

Investigating the Impact of Action Representations in Policy Gradient Algorithms

Jan Schneider, Pierre Schumacher, Daniel Häufle, Bernhard Schölkopf, Dieter Büchler

Overview

- In RL tasks, there are typically many choices for the action representation
 - \rightarrow Robotics: torques, joint positions/velocities, activations of artificial muscles, . . .
- The choice of action representation has a significant impact on the performance of reinforcement learning (RL) algorithms
- The reasons for these performance differences are generally not clear
 - ightarrow We apply two analysis techniques to investigate the influence of the action representation on the learning process
- Finally, we outline open challenges that need to be addressed to gain further insights into the causes of the performance differences

Action representations

Torque control

lacktriangle The RL agent directly chooses the torques $m{ au}$ applied on the robot

Direct control over the system but very low-level (the agent e.g., needs to learn to stabilize the system first)

High-level action representations

- Define an action representation a (e.g. desired joint positions)
- A low-level controller computes torques for the given the action

- ightarrow These representations can have beneficial properties (e.g., open-loop stability or robustness to perturbations)
- We compare torques, joint positions, and joint velocities as action representations for RL
- Position controller: $\boldsymbol{\tau} = K_p^{PC}(\mathbf{a} \mathbf{q}) K_d^{PC}\dot{\mathbf{q}}$
- Velocity controller: ${m au} = K_d^{VC}({f a} \dot{{f q}})$
- Controller gains $K_p^{PC}, K_d^{PC}, K_d^{VC}$ are tuned to minimize the tracking error

Learning performance

- Benchmark tasks from OpenAl Gym [1] and the DeepMind Control Suite (DMCS) [2]
- Learning performance of PPO [3] with different action representations

- ightarrow Action representations have a significant impact on learning performance
- ightarrow No representation is superior for all tasks
- → These performance differences warrant further investigation into the influences on different components of the RL algorithm

Analysis: Optimization landscape visualization

- Objective: Getting an intuition of the impact on the optimization difficulty
- Based on work of Li et al. [4]
- Due to the large number of parameters in neural networks, we cannot plot the optimization landscape directly
 - \rightarrow Dimensionality reduction: Plot along two random directions in parameter space
- Plot the values of two criteria
 - Cumulative reward (the true measure of policy performance)
 - Surrogate loss (the criterion that the algorithm optimizes)

- ightarrow Reacher, torque control: Rugged loss landscape explains poor learning performance
- \rightarrow Other configurations: No clear intuition about the reasons for performance differences

Analysis: Gradient estimation accuracy

- Objective: Understanding the influence on the gradient estimation
- Based on work of Ilyas et al. [5]
- Approximate the true gradient with 10⁷ samples (in comparison: 64 samples are used for gradient estimation during training)
- Compare cosine similarity between gradients used during training and this "true" gradient
- The PPO loss is the sum of a policy and a value function term
 - \rightarrow Plot the gradient quality also for each term individually

- \rightarrow No clear correlation between gradient quality and learning performance
 - ightarrow Higher policy performance makes gradient estimation harder
- ightarrow The gradient quality is significantly worse for the policy than for the value function

Open challenges of the analysis methods

- Normalizing the analysis results with respect to the learning progress
- Disentangling different effects on the RL algorithm
- Taking into account the effect of hyperparameters and controller gains

References

- [1] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba, "OpenAl Gym," arXiv preprint arXiv:1606.01540, 2016.
- [2] S. Tunyasuvunakool, A. Muldal, Y. Doron, et al., "dm_control: Software and tasks for continuous control," Software Impacts, vol. 6, p. 100022, 2020, ISSN: 2665-9638. DOI: https://doi.org/10.1016/j.simpa.2020.100022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2665963820300099.
- [3] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, "Proximal policy optimization algorithms," arXiv preprint arXiv:1707.06347, 2017.

 [4] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, "Visualizing the loss landscape of neural nets," Advances in Neural Information Processing Systems, vol. 31, 2018.
- [4] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, "Visualizing the loss landscape of neural nets," Advances in Neural Information Processing Systems, vol. 31, 2018.

 [5] A. Ilyas, L. Engstrom, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph, and A. Madry, "A closer look at deep policy gradients," in International Conference on Learning Representations, 2020.