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Fig. 1: Generated trees and animals. AWOL learns to generate animals and trees from
text and images. We show examples of tree and animal species not seen during training
(except for the Cat).

Abstract. Many classical parametric 3D shape models exist, but cre-
ating novel shapes with such models requires expert knowledge of their
parameters. For example, imagine creating a specific type of tree using
procedural graphics or a new kind of animal from a statistical shape
model. Our key idea is to leverage language to control such existing
models to produce novel shapes. This involves learning a mapping be-
tween the latent space of a vision-language model and the parameter
space of the 3D model, which we do using a small set of shape and text
pairs. Our hypothesis is that mapping from language to parameters al-
lows us to generate parameters for objects that were never seen during
training. If the mapping between language and parameters is sufficiently
smooth, then interpolation or generalization in language should trans-
late appropriately into novel 3D shapes. We test our approach with two
very different types of parametric shape models (quadrupeds and arbo-
real trees). We use a learned statistical shape model of quadrupeds and
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show that we can use text to generate new animals not present during
training. In particular, we demonstrate state-of-the-art shape estimation
of 3D dogs. This work also constitutes the first language-driven method
for generating 3D trees. Finally, embedding images in the CLIP latent
space enables us to generate animals and trees directly from images.

1 Introduction

We address the problem of generating new, realistic samples from various 3D
shape models using language. The key idea is to relate language (e.g. names
of dog breeds or types of trees) to the model’s parameters and then leverage
language to generate shapes that were never seen during training. To make this
possible, we leverage the shared latent space of large vision-language foundation
models (VLM), like CLIP (Contrastive Language-Image Pretraining) [43]. Such
models relate how objects appear in images to how we describe them with lan-
guage. Since how objects appear is related to their 3D shape, we can assume
that CLIP implicitly also relates object shape with language. Since models like
CLIP are learned from large data corpora, VLM latent spaces are rich and dense;
in other words, they know a lot about objects and their shape, but not explic-
itly. Given a small training set, we learn a mapping between the CLIP space
and the shape parameters of various models. Finally, our central hypothesis is
that the CLIP space is well-behaved such that interpolation or extrapolation in
this space produce appropriate interpolation or extrapolation of the associated
shape parameters. This allows us to exploit the general knowledge of a VLM to
control the parameters of the shape model to produce, within the shape space
of the parametric 3D model, novel shapes outside its training set. We show in
our experiments that this ability extends to fine-grain control (i.e. generating
different dog breeds) and 3D generation with attributes. We test our hypothesis
using two very diverse object classes, animals and trees, that use two very differ-
ent generation processes. For animals, we use an analytic, statistical, parametric
shape model, named SMAL+, that we introduce here as a new, extended version
of previous models [27,47,76]. For trees, we use a procedural, non-differentiable,
tree generator implemented as a Blender add-on [17]; this is very different from
SMAL+. Trees are an interesting case because they are composed by thin struc-
tures (branches) and thin surfaces (leaves) that cannot easily be fit with the 3D
implicit representations used in many current text-to-3D solutions (Fig. 2). With
our method, named AWOL, we generate trees and animals that are unseen dur-
ing training and that are expressed as triangular meshes, thus supporting easy
rendering and animation in graphics engines; see Fig. 1.

There is growing interest in generating 3D content with easy-to-use tools.
An abundance of methods have been proposed to create 3D assets from simple
text prompts [5, 6, 6, 18, 20, 20, 30, 34, 35, 41, 59, 60, 62, 66, 68], or single images
[20, 32, 51]. Such methods are able to generate compelling rigid objects, with
realistic appearance. Such models do not, however, produce articulated objects
that are rigged for animation. With AWOL, we obtain animal models that share
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Fig. 2: Comparison with existing methods. From left: AWOL from text, Genie
(LumaAI) [1] from text, image prompt and two views of Instant Mesh [67].

the same skeleton and mesh topology. This is important: a standardized 3D
generation would allow easy motion transfer and facilitate analysis, promoting
the application of 3D computer vision methods (i.e. 3D model-based articulated
motion estimation) to the animal research and conservation fields. Existing 3D
parametric shape models for articulated subjects, like SMPL [33], for humans, or
SMAL [74], for animals, are generative models for body shape, and consequently
they are widely used to create 3D avatars, either by sampling the generative
model, or by aligning the model to data [4,7,11,12,15,22,23,37,39,40,54,55,57,
74, 75]. Alignment is made possible by the differentiable nature of the models,
which support reconstruction through the analysis-by-synthesis paradigm. While
the SMPL model can arguably represent a large portion of the world population,
given its large training set and uniqueness of the human species, the SMAL
model has been trained on a small set of quadrupeds to represent animals from
5 different families (canine, equine, bovine, hippopotamids, and feline). As such,
naively sampling the model shape space can produce non-existing animals that
are often a mixture of more species. Sampling with family-specific shape priors
(i.e. Gaussian distributions centered at the family mean shape variables) allows
generating instances with realistic shape. However, as illustrated in the paper
[76], when aligned to data, the SMAL model can broadly represent species that
are not present in its training set, for example representing a boar with a mane
borrowed by lions, a long mouth from hippos, and bulky body from cows. The
question then is: how can we generate species that are not in one of the five
SMAL families without using analysis-by-synthesis? The question is of broader
application, as it regards the possibility of generalizing the generation of 3D
assets given parametric models defined on a small set of samples. Identifying
the manifold of realistic samples may be difficult: some regions of the space can
correspond to shapes that, although not seen during training, are realistic, while
other regions can correspond to non-existing class instances. Therefore, there is a
problem of realistic interpolation for data generation. In addition, shape models
based on continuous latent spaces do not offer extrapolation capabilities, as their
dimensions generally do not correspond to semantic deformations. While space
transformations can be applied to identify axes with semantic meaning, this
does not address the generalization principle, as how to move along these axes to
generate new, realistic samples remains undefined. In both the animals and trees
models, the set of training samples is scarce. This limits the application of highly
flexible generative models that are popular today, such as diffusion models. We
employ Real-NVP [10], a generative model characterized by a set of explicit
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transformations defined through a cascade of layers that selectively couple the
different dimensions of the input data using fixed binary masks. While Real-NVP
has been used for text-to-3D generation before [50], here we show that learning
the binary masks improves performance, and adds realistic relative scaling to
the predicted shapes. In summary, our contributions are: a 3D parametric shape
model for animals that includes more species than previous models; a method
to generate 3D rigged animals from text or images; and a method to generate
3D trees from text or images, which can output a triangular mesh with branches
and leaves details.

2 Related Work

Text-to-3D Our work is related to text-driven model-based 3D content creation
systems. An early example is BodyTalk [53], which correlates textual shape at-
tributes with transformed dimensions of the SMPL shape space. Semantify [16]
also addresses the problem of controlling the SMPL body model with shape
attributes, but it exploits CLIP [43]. Recent work uses text to control 3D face
generation [64]. In the past few years, numerous methods have addressed the
text-driven generation of images [14, 44–46, 48, 49], and more recently 3D ob-
jects [6, 18, 20, 34, 59, 66, 68]. Training is often based on the similarity between
textual queries and rendered 3D shapes when encoded in a joint latent space
(i.e., CLIP), with the gradient back propagated through a differentiable ren-
derer. Many methods are thus based on differentiable 3D neural representa-
tions, often Neural Radiance Field (NeRF) [36], with a few mesh-based excep-
tions [30, 58]. Directly regressing a 3D triplane representation speeds up the
text-to-3D generation [28]. The scarcity of 3D data is overcome by exploiting
2D losses. DreamFields [20] generates open-set 3D objects by optimization. The
output is a NeRF that is trained by optimizing for rendered views to have high
semantic similarity, given the text prompt. The method uses CLIP in synergy
with geometric priors. DreamFusion [41] leverages powerful text-to-image diffu-
sion models (here Imagen [49]) and introduces Score Distillation Sampling (SDS)
to exploit diffusion priors as losses for 3D object optimization, an approach also
adopted in [5,30,35,59,60,62]. Recent methods [28,52] benefit from 3D supervi-
sion thanks to the availability of large 3D datasets [8,9]. Our work is related to
CLIP-Forge [50], which trains a normalizing flow network to learn the mapping
between the CLIP and the latent space of a 3D shape model, learned over a
collection of 3D rigid objects.
3D Animal Models Three-dimensional differentiable articulated shape models
have been defined for a few common species. SMAL [76] is a multi-species model
that can represent a wide range of quadrupeds. SMALR [75] extends SMAL to
capture 3D shapes of animals from a set of images. SMALST [74] learns a 3D
model for the Gravy’s zebra from images. AVES [61] learns the 3D shape of birds
from images, starting from a reference template. hSMAL [27] and D-SMAL [47]
are 3D parametric shape models for horses and dogs, respectively. Many recent
methods do not assume an existing reference template. Lassie [70] and Hi-Lassie
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Fig. 3: Training set for the tree network. From left: Poplar, Maple, Palm, Silver Birch,
English Oak, European Larch, Weeping Willow, Balsam Fir, Black Tupelo, Sphere Tree,
Black Oak, Hill Cherry, Sassafras, Douglas Fir, Apple, Willow, Cypress, Magnolia, Pine,
Fan Palm, Quaking Aspen.

[71] create 3D models from a small collection of images. Like SMALR [75], they
require different images with a clear, non-occluded view of the animal. Artic3D
[72] supports noisy images. Lepard [31] reconstructs 3D animals from images
using a part-based neural representation. While applicable to animals with a
different number of body parts, these methods do not reconstruct realistic fine-
grained details, as the synthesis losses are based on matching silhouettes or image
features. Moreover, they only reconstruct single animal instances. Methods exist
to learn category-specific shape priors from images: MagicPony [65] learns models
for horses, and 3D-Fauna [29] extends the approach to arbitrary quadrupeds.
RAC [69] learns category-level 3D models from video. GART [25] learns a subject
specific model from monocular video.
3D Arboreal Trees Generation The modeling of trees and vegetation has a long
history. Early approaches focused on modeling the branching structure using
fractals [2,38], grammars and particle systems [21], and L-systems [42], with the
latter proving effective for modeling a large variety of realistic trees given a set of
production rules. Weber and Penn [63] define a procedural model that, instead
of accurately modeling how trees grow, focuses on the tree’s global geometry.
Using such systems is complicated and requires extensive knowledge to define a
non-intuitive set of parameters. Recent methods exploit learning systems to sim-
plify parameter definition and automate the synthetic tree generation process.
The recent DeepTree [73] learns rules from traditional procedural methods and
define a network that can automatically grow trees while taking into account
environmental constraints. Lee et al. [24] train a neural network to generate
parameters for procedural tree generation. None of these methods allow for ob-
taining parameters from text, as we do. Li et al. [26] grow tree branches using a
multi-cylindrical shape, estimated from an image mask, the as surface limit.

3 Method

3.1 Animal Model

The SMAL+ parametric animal model is an extension of SMAL [76]. SMAL is
defined by a triangular mesh template vt with nV vertices, a matrix B of shape
3nV ×nB containing the nB basis vectors of a linear shape deformation space, a
joint regressor Jr that maps model vertices to a set of nJ joint locations, and a
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Fig. 4: Network architecture. At training, we can consider only text as input (a), or
also provide reference images (b), with about 3− 10 examples for each breed/species.
At inference, we can query the text-only network with text (c), or the text-and-image
network with images (d).

skinning weight matrix W . An animal is generated, given shape parameters β
and pose parameters θ, by first deforming the template into an intrinsic shape vs,
then applying Linear Blend Skinning (LBS) to rotate the body parts according
to the given pose:

vs = vt +BβT

v = LBS(vs, θ;W,Jr). (1)

The linear shape space is learned using Principal Component Analysis (PCA)
on a set of 41 quadruped toy scans. The SMAL+ we introduce here is obtained
by leveraging the training samples of SMAL [74], D-SMAL [47] and hSMAL [27].
We register the training horses from the hSMAL model, along with additional
horse toy scans to the SMAL topology, obtaining a set of 60 registrations. We also
add new species: Giraffe, Bear, Mouse, and Rat, learning an animal model from
a total of 145 animals. Note that D-SMAL defines dog breeds for the training
samples, while in hSMAL the breed of the training horses is undefined. After
learning, we collect the set of shape variables for all the training samples, along
with their associated species or, in the case of dogs, breed name. This constitutes
the training set for the AWOL animal shape prediction.

3.2 Tree Model

The tree model corresponds to the Tree-Gen add-on for Blender [17]. Tree-Gen
procedurally generates realistic 3D models of trees based on the method proposed
by Weber and Penn [63] and thw Blender’s Bézier curve system. The add-on
supports saving the generated tree as a triangular mesh. The model generation
is controlled by a set of parameters. Some parameters are categorical, referring
to a set of defined tree or leaf shapes, while others are numerical, controlling the
density of branches and leaves. Additionally, ranges of variation for the numerical
parameters are defined, allowing the add-on to generate diverse results from the
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same set of parameters. Tree-Gen provides reference parameters labeled with
the species name for a set of representative tree shapes. We added the Italian
Cypress and Magnolia to the reference trees. This extended set of names and
parameters constitutes the training set for the tree shape prediction (Fig. 3).

3.3 Text-to-Shape Model

We base our approach on the real-valued non-volume preserving (Real-NVP)
model [10]. Real-NVP is a generative probabilistic model specifically designed
for high-dimensional and highly structured data. Formulated with a set of stably
invertible transformations and allowing exact and efficient reconstruction, Real-
NVP is particularly suited for our task of latent space mapping with limited
training data. We summarize Real-NVP here. Let x∈X be an observed, high-
dimensional variable, and z∈Z a latent variable, with an associated simple prior
distribution pZ . Let f be a bijection f : X →Z, with f−1 = g : Z →X. Using
the change of variable formula, a model on x can be defined as:

pX(x) = pZ(f(x))
∣∣∣det(∂f(x)

∂xT

) ∣∣∣, (2)

where the determinant is computed over the Jacobian of f . In order to generate
samples from pX(x), one would first sample a latent variable z from pZ , then
compute x = g(z). Obtaining the density at x requires computing the Jacobian
(Eq. 2). Dinh et al. [10] introduce a convenient construction of f using a set of
bijective functions that are easy to invert. They formulate f in a way that its
Jacobian is a triangular matrix, allowing for the determinant computation as
the product of the diagonal terms. Specifically, f is obtained by stacking a set
of Affine Coupling Layers. Each coupling layer computes a transformation from
the input x∈RD to the output y∈RD as follows:

y1:d = x1:d

yd+1:D = xd+1:D ⊙ exp(s(x1:d)) + t(x1:d), (3)

where d < D and s() and t() are scale and translation functions that convert
the input into a vector of dimension D−d. These transformations are easy to
invert, and obtaining the Jacobian does not require computing derivatives for
the scale and translation functions [10]. The partitioning of the input vectors can
be modeled with a binary mask. In [10], two strategies are considered: checker-
board masking and dimension-wise masking. In AWOL, we employ Real-NVP to
model the conditional distribution of the shape parameters (either shape vari-
ables β in SMAL+ or the parameters of the tree Blender add-on), given the
CLIP encoding of the textual or visual input. Following [50], we define the input
variable x in Eq. 3 as the concatenation between the CLIP encoding and the
shape parameters. The output variable z follows a unit Gaussian distribution.
We adopt the Real-NVP model with important differences. First, instead of us-
ing a fix masking like in previous work [10,50], we use trainable masks. Second,
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Fig. 5: Dog breeds. We verify that CLIP can discriminate the dog breeds in the D-
SMAL training set by running a zero-shot classification test on the images above, which
achieved 100% accuracy.

unlike the original formulation [10] and ClipForge [50], we aim for data recon-
struction during training, employing a reconstruction loss rather than a density
estimation loss. This approach has been proved effective for training genera-
tive diffusion models [56]. We compare different training losses in our ablation
studies. For the reconstruction loss, we use the L1 norm between predicted and
ground truth shape parameters (See Fig. 4). Note that we also considered a L2
loss during development, but it yielded poor results. Finally, we follow previous
work in defining simple small networks to implement the scale and translation
functions, specifically two Multi Layer Perceptron (MLP) networks. Differently
from previous work, we add two additional fully-connected layers that compress
the hidden space of those functions. We found that this compression layer is nec-
essary when learning the binary masks, although it hurts performance when the
traditional masking approaches are considered. We demonstrate the advantages
of our design choices in our experiments.

4 Experiments

We first verify that CLIP can understand and discriminate between different dog
breeds and tree species. We consider an image for each of the dog breeds in the D-
SMAL model (see Fig. 5), and perform zero-shot classification using the prompt
"A photo of a <breed> dog". We found that CLIP can recognize all our training

Fig. 6: Horse breeds. We found with a zero-shot classification test that among the
horse breeds above, CLIP can correctly recognize only for the Tinker/Shire horses
(violet box) and the Icelandic/Welsh ponies (blue box).
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Fig. 7: Tree prediction from text. First row: AWOL; second row: Genie (LumaAI) [1].
The generated tree species are, from left: Ginkgo, Coconut, Cedar of Lebanon, Fig,
Cocoa, Bigleaf Maple, Deodar Cedar, Eucalyptus, Tulip, Oak, Banyan, American Elm,
Acer, Coast Redwood, Sequoia, Western Red Cedar, White Spruce. None of these
species is in the AWOL training set.

breeds. Interestingly, the Chevalier King Charles Spaniel is correctly detected
only if indicated as King Charles Spaniel. We perform a similar experiment
for our training tree species (Fig. 3) and a set of representative horse breeds
(see Fig. 6). We found that the most distinctive trees are correctly recognized,
while the majority of the horse breeds cannot be identified, except for ponies
and big horses. Therefore, we identify such cases in our animal training set and
assign corresponding labels, while the remaining horses are generically labeled
as “Horse”.

4.1 Implementation

We implement the AWOL network in Pytorch. We define a single network for
both animal and tree data, with similar training parameters, the main differ-
ence being the dimension of the shape space. The latent shape space for the
animal network is the 145-dimensional space of the SMAL+ model. The shape
variables are Gaussian distributed with zero mean and identity variance by con-
struction. The latent space for the tree network corresponds to the parameters
of the Blender add-on for tree generation. We set the parameters that define the
degree of randomness to zero, and we consider only parameters that vary across
the reference species, resulting in a latent space with 60 parameters out of the
105 defined by Tree-Gen. We center and normalize the variables by subtracting
the mean and dividing by the standard deviation, so that the animal and tree
parameters are defined within similar ranges. We do not apply centering and
normalization to the categorical variables, which we represent with a one-hot
encoding. We use 5 affine coupling layers, and the hidden space for the scale
and translation networks has dimension 1024, which we compress to 512 with an
additional layer. We encode the text of the sentence “A photo of a <animal>”
and “A photo of a <species> tree” for the animal and tree networks, respectively.
We train the networks on the text and shape data for 6000 epochs, until the loss
stabilizes. We then train the same networks on text and images (Fig. 4b). To
do this, we download a set of images from the Web3, between 3 to 10 for each
3 https://commons.wikimedia.org/
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tree/animal species or breed, and create training tuples composed by the CLIP
image encoding and parameters. This training data is larger than previously,
and we train the networks for 3000 epochs, until the loss stabilizes. The batch
size is 16, and we use the Adam optimizer with a learning rate that varies from
1e−4 to 1e−6. We use CLIP ViT-B/32-LAION-2B [19].

Fig. 8: Tree prediction from images. For each row, the input image is shown at the top
and the generated tree is displayed below. Note that we do not predict the tree colors;
instead, we show all the trees in a random green color.

4.2 Evaluation

We evaluate our AWOL method in two settings: interpolation and generalization.
Interpolation. We consider the prediction of new breeds for the dog class as an
interpolation task. In nature, dogs of different breeds can mix, and many breeds
have been created by mixing existing ones [13]. We argue that, given the large
number of breeds included in the model, it is likely that new breed shapes can be
generated by interpolation in the space of dog shapes, even though there may be
unseen breeds with specific shape features not seen during training. We qualita-
tively demonstrate interpolation by generating dog breeds and comparing them
with BITE [47] (Fig. 14). We also show interpolation for age and size. We query
for “Giant Schnauzer”, “Standard Schnauzer”, “Miniature Schnauzer” and “Toy
Schnauzer”, and similarly for the Poodle. Note in Figure 9 how the network cor-
rectly predicts the scale of the different varieties of the breeds (it is worth noting
that for the Schnauzer, the breed varieties are only Giant, Standard and Minia-
ture). We then investigate if AWOL can interpolate shapes and age-dependent
features by querying for “Baby”, “Young”, ‘Adult” and ‘Old” animals. Figure 9
shows the results for seen and unseen species. Figure 10 presents an analogous
analysis for trees. We quantitatively compare the dog breed predictions from
textual input with BITE [47] using a perceptual study. For each breed in the
StanfordExtra test set [3], we generate a 3D dog, and compare it with the dog
reconstructed by BITE from a randomly selected image of the same breed. We
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Fig. 9: Age interpolation (left) and size interpolation (right). The circles indicate the
animals that are present in the training set as “Baby Cheetah” and “Young Wolf”.
Giraffe, Cat, and Wolf are in the training set without attributes, while the Llama is
not. The small and large Poodles are present in the training as 3D shapes, but their
text attribute is “Poodle”. Only one shape example for the Schnauzer is present, named
“Schnauzer”. Note how we can recover the different Poodle breed size variations. For
the Schnauzer, the actual breed variations are Miniature, Standard, and Giant.

asked Amazon Mechanical Turk workers to judge which method better repre-
sents the dog breed in the picture. Overall, BITE outperforms AWOL with 971
votes versus 884 votes, as confirmed by a binomial test with a p-value of 0.02
(BITE better than AWOL). We noticed that the task favors BITE when the
subject in the image is a puppy, as AWOL used without age input generates an
adult subject. By removing from the evaluation the images with baby dogs from
the evaluation, we obtain votes of 830 for BITE versus 850 for (AWOL) (with
a p-value of 0.3; AWOL better than BITE), indicating the ability of AWOL to
faithfully generate a large variety of breeds.
Generalization. To test generalization, we prompt the model to create new
quadruped species. Figure 11 shows examples of generations from text. We also
show examples of reconstructed novel trees from textual and image input in Fig-
ure 7 and Figure 8, respectively. Finally, Figure 12 presents examples of animal
generation from images, many of which are taken from [75] for comparison. The
unseen animals include the Llama, Thylacine, Panda, Pig, Rhino, and Cougar.
Figure 13 provides a comparison with DeepTree [73].

4.3 Ablation Studies

We perform our ablation studies on the animal model using CLIP for evalua-
tion, as we found that CLIP can successfully classify animals and dog breeds,
enabling quantitative testing on a larger set of cases. The ablation studies eval-
uate: the effect of learning the binary masks in Real-NVP; the effect of training
with a density loss; and the effect of adding the compression layer in the scale
and translation functions. We also compare results when reducing the shape
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Fig. 10: Age and size interpolation for trees. Palm and Cypress are in the AWOL
training set, while Ginkgo and Acer are unseen species. Here the query is “A photo of
a <age> <species> tree”.

Fig. 11: Animal prediction from text. We generate species that are not present in the
SMAL+ and AWOL training sets. The image shows the actual model size. Note that
AWOL generates animals within the SMAL+ shape space, and therefore, it cannot
create specific details such as the horn on the rhino.

space dimension from 145 (the space of the SMAL+ model) to 40, approximately
matching the dimension of the single SMAL models for dogs and horses [27,47].
We generate a set of 122 animals, none of which are present in the SMAL+

model training set. This selection covers most common quadrupeds, and sev-
eral unseen dog breeds. We query the network with the sentence “A photo of a
<animal name>”, where <animal name> is either a quadruped species or a dog
breed. We then render the predicted 3D models in grayscale to prevent any color
bias. Since the networks can predict different animal sizes, we consider bounding
boxes and render the animals to maximize visibility of their profile. We found
that the lateral view is the most informative, while adding further views gave
inconsistent results. We perform paired comparisons between different networks
by testing, for each animal, which of the two network predictions, encoded in
CLIP, is closest to the CLIP encoding of the animal name. This corresponds to
a CLIP “vote”. Note that, even if we base our method on CLIP, we believe it is
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Fig. 12: Animals prediction from images. The images of the Horse, Dog, Thylacine,
Polar Bear, Panda, Pig, Cow, Rhino, and Bear are taken from [75]. We replace the green
screen images in [75] with natural images for the Lion, Tiger, Cougar, and Cheetah.

Fig. 13: Comparison with DeepTree. We show predicted trees from text (top), com-
pared with DeepTree (bottom, images taken from [73]). For each predicted pair: (left)
network trained only on text, (right) network trained on text and images.

appropriate to use CLIP for the ablation studies, as we are comparing different
architectures, under the same conditions. Results are reported in Table 1. Our
ablation studies confirm that the network with learned masks and compression
of the hidden space for the scale and translation networks provides the best
performance on the whole test set.

5 Conclusion
We have addressed the problem of generating 3D objects from text and im-
ages using parametric 3D models. Inspired by recent work on learning multi-
modal latent spaces, we use language to control the selection of the 3D model
parameters. We make the hypothesis that using language, we can achieve in-
terpolation and generalization in parametric shape spaces. We demonstrate our
hypothesis on two different 3D generative models: on a novel differentiable 3D
parametric shape model for animals, which extends previous models with new
training samples and species, and on a non-differentiable model for trees, rep-
resented by a Blender add-on. Our qualitative and quantitative experiments
confirm our hypothesis. The proposed AWOL is the first system that allows
generating rigged 3D animals and trees with a simple text prompt. Acknowl-
edgements. We thank Tsvetelina Alexiadis, Taylor McConnell and Tomasz
Niewiadomski for their help in running the Amazon Mechanical Turk evalua-
tion. We also thank Charlie Hewitt for making his tree generation method avail-
able and the authors of [50] for sharing their code. SZ is funded NRRP, Miss. 4
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CLIP-based Comparison: % of votes
All p-value Dogs Other Species

A. Check vs. Dims 61:39 0.19 68:32 43:57
B. Dims vs. Dims + Comp. 52:48 0.47 51:49 54:46
C. Check vs. Check. + Comp. 63:37 0.20 64:36 60:40
D. Learn + Comp. vs. Learn 61:39 0.19 59:41 69:31
E. Learn + Comp., 145 vs. 40 50:50 0.58 48:52 54:46
F. Learn + Comp. vs. Dims 62:38 0.13 68:32 46:54
G. Learn + Comp vs. Check 54:46 0.38 53:47 57:43
H. Learn + Comp, density loss 86:14 1.24e-7 86:14 86:14

Table 1: Ablation results. Comparison between different networks. “Check” refers to
checkerboard masking, “Dims” to dimension-wise masking, “Comp” to hidden space
compression, “Learn” to learned masks. (E) compares the Learn + Comp network with
145 (default) versus 40 shape parameters. The table shows that the best performance on
the whole test set is achieved by the network with learned mask and compression (D, F,
G). When training also includes a density loss [10], performance degrades significantly.

Comp. 2 Inv. 1.4 - Call No. 3138 16/12/21, rect. by Decree n.3175 18/12/21
of MUR funded by NextGenerationEU; Award N.: Proj. code CN00000033,
Conc. Decree No. 1034 17/06/22 CUP B83C22002930006, title: National Bio-
diversity Future Center - NBFC. SZ is also supported by PNRR FAIR Future
AI Research (PE00000013), Spoke 8 Pervasive AI (CUP H97G22000210007)
under the NRRP MUR program by NextGenerationEU. Disclosure: https:
//files.is.tue.mpg.de/black/CoI_ECCV_2024.txt.

Fig. 14: Comparison with BITE [47]. Randomly chosen images from the StanfordExtra
test set. From left: input image, BITE in natural pose (gray), AWOL with textual input
(purple), AWOL with image input (red). For both BITE and AWOL with text input,
we use the breed label to rotate the ears. For AWOL from images, the ears are down
by default. None of these breeds are in the AWOL training set.

https://files.is.tue.mpg.de/black/CoI_ECCV_2024.txt
https://files.is.tue.mpg.de/black/CoI_ECCV_2024.txt
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