihood than the
history-free one). We therefore used a permutation
test: We permuted the sequence of trials randomly
such that the history features could contain no
information about the response but that the associa-
tion between stimulus and response was left intact.
Thus, the permuted data sets yielded an approxima-
tion of the distribution of likelihoods that would be
expected under the null hypothesis of no serial
dependence. We fit the model to 2,000 permutations of
the original data sets and compared performance
measures and other parameters to the 95th percentile
of this permutation distribution. In cases in which the
effect of history dependence is nonlinear, our model
will capture a linear approximation to this nonlinear
system and will detect the presence of history
dependence provided that its linear term is not
negligible. Of course, weak history dependence on
small data sets might not reach the level of statistical
significance and might therefore not be detected by the
statistical tests described here.

Details of psychophysical data

All psychophysical experiments analyzed in this
study were conducted in accordance with the regula-

tions of the relevant institution (Max Planck Institute
Tübingen and TU Berlin). We analyzed data from four
different experiments in which one of the coauthors
was actively involved (FAW); all data were considered
‘‘clean’’ by conventional analyses, i.e., showed no
obvious signs of learning, fatigue, or equipment failure
as determined by criteria outlined elsewhere (Wich-
mann & Hill, 2001).

Five observers had to detect luminance increments in
different fields of Adelson’s checkerboard illusion
(Maertens & Wichmann, 2012) (for a description of the
paradigm, see Maertens & Wichmann, 2013). Each
observer performed between 2,448 and 3,204 temporal
2AFC trials and received only overall feedback after
blocks of 36 trials, i.e., the average performance over 36
trials. Each 36-trial block contained 18 trials for each of
the 2AFC stimulus orderings in a randomly shuffled
trial order. As our permutation test applied to this data
would also have a fixed number of alternatives in the
null distribution, it will also work correctly if blocks are
constructed by shuffling rather than by sampling from
a binomial distribution. In total, 14,256 trials from this
experiment were analyzed.

Five observers participated in a temporal 2AFC
plaid masking experiment (Wiebel & Wichmann,
2007); observers received auditory trial-by-trial feed-
back about whether or not their responses were
correct. After practice sessions, the observers per-
formed between 3,255 and 4,100 trials. In these trials,
the signal stimulus was randomly assigned to one of
the two intervals, independently of all other trials. In
total, 18,305 trials from this experiment were ana-
lyzed.

Six observers performed a single-interval (yes-no)
auditory tone noise-detection experiment. Each ob-
server performed between 25 to 33 sessions. The initial
seven to 12 sessions were used for training, and only the
remaining 18 to 22 sessions were analyzed. Data were
collected in blocks of 50 to 60 trials. Whether a
particular trial contained a signal or not was indepen-
dent of all other trials. Observers received single-trial
feedback for the first 10 trials of each block, and we,
therefore, discarded these trials. For each observer,
between 20,610 and 22,800 trials were analyzed
resulting in a total of 127,430 trials (Schönfelder &
Wichmann, 2013).

Finally, we analyzed data from a study by Jäkel and
Wichmann (2006). From this study, we analyzed data
from six observers, five naive at the beginning of the
experiment and one highly trained observer. For each
observer, we analyzed between 2,640 and 5,665 spatial
2AFC trials, i.e., a total of 27,060 trials. The signal was
randomly presented either left or right of the fixation
cross. The assignment of the signal to the left or right
position did not depend on signal positions in previous
trials.
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Results

History dependence in low-level visual
psychophysical task

First, we show an example of a human observer
whose decisions are influenced by the recent experi-
mental history. We analyzed data from a two-interval
forced-choice experiment in which a human observer
had to decide whether a luminance increment appeared
in the first or the second of two temporally separated
presentations of Adelson’s checkerboard (Maertens &
Wichmann, 2012) (see Methods for details). Perfor-
mance in the task showed a clear and clean dependence
on stimulus intensity (Figure 1a) as intended by the
experimenter. Nevertheless, our model, which accounts
for history dependence, provided a much better
explanation of the data than a conventional model that
assumes independent trials: The log-likelihood of our
model (lfull ¼"911.7) was substantially larger than the
one of the independent-trial model (l0 ¼"941.2,
corrected for difference in parameters using Akaike’s
information criterion, AIC), and a permutation test
against random trial sequences revealed that this

performance benefit was significant at level p , 0.0005
(Figure 1b, see section ‘‘Performance measures, cor-
recting for history effects and statistical tests’’ for
details; all p values in the following are derived from
this test unless stated otherwise).

To show that the effect of previous trials was not
only statistically significant, but determined behavior
noticeably, we calculated how much of the trial-by-trial
variability in the observer’s decision variable could be
explained by history (see Methods for details). This
quantity (history contribution to variance in the
decision variable) would be 0% if trials were indepen-
dent and 100% if observers were exclusively influenced
by the experimental history. (It would also be trivially
be 100% in tasks or conditions in which there is no
signal.) The influence of history decreases monotoni-
cally with stimulus intensity (Figure 1c). On difficult
stimuli (for which the performance of the observer was
between 55% and 75% correct), 32% of the variance of
the observer’s decision variable depended on previous
trials rather than the current stimulus (p , 0.0005,
Figure 1d). As expected, behavior was primarily
explained by the stimulus on easy trials (for which
performance .75% correct), on which 98% of the
variance of the observer’s decision variable was
explained by the stimulus, and only 1.6% of the

Figure 1. Data from example observer in luminance experiment. (a) Psychometric function and proportion of ‘‘second interval’’
responses as a function of transduced stimulus intensity for observer pk; colors correspond to different experimental conditions. (b)
Log-likelihood of the full model (dark blue line). Here and in all panels, the gray histogram is the distribution on permuted data (gray),
and the vertical gray line marks its 95th percentile; the star marks statistical significance. (c) History contribution to variance in the
decision variable as a function of stimulus intensity. (d) History contribution to variance in the decision variable by history on difficult
trials. (e) Same as (d) but for easy trials. (f) Prediction performance (percentage correct) of full model (including stimulus and history
terms, dark blue line) in predicting observers’ responses on difficult stimuli and comparison with stimulus-only model (red line). (g)
Prediction performance of model with only history dependence and no stimulus dependence (dark blue line) and comparison with
stimulus-only model (red line). (h) Prediction performance of history-only model on easy stimuli (dark blue line).
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variance of the observer’s decision variable was still
history-dependent (p , 0.0005, Figure 1e).

To elucidate the ability of the stimulus and
experimental history to predict behavior, we quantified
in how many trials the different models correctly
predicted the subjects’ decision: The prediction per-
formance of the history-only model (i.e., for which the
stimulus weight is set to zero) decreased with stimulus
intensity (Appendix A6). For difficult stimuli, the full
model (i.e., stimulus and history) predicted behavior
with 64% accuracy (Figure 1f) whereas the stimulus
only achieved 63% and the history alone achieved 60%
(p , 0.0005, chance level is 50%, Figure 1g). Our
analysis shows that, on difficult stimuli, which are of
relevance for measuring psychophysical performance,
perceptual decisions of this observer are almost as
strongly influenced by internal decision variable fluc-
tuations induced by experimental history as they are by
the experimental stimulus. Nevertheless, the fact that
the prediction power was far away from 100% implies
that much of the variability in subjects’ responses could
not be accounted for by the stimulus or experimental
history.

Even on easy stimuli, prediction performance of the
history-only model was statistically significant at 54%
(p , 0.03, Figure 1h).

The additional benefit of the ‘‘full’’ model over the
stimulus-only model might seem surprisingly small.
This might be interpreted as indicating that the
stimulus and the history signal were very correlated.
However, this was not the case: For this observer, less
than 0.05% of the stimulus component could be
explained from the history component (maximum
across observers was 0.11%). To better understand this
effect and to assess whether our results about history
contribution to variance in the decision variable were
consistent with these measures of prediction perfor-
mance, we investigated a simplified model in which the
stimulus, the history influence, and the internal noise
were approximated by independent Gaussian random
variables. The variances of stimulus and history were
chosen to be consistent with our results on history
contribution to variance in the decision variable, the
variance of the internal noise distribution was adapted
to match the observers’ performance in difficult trials.
In this model, the predictive power of the history-only
model was 59%, of the stimulus-only model 63%, and
of the combined model 65%, which is in agreement with
our empirical findings. On average across observers,
this simplified model explained prediction accuracies
with an error of 3%. Therefore, the small gain of the
combined model relative to the other two models is
consistent with our other findings and, in particular,
does not imply that the history is correlated with the
current stimulus.

Effect of history dependence on psychometric
functions

If observers are influenced by task-irrelevant infor-
mation in previous trials, then this could lead to
suboptimal performance in the task. Hence, estimates
of the capabilities of sensory processing systems could
be negatively biased by the dependence of perceptual
decisions on internal states. Our model allows us to
provide a statistical description of psychophysical data
that separates the effects of experimental history and
the stimulus on the decision, and thus, it leads to a
‘‘decontaminated’’ estimate of the psychometric func-
tion. We emphasize that this ‘‘discounting’’ of history-
induced errors yields a model-based estimate of
psychophysical performance, which could be wrong if
the modeling assumptions were inappropriate. Our
model gives two generally different psychometric
functions for the two response intervals (Ulrich &
Vorberg, 2009; Garcia-Perez & Alcala-Quintana, 2011).
We report the average of these two psychometric
functions here because both psychometric functions
were typically similar, and our interest is on trial-by-
trial effects rather than biases that might emerge within
an individual trial.

After discounting errors induced by history, the
predicted probabilities of correct responses differed
from a conventional psychometric function (Figure 2a
and 2b), i.e., some of the observers’ errors could be
attributed to the influence of task-irrelevant features.
We quantified the impact of the history on the
psychometric function by comparing the stimulus level
at which our model or the independent trial model
predicted a performance of 85% correct. Accounting
for history dependence yielded discrimination thresh-
olds that were reduced to 96% of the original value, i.e.,
a reduction of, at most, 4% (p , 0.0005, average across
conditions 97.2%, Figure 2c). Thus, the fact that
conventional analyses cannot discount the errors
induced by dependence on previous trials leads to a
slight underestimation of the stimulus sensitivity of this
observer.

On the one hand, experimental history clearly
influences behavior, but on the other hand, it only
seems to have a weak effect on psychophysical
thresholds. To better understand this apparent para-
dox, we considered a second simplified, analytically
tractable model (see Appendix A6 for details). We note
that, if the psychometric function were perfectly linear,
even strong history dependence would not lead to any
degradation in performance as stimulus-independent
lapses in one direction and in the other direction would
cancel perfectly. However, the psychometric function is
a nonlinear model. We found that a history-induced
standard deviation of r¼ Std(dhist(ht)) leads to a
quadratic reduction in the slope of the psychometric
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function, i.e., one that is proportional to the history-
induced variance r2. Thus, for typical history depen-
dence (r , 1), the reduction in the slope is even smaller
(as r2 , r). Furthermore, the proportionality factor of
this relationship is also small, namely p/16 ’ 0.2. For
example, for a standard deviation of r¼ 0.3, one would
only expect a reduction of the slope by 0.09 · p/16
’1.18%.

This relationship thus explains why even substantial
history dependence only has a weak effect on the slope
of the psychometric function (and hence thresholds)
(Verplanck & Blough, 1958). Conversely, including
history dependence in the model should lead to a
steeper psychometric function and, thus, lower thresh-
olds. For our example observer (for which r ¼ 0.52),
this simplified analysis predicted a reduction of
threshold by 5.3%, which slightly overestimates the
empirically measured reduction of 4%. Across observ-
ers, the threshold changes predicted by this simplified
model were correlated with those of the full model (c¼
0.73) and did not differ in their mean level (paired
samples t test: t(21) ¼ 0.57, p ¼ 0.57).

Serial dependencies across multiple observers
and paradigms

To demonstrate that the results above are not an
idiosyncrasy of this particular observer or task, we
analyzed data from 22 human observers collected in
four different experimental paradigms, resulting in a
substantial data set of 187,051 trials in total. In all
cases, observers were engaged in low-level psycho-
physical experiments, and the data were considered
‘‘clean’’ by means of conventional analyses (Wichmann
& Hill, 2001). However, stimulus material and task
varied widely across the most commonly used exper-
imental paradigms, including visual 2AFC tasks with
the alternatives separated spatially and temporally and

an auditory single-interval task. In experiments with
multiple experimental conditions, we conservatively
assumed the structure of history dependence to be fixed
across conditions. Thus, if observers have condition-
dependent history dependence, our results would
underestimate the true magnitude of history depen-
dence.

We found significant history-dependence (p , 0.05)
in 19 out of 22 observers, and modeling the non-
stimulus determinants of the behavioral choices led to
an average increase in log-likelihood of 0.009 6 0.0020
per trial (SEM across observers, Figure 3a, see
Appendix A7 through A12 for detailed results of two
further observers). In other words, a data set of 500
trials would be (on average) 77 times more likely under
our model than under a conventional model assuming
independent trials. Significant history dependence was
found in all four experimental paradigms we investi-
gated (see Figure 3a), and its strength varied consid-
erably across observers.

On average, 13.7% 6 2.4% (SEM) of variance of the
decision variable on difficult stimuli was determined by
the experimental history (Figure 3b) and not by the
presented stimulus with values for individual observers
as high as 48.2%. Experimental history was a mean-
ingful predictor of behavioral choices in individual
trials. On average, the model based on previous trials
predicted 56.5% 6 1.0% (SEM, chance level 50%,
significant for 16 out of 22 observers) of responses on
difficult stimuli correctly, compared to 64.8% 6 0.5%
for the stimulus and 65.5% 6 0.4% for the combined
model (Figure 3c). Across observers, the prediction
performance of the full model was significantly better
than for a model that only contained stimulus terms (p
, 10"3, permutation test of paired differences). For one
observer, the history was, in fact, a better predictor of
the behavioral choice than the presented stimulus.

We emphasize that the prediction accuracy of the
history model was on par with the accuracy levels

Figure 2. Effect of history dependence on the psychometric function for the example observer. (a) Psychometric functions indicating
frequency of correct responses as a function of stimulus intensity. Dashed lines mark fits of a model without history terms. Colors
correspond to different experimental conditions. (b) Percentage of behavioral errors attributable to history, i.e., normalized difference
between error rates predicted psychometric functions with or without history couplings. (c) Ratio of 85% performance thresholds
(blue line) between full model and conventional model and null distribution (gray histogram). Thresholds are lower for the full model
with history terms.
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reported in many decoding studies, which predict
behavioral choice from functional imaging measure-
ments (e.g., Soon, Brass, Heinze, & Haynes, 2008);
thus, although the absolute numbers seem low, they
could potentially be big enough to lead to confounds in
the analysis of imaging data (Lages & Jaworska, 2012).
As expected, performance on easy stimuli was largely
driven by the stimulus, and previous trials explained
only 1.4% 6 0.3% of the variance of the decision
variable and predicted choices at 52.7% 6 0.5%
correct. We also note that the variance across observers
is substantial, i.e., that there are large interpersonal
differences in how strongly observers are affected by
experimental history.

Across observers, the thresholds that were estimated
by the model with history terms were 97.0% 6 0.5% of
those obtained without history (significant for 17 our of
22 observers). In other words, the observers’ sensitivity
was, on average, 3.0% higher if errors caused by a
reliance on task-irrelevant information in previous
trials were discounted. Thus, history dependence leads
to a small yet systematic underestimation of perceptual
sensitivity. Nevertheless, in most analysis questions,
such small differences in estimated thresholds will be
negligible. The upper asymptotic performance was not
systematically closer to 100% if history was modeled
(reduction in asymptotic error rate by 0.2% 6 0.2%).

Finally, we also tested our modeling assumption that
history dependence would primarily lead to shifts in the

psychometric functions and not changes in the slope.
We fit four conventional psychometric functions
separately to trials that followed a left response and
trials that followed a right response as well as trials that
followed a left stimulus and trials that followed a right
stimulus. Differences in horizontal shifts were, on
average, 2.3 times larger than differences in slopes
(after normalizing with the estimates’ standard errors).
In 35 out of 44 cases, the effect of the previous trial on
the horizontal position of the psychometric function
was larger than the effect on the slope of the
psychometric function (p ¼ 0.0001 binomial test).

What properties of the recent experimental history
were predictive of behavior? To answer this question,
we visualized the filtering kernels, which capture how
previous responses and previous stimulus identities
(i.e., target locations) influence the decision in the
current trial. The exemplary observer from the lumi-
nance experiment was mostly sensitive to responses in
the most recent trial and showed a tendency to avoid
previous choices as evidenced by the predominantly
negative filter weights (Figure 4a). In contrast, the
previous stimulus identities did not have a significant
effect on decisions. This finding is in accordance with
the fact that this observer did not receive trial-by-trial
feedback about the identity of the preceding stimulus.
Figure 4b displays response kernels for all observers
and shows that the strongest influence was from the
most recent trial (55.6% of the history contribution to

Figure 3. Summary results across observers. (a) Likelihood change due to history: Colored dots mark the increase in likelihood with
respect to a model with no history terms, corrected for different numbers of parameters using Akaike’s criterion. Black box marks
median and quartiles of distribution. (b) History contribution to variance in the decision variable on difficult trials: Colored dots mark
the fraction of total history contribution to variance in the decision variable on difficult trials. (c) Prediction of behavioral responses
from full model using both history and stimulus (left), the stimulus only (center), or the experimental history only (right). (d) Ratio
between 85% performance thresholds estimated with the full model and with a model without history terms. Thresholds were
consistently overestimated if history dependence was not taken into account.
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variance in the decision variable was explained by the
previous trial; all kernels are shown in Appendix A8).
Nevertheless, there was a significant influence of longer
trial lags, which contributed a log-likelihood gain of
0.0013 6 0.004 (SEM) per trial across all data sets
(corrected using AIC, p ¼ 0.00001 binomial test).

The combination of the filter weights associated with
the previous stimulus or response can be viewed as the
behavioral strategies employed by different observers
(Figure 4c). Negative filter weights associated with the
previous response indicated a tendency to switch, and
negative filter weights for the previous stimulus identity
indicated a tendency to avoid the previous target. The
top half of the plot contains a continuum of ‘‘win stay–
lose switch’’ strategies, i.e., it signifies a tendency to
repeat a response if it was successful and to otherwise
alternate the response. Interactions between these
effects also give rise to more interesting strategies: For
example, along the upper part of the negative diagonal,

the weights for previous stimulus and the previous
response have the same magnitude but opposite sign—
thus, these effects cancel after correct responses (on
which the previous stimulus equals the previous
response), but they lead to history effects after incorrect
responses. Observers tend to switch their responses
after errors, a strategy that could be called ‘‘lose-
switch.’’ A similar reasoning can be applied to the other
diagonals as well.

The observers in the luminance experiment consis-
tently associated negative weights to previous responses
(average "1.13 6 0.38, SEM), reflecting a tendency to
switch responses from trial to trial. Weights associated
with previous stimuli were heterogeneous and, on
average, a factor of 3.85 6 1.98 times smaller than the
response weights. In contrast, most observers from two
masking experiments (plaid mask in the first experi-
ment and a sine grating mask of the same spatial
frequency and orientation in the second experiment)

Figure 4. History couplings. (a) Weights assigned to previous stimuli and responses for observer pk. Shaded regions mark 95%
bootstrap confidence regions. (b) Response kernels for all observers. Color codes for the different experiments. c) Each position in this
coordinate system corresponds to a behavioral strategy. For example, a measurement being in the upper quadrant shows that the
observers had a tendency to repeat a response after a successful trial and to alternate otherwise. Weights assigned to previous
response and previous stimulus identity across observers. (d) Average of weights assigned to stimuli and responses more than one
trial back.

Journal of Vision (2014) 14(7):9, 1–16 Fründ, Wichmann, & Macke 10

http://www.journalofvision.org/content/14/7/9/suppl/DC1


are near the upper left diagonal of this plot, reflecting
the fact that these observers primarily changed their
response criterion after errors, which is likely to be a
consequence of the fact that they received trial-by-trial
feedback. In contrast, subjects in a yes-no audio
experiment had weak weights associated with the
previous stimulus (average weight "0.11) and stronger
weights associated with previous responses (average
weight 0.33). Thus, these observers showed slow
fluctuations of their decision variable, which manifests
itself in a tendency to repeat their previous responses.
Although the overall influence for longer trial lags was
substantially weaker, a clear clustering of weights
according to experimental paradigm was still evident
(Figure 4d).

We note that these filtering kernels are not equiva-
lent to cross-correlations between current and previous
responses. For example, a direct effect that is confined
to the previous trial would lead to cross-correlations
even at (in theory) infinite time lag with an exponen-
tially decaying strength. Similarly, and in contrast to
correlations, these filter kernels allow us to quantify
whether the response of the subject is dependent on
previous responses or previous stimulus identities. For
example, for our example observer, the cross-correla-
tion between previous stimulus identities and the
current response is nonzero (as previous stimulus
identities are correlated with previous responses corre-
lated with the current response) despite the fact that
our analysis reveals that their direct influence is
negligible. Thus, with our method, we can disentangle
serial dependence on previous responses from a
dependence on previous stimuli or feedback.

Discussion

Our results demonstrate that there exist significant
and systematic causal determinants of perceptual
decisions over and above the stimulus presented to the
organism. Great care must thus be exercised when
attempting to infer mechanisms from behavioral data
unless the unwanted, non-stimulus-dependent internal
factors are taken into consideration. In particular, we
showed that the predictive power of experimental
history was similar to values reported in studies
predicting behavioral choices from functional imaging
measurements (Soon et al., 2008; Lages & Jaworska,
2012). After correcting for the effect of history
dependence, observers were slightly more sensitive to
the stimulus (i.e., had lower thresholds) than deter-
mined by conventional analyses. Our experiments were
conducted with experienced observers and in tightly
controlled settings. In addition, our model assumes the
effect of history to be linear. If the true history

dependence in the data is nonlinear, our model will
only capture the linear kernel of the nonlinear system.
It is therefore likely that we have explored the lower
bound of serial dependence in behavioral studies. In
addition, these effects might well be more pronounced
for untrained observers, patients, animals, or in other
experimental designs, e.g., those employing adaptive
procedures (Treutwein, 1995). Therefore, it might be
unwarranted to extrapolate our findings or previous
reports to other experimental settings.

The existence of serial dependencies has long been
known (Verplanck et al., 1952; Senders & Sowards,
1952; Howarth & Bulmer, 1956). Although these
dependencies have a modest influence on aggregated
measures of performance (see also Senders & Sowards,
1952; Verplanck & Blough, 1958), trial-by-trial effects
are consistent in individual trials. Our results show
that, even for low-level perceptual tasks, perceptual
decision-making cannot be modeled as being based on
a feed-forward system that passively responds to
external stimuli. As observers were strongly influenced
by their previous responses—and not by previous
stimuli—adaptation is unlikely to be an explanation for
the observed intertrial dependence found here: If the
response patterns could be explained by adaptation, we
would expect observers to avoid the response associ-
ated with previous stimuli. This should result in
negative history weights associated with previous
stimuli. Yet, for most observers, history weights
associated with previous stimuli are very close to zero.
Similarly, the fact that history dependence was also
observed in experiments without trial-by-trial feedback
makes it unlikely that either posterror dynamics
(Goldfarb et al., 2012) or models of reinforcement
learning (Dayan & Niv, 2008) could explain our results.
In contrast, a more likely explanation for our results
would be that human observers combine information
from the stimulus with their prior beliefs about where
they expect the next target. If they have an incorrect
model of what constitutes a random sequence of events
(Bar-Hillel & Wagenaar, 1991) and combine their
single-trial expectations with stimulus information in a
Bayesian fashion (Körding & Wolpert, 2004), then this
would lead to precisely the type of sequential depen-
dencies observed here.

Neglecting sequential dependencies can be problem-
atic for four reasons: First, as we showed above,
intertrial dependencies can lead to small but systematic
biases in characterizations of the performance limits of
a sensory system. In addition, these biases might be
bigger for behaving animals or other experimental
paradigms. Explicitly analyzing sequential dependen-
cies can help in identifying these biases if they occur.
Second, by analyzing dependencies across trials,
researchers might obtain interesting information from
psychophysical data. For example, Chopin and Ma-
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massian (2012) analyzed sequential dependencies to
draw conclusions about adaptive processing of orien-
tation, which would be inaccessible with averaged data.
Third, statistical techniques for system identification
have gained popularity in the perceptual sciences over
the last years (Ahumada & Lovell, 1971; Kienzle,
Franz, Schölkopf, & Wichmann, 2009; Macke &
Wichmann, 2010; Schönfelder & Wichmann, 2012).
Therefore, it is conceivable that the application of
system identification techniques to data contaminated
by serial dependencies may recover wrong features or
may show a disappointingly low correlation between
inferred features and behavior. Fourth—and arguably
most importantly—many studies relating behavioral
choices to measurements of neural activity or their
correlates are dependent on the assumption that the
perceptual choice is determined by the current stimulus
(Fründ, Busch, Schadow, Körner, & Herrmann, 2007;
Soon et al., 2008; Busch, Dubois, & VanRullen, 2009;
Nienborg & Cumming, 2009; Tong & Pratte, 2012) and
could be led astray if internal states are a strong
determinant of these choices. Similarly, the fact that
behavioral choices can be predicted from neural
measurements could be a consequence of sequential
dependencies combined with a dependence of neural
activity on previous choices (Lages & Jaworska, 2012).

Previous studies have reported history kernels for
human reaction times (Maljkovic & Nakayama, 1994;
Maljkovic & Martini, 2005; Martini, 2010), binary
responses in animals (Corrado et al., 2005; Lau &
Glimcher, 2005; Busse et al., 2011), and human
categorization judgments (Stewart et al., 2005) that
share qualitative similarities with the ones presented
here. Furthermore, if effects in earlier studies had been
expressed as kernels, these might also have supported
this perspective (Senders & Sowards, 1952; Treisman
& Williams, 1984). Nevertheless, given that these
kernels were estimated in very different experiments or
even using different measures, they are likely to be
caused by different underlying mechanisms. Kernels
estimated in studies of reaction times typically indicate
that repetition of the same response becomes faster
(Maljkovic & Nakayama, 1994; Maljkovic & Martini,
2005; Martini, 2010). Kernels derived describing an
animal’s reward expectation reveal a tendency to
expect reward in the same position (Corrado et al.,
2005; Lau & Glimcher, 2005) or a combination of
reward expectancy and sensory processes (Busse et al.,
2011). In contrast, we note that studies of sequential
dependence in ‘‘purely’’ perceptual processing—with
two stimuli that are themselves difficult to discrimi-
nate—have typically not derived response kernels
(Senders & Sowards, 1952; Verplanck et al., 1952). In
addition, the classical studies of these effects (Senders
& Sowards, 1952; Verplanck et al., 1952) used long
sequences of stimuli with the same intensity and no

intervening blank stimuli in single-interval designs, a
design that has been rarely used since the introduction
of signal-detection theory (Green & Swets, 1966).
Some authors have explained sequential dependencies
by means of a temporally varying criterion (Treisman
& Williams, 1984; Lages & Treisman, 1998). We find
consistent sequential dependencies in many different
experimental designs, including forced-choice designs,
and these dependencies have a systematic—albeit
small—effect on performance. Although sequential
dependencies in different experiments have very
different meanings and mechanisms, the statistical
framework that we present can describe all of the
history effects that refer to binary responses. Thus,
our framework allows for a unified quantification and
comparison of history effects even if they have very
different psychological interpretations.

Previous studies typically found that the experi-
mental history mainly shifted psychometric functions
horizontally (Hock et al., 1993; Lages & Treisman,
1998, 2010; Lages & Treisman, 2010). Therefore, our
model resembles previous models that also described
sequential dependencies as a form of trial-by-trial
response bias rather than variations in an observer’s
sensitivity to the stimulus (Green et al., 1977; Ward,
1979; Green et al., 1980; Lockhead & King, 1983;
Corrado et al., 2005; Busse et al., 2011; Bode et al.,
2012; Goldfarb et al., 2012; Raviv et al., 2012). (Note
that we here refer to psychometric functions that
relate the stimulus intensity to the probability of a
given binary response and not to the probability of a
correct response.) Yet it is possible that history has an
influence on the slope of the psychometric function as
well (see Lages & Treisman, 2010, for some indication
of this). Our model is not able to capture these kinds
of sequential dependencies, and thus, the history
dependence reported here should be treated as a lower
bound.

The statistical methodology we presented makes it
possible to quantify the strength of intertrial depen-
dence and to correct psychometric functions or other
estimates of behavioral performance for the systematic
influence of previous trials. Our framework makes it
possible to track fluctuations of the internal decision
variables on individual choices (Lau & Glimcher, 2005;
Corrado & Doya, 2007; O’Doherty et al., 2007) and
thus has the potential to reveal a rich source of
information that had previously been buried by trial
averaging. Given that time series of behavioral
observations are ubiquitous in neuroscience and related
fields, our methods will be applicable to a wide range of
experimental or clinical paradigms that measure human
or animal performance. Combined with methods for
single-trial analyses for neurophysiological recordings
(Churchland, Yu, Sahani, & Shenoy, 2007), they thus
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have the potential to contribute to a more realistic
understanding of perceptual decision-making.

Keywords: perceptual decisions, psychophysics, sta-
tistical modeling, serial dependence, internal variability

Supplementary material

Appendices A1 to A8 can be found in the
Supplementary Information file.

Acknowledgments

We thank M. Sahani for his support and important
discussions during early stages of the project; F. Jäkel,
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Footnotes

1Letting the bias term vary dynamically from trial to
trial complicates the interpretation of the model in
terms of a signal and a decision criterion as defined in
signal-detection theory. We here restrict ourselves to
finding a statistical description of history effects, and
we do not attempt to disentangle whether they
influence the criterion or the signal in the decision
process.

2Here, a block refers to a sequence of trials with
constant (unsigned) stimulus intensity. Thus, trials
within a block differ only with respect to the position of

the stimulus (e.g., left/right in a spatial 2AFC) and their
history features.
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Appendix to ‘Quantifying the e↵ect of

inter-trial dependence on perceptual

decisions’

Ingo Fründ, Felix A. Wichmann, Jakob H. Macke

A1 Literature survey

As mentioned in the introduction, most researchers in the perceptual sciences are aware
of the potential contamination of behavioural data by internal factors, at least during
informal discussions. In stark contrast, we felt that rather few published papers actually
discussed or corrected for internal factors. To confirm—or disconfirm—our impression,
we attempted to obtain a rough estimate of the prevalence of serial dependency discus-
sions in the relevant literature. To this end we searched the 2011 volume of a high-impact
neuroscience journal (Nature Neuroscience) as well as in an established specialist journal
for visual psychophysics (Journal of Vision).

We scanned one volume of Nature Neuroscience by searching pubmed (http://pubmed.com)
for the search string (“Nature Neuroscience”[Journal] AND 2011[dp] AND (psychophysic*[TIAB]
OR behavior*[TIAB] OR behaviour*[TIAB])). From the resulting articles we removed
those that

1. referred to behavioral data in their abstract but did not analyze or record them in
the study.

2. analyzed invertebrates (e.g. Drosophila or C. elegans) or used non-psychophysical
methods such as food or water intake.

Application of the two criteria to the pubmed search resulted in a total of 14 articles
from the 2011 volume of Nature Neuroscience. In addition we dropped one article that
referred to psychophysics in the abstract but only reanalyzed average behavior from
another study, resulting in a total of 13 articles from Nature Neuroscience.

We scanned one volume of The Journal of Vision using the journal’s search function
(http://www.journalofvision.org/search). We searched for articles that contained (“psy-
chophysic*” OR “behavior*” OR “behaviour”) in their “Title/Abstract” field and 2011
in their “Year” field. From the search results we manually omitted reviews and a number
of papers that were published at the end of 2010 but were erroneously included in the
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search results. In addition, we excluded one article about zebrafish and two that re-
ferred to psychophysics in their abstract but actually did functional magnetic resonance
imaging without recording behavioral responses. Finally, we excluded one theoretical
study that reanalyzed discrimination thresholds from another study. This left us with
41 articles from the Journal of Vision.

We carefully read the abstracts and methods sections of 54 articles in total and went
through the entire manuscript to detect potentially misplaced methods descriptions (e.g.
a brief description of the method at the beginning of the results section or in the discus-
sion section).

Each paper was judged based on four criteria:

1. Did the article refer to sequential dependencies in the abstract?

2. Did the study perform any measures to avoid potential artifacts from inter-trial
dependencies or did the article report checking for inter-trial dependencies in the
methods section?

3. If no measures against inter-trial dependencies were taken, we assume that the
analysis tacitly treated trials as independent realizations of a random variable.
Was this explicitly mentioned in the article? We believe that this is the minimum
level of awareness that could be expected for inter-trial dependencies.

4. Finally, we asked if measures to avoid potential artifacts from inter-trial depen-
dencies were described in the supplemental material, in case such supplementary
material existed. We only considered supplemental material if the main text re-
ferred to it in the context of behavioral data.

From the thirteen article in Nature Neuroscience, only a single one (Jaramillo &
Zador, 2011) made the independence assumption explicit in their methods section. No
article met the other three criteria. In the Journal of Vision five out of the relevant
41 articles published in 2011 referred explicitly or implicitly to inter-trial dependencies
in their abstract, and two of these articles dealt with inter-trial dependencies in their
methods section. However, one of these two articles—with two of the current authors
as co-authors (IF and FAW)—was predominantly a simulation study with the focus
on correcting the size of the confidence intervals of estimated parameters resulting from
fitting a stationary observer model to non-stationary data (Fründ, Haenel, & Wichmann,
2011). The other article tried to avoid artifacts resulting from previous error trials by
excluding trials from the analysis if they immediately followed an error trial (Meier,
Flister, & Reinagel, 2011). Four articles in the Journal of Vision explicitly mentioned
the assumption of independent trials in their methods section. Thus less than 10% of the
relevant articles in the Journal of Vision discuss inter-trial dependencies, less than 5%
do something about them. None of the Nature Neuroscience articles mention or discuss
inter-trial dependencies and less than 8% mention the independence assumption.
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A2 Illustration of psychometric function model
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Figure A1: Illustration of the psychometric function model and threshold. a)
Probability of response rt = 1 as a function of the signed stimulus intensity
in our model (without history dependence), with � = 0.08, � = 0.1, ↵ =
0.5, � = 2. b) Probability of correct response as a function of stimulus
intensity, calculated from curve in panel a. c) Probability of response rt = 1
as a function of the signed stimulus intensity in our model (without history
dependence) and with sensory threshold, with � = 0.08, � = 0.1, ↵ = 2,
� = .1,  = 4, ⌫ = 8. d) Probability of correct response as a function of
stimulus intensity, calculated from curve in panel c.

We are interested in modelling the e↵ect of experimental history on perceptual deci-
sions. Therefore, our psychometric function model relates the probability of a particular
response to external covariates, and not (as is often done in psychophysics) the probabil-
ity of a correct response. It is straightforward to convert our “left/right” psychometric
function to a “correct/incorrect” one (see Figure A1 a, b). However, the resulting “cor-
rect/incorrect” psychometric curve would be steepest when the argument of the sigmoid
g(x) is 0, which (unless there is a left/right bias) occurs when the stimulus intensity is 0.
This is in contrast with many psychophysical experiments which find that observers are
at chance level for all stimuli which have an intensity that is less than some threshold ⌫,
and therefore require a psychometric function that is flat at low intensities.
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We explicitly modelled such a sensory threshold using an input non-linearity. We
chose a “soft threshold” for this

u⌫(x) =
1



log(1 + exp(x� ⌫))� 1



log(1 + exp(�x� ⌫)). (1)

For ⌫ = 0, we define u0(x) = x. The e↵ect of this function is that stimuli between �⌫

and ⌫ are set to a value close to 0, while stimuli outside this interval are set to either
x� ⌫ (for positive x) or x+ ⌫ (for negative x). The value of  defines the “softness” of
the threshold. For  ! 1, we have

u⌫(x) =

8
><

>:

x+ ⌫ x < �⌫

x� ⌫ x > ⌫

0 otherwise

For finite , the transition between the three cases is smooth and the function remains
di↵erentiable at �⌫ and ⌫. We fixed  = 4 which provided a good compromise between
achieving values close to 0 between �⌫ and ⌫ but keeping the function u⌫ relatively
smooth. We optimized the value of ⌫ during the EM-optimization. Optimization of ⌫ was
done using Newton’s procedure, keeping all other parameters fixed. This optimization
step was introduced between the “expectation” step and the “maximization” step of the
EM algorithm.

In the main text, we used a 2-AFC paradigm to describe our statistical framework.
However, it can also easily be applied to detection (or yes/no) experiments like in our
audio data-set. In this case, we drop the parameter describing stimulus identity and the
encoding non-linearity u⌫ (i.e. set ⌫ = 0), and use r = 1 to denote trials on which the
observer indicated presence of the target (or responded with ’yes’).

A3 Fitting the history-dependent psychometric function model

to data

We want to fit a modified logistic regression model which also allows for ’performance
asymptotes’. When modelling left/right responses, the asymptotes correspond to the
probabilities that a subject would ’blindly’ press left or right, without looking at (lis-
tening to) the stimulus. One way of incorporating these performance asymptotes is to
define a latent variable which indicates when leftward or rightward ’guesses’ did occur,
and then to fit the model using expectation maximization (EM) algorithms.

We define rt to be the binary response of the subject on trial t, xt to be the ’e↵ective’
stimulus, i.e. a concatenation of the o↵set, the stimulus, and the history features on trial
t, and ! their relative weights1. In addition, we define the (latent) variable lt 2 {0, 1, 2}.

1
Note that we use ! in a slightly di↵erent way here than we do in the main text to keep the notation

uncluttered.
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If lt is 0, we say that the subject guessed to a left response (P (rt = 1|lt = 0) = 0), if
lt is 1, it guessed a right response (P (rt = 1|lt = 1) = 1), and if lt is 2, the subject
actually looked at the stimulus, and responded “right” with probability P (rt = 1|lt =
2) = g(!>

xt). We define the corresponding probabilities over l by P (l = 0) = p0 = �,
P (l = 1) = p1 = � and P (l = 2) = p2. In addition, we define priors over both !, ⇡!(!)
and over p, ⇡p(p).

In the E-step of the EM-algorithm, we have to calculate the posterior probabilities
of lt given our observed data and our current estimate of parameters, qt(l) = P (lt =
l|xt, rt,!, plt). We get that

qt(l) =
P (rt|l, xt,!)P (l|xt, p)P2

l0=0 P (rt|l0, xt,!)P (l0|xt, p)
,

where each P (rt|lt, xt,!) is either 0, 1, or g(!>
xt), and each P (lt|xt, p) is one of the

three p.

In the M-step, we have to find the parameter values that maximize the expected joint
log-likelihood, where the expectation is over the possible values of lapse-variable, using
the probabilities calculated above. Hence, we have to maximize

L(!, p) = log(⇡(!)) +
X

t

2X

lt=0

qt(lt) log (P (yt|xt, lt,!)) (2)

+ log(⇡(p)) +
X

t

2X

lt=0

qt(lt) log (P (lt|xt,!)) (3)

= L!(!) + Lp(p) (4)

Here, ⇡ denotes the prior density of the parameter (see below). We simplify equation
(2)

L!(!) = log ⇡(!) +
X

t

qt(2) logP
⇣
r̃t|!>

xt

⌘
+ const

to find that it is very similar to the ’usual’ cost function of logistic regression—the only
di↵erence is that each entry is now multiplied by qt(2), i.e. the probability that on a
particular trial, the subject is not guessing. Thus, we can update ! using the standard
iteratively reweighted least squares algorithm for logistic regression (e.g. (Dobson &
Barnett, 2008)). We used independent normal distributions with mean 0 and precision
0.1 as priors for all elements of !.

The update for p is closed-form, and does not require any numerical optimization. If
we ignore the prior on p for the moment, we get

pl =

P
t qt(l)P

l0
P

t qt(l
0)

for l 2 {0, 1, 2}. If we use a Dirichlet-prior on p with parameters ↵D, we get

pl =
↵D(l)� 1 +

P
t qt(l)P

l0 (↵D(l0)� 1 +
P

t qt(l
0))

.
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For the current study we set ↵D(l) = 1 for all l. It is easy to enforce symmetry of the
left and right lapses, by replacing their values by their average.

A4 Prediction-performance of di↵erent models as function of

stimulus intensity for example observer

We show the prediction performance for each of the three models (quantified as prediction
accuracy per block) as a function of stimulus intensity (see Figure A2). We note that,
for the majority of blocks, the full model and the stimulus only model have identical
performance (although they often did not yield the same predictions on a single stimulus
level).
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Figure A2: Prediction performance as function of stimulus intensity for exam-
ple observer.
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A5 Results on simulated data

To verify that our approach correctly identifies the presence or absence of history depen-
dence, we simulated synthetic data which was matched in its statistial properties to the
experimental data, but for which we new the ground-truth parameters which generated
the data (see Figures A3, A4, A5, A6).

-60 -40 -20 0 20 40 60
Transduced stimulus intensity

0
0.2
0.4
0.6
0.8

1

P
ro

b
a
b

il
it
y

a

-900 -890 -880
Log-likelihood

b

0 10 20 30
Stimulus intensity

0
20
40
60
80

100

H
is

to
ry

 c
o
n
tr
ib

u
ti
o
n
 [
%

] c

0 4 8 12
History contribution [%]

dif¿Fult stimuli

d

0 0.25 0.5
History contribution [%]

easy stimuli

e

60 62.5 65 67.5
Prediction acc. [%]

dif¿Fult stimuli

f

48 52 56
Prediction acc. [%]

dif¿Fult stimuli

g

45 47.5 50 52.5
Prediction acc. [%]

easy stimuli

h

Figure A3: Model fit to simulated data without history dependence. Data was
simulated using best-fitting parameters for observer pk in the main text, but
by subsequently setting all history-couplings to 0. The number of trials N

in the simulated data was matched to the experimental data for pk. Same
format as Figure 1 in the main text, i.e. a) Psychometric function colours
correspond to di↵erent experimental conditions. b) Log-likelihood of the full
model (blue line). The grey histogram is the distribution on permuted data
(grey), and vertical grey line marks its 95th percentile, the star marks sta-
tistical significance. c) Percentage of variance of decision variable explained
as a function of stimulus intensity. d) Percentage of variance of decision
variable explained by history on di�cult trials. e) Same as d) but for easy
trials. f) Prediction performance (percentage correct) of full model (includ-
ing stimulus and history terms, blue line) in predicting observers’ responses
on di�cult stimuli, and comparison with stimulus-only model (green line).
g) Prediction performance of model with only history dependence and no
stimulus dependence (blue line), and comparison with stimulus-only model
(green line). h) Prediction performance of history-only model on easy stimuli
(blue line).

A7



1 2 3 4 5 6 7
Lag

-0.4

0

0.4

w
ei

gh
t

a

1 2 3 4 5 6 7
Lag

b

Weights of
previous...

stimulus
response
correct
incorrect

Figure A4: History kernels recovered on simulated data without history de-
pendence. a) Weights assigned to previous stimuli and responses (coloured
dots) and bootstrap confidence intervals (shaded regions). The lines at zero
mark the true kernels that were used to generate the data. b) Weights as-
signed to previous correct and incorrect responses.
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Figure A5: Model fit to simulated data with known history dependence. Data
was simulated using best-fitting parameters for observer pk in the main text.
a-h) Same format as Supplementary figure A3
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Figure A6: History kernels recovered on simulated data with known history
dependence. Data was simulated using best-fitting parameters for observer
pk in the main text. a) Weights assigned to previous stimuli and responses
(coloured dots) and bootstrap confidence intervals (shaded regions). The
lines mark the true kernels that were used to generate the data. b) Weights
assigned to previous correct and incorrect responses.
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A6 Connection between change in slope and history

dependence in a simplified setting

Here we analytically connect the history-induced variance of the decision variable with
the change in slope that one would obtain if history-dependence is falsely ignored. To
simplify the analysis, we assume that � = � = �

0 = ⌫ = 0, i.e. the observer does not
show any stimulus and history-independent lapses, has no left/right bias, and we do not
need to consider the input non-linearity.

We can then write the psychometric function as

 (s̃t, ht) = g

 
↵s̃t +

KX

k=1

!kht,k

!
= g (↵s̃t + �t) . (5)

We further assume that the history features are scaled such that �t has mean 0 and
variance �

2. For this observer, a classical psychometric function would be fit to the
stimulus-averaged probabilities P (r = 1|s̃) = E�(g(↵s̃ + �)), where the average is over
all history-dependent biases � that were observed for stimulus s̃. We will first investigate
how history dependency a↵ects the probability of correct response for a stimulus with
(signed) intensity s̃ > 0, i.e. a correct response corresponds to r = 1 (the other case will
follow by symmetry): For inputs x > 0, the sigmoid non-linearity g(x) is concave, and
therefore (by Jensens inequality (Cover & Thomas, 2006)) we get that

P (r = 1|s̃) = E�(g(↵s̃+ �))  g(↵s̃+E�(�)) = g(↵s̃). (6)

Thus, averaging over di↵erent histories leads to a probability of a correct response r = 1
which is lower than the observer would have in the absence of history dependency. Im-
portantly, our model gives us access to the underlying slope-parameter ↵, and therefore
lets us correct the psychometric function for this (potential) performance- drop due to
history dependency.

We approximate the logistic nonlinearity g by a rescaled Gaussian cumulative dis-

tribution function g(x) ⇡ �
⇣
x

p
⇡/8

⌘
(see (Bishop, 2006) for details). We additionally

assume that �t is approximately Gaussian (which is the case for weak history dependence
� ⌧ 1) to obtain

P (r = 1|s̃) = E�g(↵s̃+ �) (7)

⇡ E��

✓r
⇡

8
(↵s̃+ �)

◆
(8)

= P

✓
Y <

r
⇡

8
(↵s̃+ �)

◆
(9)

where Y ⇠ N (0, 1) and Y is independent of �. Therefore, Y ��

p
⇡
8 has variance 1+�

2 ⇡
8
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and thus

P (r = 1|s̃) = P

 
Y � �

p
⇡
8p

1 + �

2 ⇡
8

<

p
⇡
8↵s̃p

1 + �

2 ⇡
8

!
(10)

= �

 r
⇡

8

↵s̃p
1 + �

2 ⇡
8

!
(11)

= g

 
↵p

1 + �

2 ⇡
8

s̃

!
(12)

Thus, the slope-parameter of the psychometric function changes from ↵ to ↵/

p
1 + �

2 ⇡
8 ,

i.e. it is ‘rescaled’ by division through
p
1 + �

2 ⇡
8 . for weak history dependency. Thus,

for weak history dependency and this simplified setting, there is a direct and simple
relationship that tells us how the variability of the history-dependent bias reduces the
slope of the psychometric function (or, vice versa, how correcting for this history depen-
dency leads to a steeper slope.) The formula 1/

p
1 + �

2 ⇡
8 gives us the factor by which

the slope of the psychometric function at the inflection point needs to be multiplied to
account for the e↵ect of history-dependency. Furthermore, we note that for small �,
1/
p

1 + �

2 ⇡
8 ⇡ 1� ⇡

16�
2.
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A7 Detailed results for further observers

We show detailed results for two further observers. The first observer (kp) participated in
the plaid-masking experiments and showed strong history dependence– for this observer,
experimental history was a better predictor of perceptual choices than the presented
stimulus (see Figures A7, A8, A9)). The second observer (gbh) is a very experienced
psychophysical observer which participated in the discrimination experiment by Jäkel
and Wichmann(Jäkel & Wichmann, 2006). History dependence for this observer was
comparatively weak, yet statistically significant (see Figures A10, A11, A12).
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Figure A7: History e↵ects for observer kp. a-h) Labels are as for Supplementary
Figure A3. This observer has a strong e↵ect of history.
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Figure A8: E↵ects of history on the psychometric function for observer kp.
Labels are as for figure 2 in the main text. The psychometric function for
this observer is altered by history e↵ects, and there was a significant change
in threshold. a) Psychometric functions indicating frequency of correct re-
sponses as a function of stimulus intensity. Dashed lines mark fits of a model
without history terms. Colours correspond to di↵erent experimental condi-
tions. b) Percentage of behavioural errors attributable to history, i.e. nor-
malized di↵erence between error rates predicted psychometric functions with
or without history couplings. c) Ratio of 85% performance thresholds (blue
line) between full model and conventional model, and null-distribution (grey
histogram).
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Figure A9: History kernels for observer kp. a) Weights for preceding stimuli and re-
sponses (dots), and 95% bootstrap confidence regions (shaded). b) Weights
for preceding correct and incorrect responses (dots), and 95% bootstrap con-
fidence regions (shaded). In accordance with part a), the e↵ects of incorrect
responses on previous trials is the same as the e↵ect of correct responses.
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Figure A10: History e↵ects for observer gbh. a-h) Labels are as for Supplementary
figure A3. This observer has a weak history e↵ect.
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Figure A11: E↵ects of history on the psychometric function for observer gbh.
a-c) Labels are as for Supplementary Figure A8.
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Figure A12: History kernels for observer gbh. a) Weights for preceding stimuli and
responses (dots), and 95% bootstrap confidence regions (shaded). Previ-
ous stimuli and previous responses have significantly di↵erent directions of
e↵ects on the observers responses: Whenever stimulus and response di↵er
(i.e. an incorrect response), the stimulus and response e↵ects of this trial
add up, when stimulus and response match (i.e. a correct response), the
stimulus and response e↵ects of this trial cancel partly. b) Weights for pre-
ceding correct and incorrect responses (dots), and 95% bootstrap confidence
regions (shaded). As already expected from part a), the e↵ect of incorrect
responses on previous trials is larger than the e↵ect of correct responses.
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A8 Response and stimulus kernels for all observers
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Figure A13: History kernels for all observers a) Response kernels for all observers.
b) Stimulus kernels for all observers. The experimental design is coded by
the color of the lines as in figure 4 in the main text
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