In RL tasks, there are typically many choices for the action representation

—  Robotics: torques, joint positions/velocities, activations of artificial muscles, . ..

The choice of action representation has a significant impact on the performance of
reinforcement learning (RL) algorithms

The reasons for these performance differences are generally not clear

—  We apply two analysis techniques to investigate the influence of the action rep-
resentation on the learning process

Finally, we outline open challenges that need to be addressed to gain further insights
into the causes of the performance differences

Torque control

The RL agent directly chooses the torques 7 applied on the robot
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—  Direct control over the system but very low-level (the agent e.g., needs to learn to

stabilize the system first)

High-level action representations

Define an action representation a (e.g. desired joint positions)

A low-level controller computes torques for the given the action
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—  These representations can have beneficial properties (e.g., open-loop stability or
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robustness to perturbations)

We compare torques, joint positions, and joint velocities as action representations for RL
Position controller: 7 = K;C(a —q) — Kfcq
Velocity controller: 7= KY%(a — q)

Controller gains K]fc, KPC KY© are tuned to minimize the tracking error

Benchmark tasks from OpenAl Gym [1] and the DeepMind Control Suite (DMCS) [2]

Learning performance of PPO [3] with different action representations

—— Torque control Position control —— Velocity control

—-3.0
300 - 320
T -45 T
S g
600 1 o i 240 -
o —-6.0 o
900 3 > A
© © 160 { [
s —-7.5 S )!ﬁ
200 g g /
f
“ 9.0 ~ 80 (
500 -
- - - - - —-10.5 - - - - 0 - - - - -
0.0 0.5 10 15 20 25 3.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment steps x10° Environment steps x10° Environment steps x10°
Gym: Pendulum Gym: Reacher DMCS: Cheetah-run
750 - 400
© ©
© 600 2320
= =
g g
= 450 < 240
2 2
© ©
> 300 > 160
- -
3 “ 3
-
N
0 W bl 0
0.0 0.4 0.8 1.2 1.6 2.0 0.0 0.4 0.8 1.2 1.6 2.0 0.0 0.4 0.8 1.2 1.6 2.0
Environment steps x10° Environment steps x10° Environment steps x10°

DMCS: Finger-spin DMCS: Reacher-easy DMCS: Walker-walk

— Action representations have a significant impact on learning performance

—  No representation is superior for all tasks

— These performance differences warrant further investigation into the in-

fluences on different components of the RL algorithm

Objective: Getting an intuition of the impact on the optimization difficulty
Based on work of Li et al. [4]

Due to the large number of parameters in neural networks, we cannot plot the optimiza-
tion landscape directly

—  Dimensionality reduction: Plot along two random directions in parameter space
Plot the values of two criteria

— Cumulative reward (the true measure of policy performance)
— Surrogate loss (the criterion that the algorithm optimizes)
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—  Reacher, torque control: Rugged loss landscape explains poor learning performance

—  Other configurations: No clear intuition about the reasons for performance differences

Objective: Understanding the influence on the gradient estimation
Based on work of llyas et al. [5]

Approximate the true gradient with 10" samples (in comparison: 64 samples are used for
gradient estimation during training)

Compare cosine similarity between gradients used during training and this “true” gradient
The PPO loss is the sum of a policy and a value function term

—  Plot the gradient quality also for each term individually

—— Torque control Position control —— Velocity control

1.0 1.0 1.0
c c c
o o s N T6Fi9 |
T 0.8 \ T 0.8 | T 0.8 |
o o o
(@)} (@)} (@)}
50.6 50.6 50.6
S S S
c0.4 c0.4 c0.4
£ £ £
() () ()
£02 £02 \ £02
8 3 3
O O O

0.0 0.0 0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Checkpoint environment steps x10° Checkpoint environment steps x10° Checkpoint environment steps x10°

Reacher, total loss Reacher, policy loss Reacher, value function loss

=
o
=
o
=
o

< < c
2 2 @
S 0.8 - © 0.8 T 0.8
® o o
(@)} (@)} (@)]
30.6 - 30.6 - 30.6 -
E E E
£ 047 g04 £0.4
r 0 n \
. \ o o
£02 ~ £02 £02
(2} ("2} ("2}
o o o
O O O

0.0 - - - - 0.0 - - - - 0.0 . . . .

00 04 08 12 16 20 00 04 08 12 16 20 00 04 08 12 16 20

Checkpoint environment steps x10° Checkpoint environment steps x10° Checkpoint environment steps x10°

Walker-walk, total loss Walker-walk, policy loss Walker-walk, value function loss

—  No clear correlation between gradient quality and learning performance
—  Higher policy performance makes gradient estimation harder

—  The gradient quality is significantly worse for the policy than for the value function

Normalizing the analysis results with respect to the learning progress
Disentangling different effects on the RL algorithm

Taking into account the effect of hyperparameters and controller gains
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