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Abstract. Fitting parametric models of human bodies, hands or faces
to sparse input signals in an accurate, robust, and fast manner has the
promise of significantly improving immersion in AR and VR scenarios. A
common first step in systems that tackle these problems is to regress the
parameters of the parametric model directly from the input data. This
approach is fast, robust, and is a good starting point for an iterative min-
imization algorithm. The latter searches for the minimum of an energy
function, typically composed of a data term and priors that encode our
knowledge about the problem’s structure. While this is undoubtedly a
very successful recipe, priors are often hand defined heuristics and finding
the right balance between the different terms to achieve high quality re-
sults is a non-trivial task. Furthermore, converting and optimizing these
systems to run in a performant way requires custom implementations
that demand significant time investments from both engineers and do-
main experts. In this work, we build upon recent advances in learned
optimization and propose an update rule inspired by the classic Leven-
berg–Marquardt algorithm. We show the effectiveness of the proposed
neural optimizer on three problems, 3D body estimation from a head-
mounted device, 3D body estimation from sparse 2D keypoints and face
surface estimation from dense 2D landmarks. Our method can easily be
applied to new model fitting problems and offers a competitive alterna-
tive to well-tuned ’traditional’ model fitting pipelines, both in terms of
accuracy and speed.

1 Introduction

Fitting parametric models [3, 21, 35, 58, 61, 78] to noisy input data is one of
the most common tasks in computer vision. Notable examples include fitting 3D
body [9, 15, 23, 40, 42, 58, 75], face [21], and hands [5, 10, 28, 66].

Direct regression using neural networks is the de facto default tool to esti-
mate model parameters from observations. While the obtained predictions are
robust and accurate to a large extent, they often fail to tightly fit the observa-
tions [85] and require large quantities of annotated data. Classic optimization
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Fig. 1: Top: Head and hand tracking signals from AR/VR devices (left) and
the corresponding body model fit obtained from regression followed by iterative
mathematical optimization. Bottom: Body model fit obtained from our learned
optimizer (left), overlaid with the ground-truth (right). Learned optimizers are
fast, able to tightly fit the input data and require significantly less manual labor
to achieve this result. All results are estimated independently per-frame.

methods, e.g. the Levenberg–Marquardt (LM) algorithm [44, 51], can tightly fit
the parametric model to the data by iteratively minimizing a hand-crafted en-
ergy function, but are prone to local minimas and require good starting points
for fast convergence. Hence, practitioners combine these two approaches to ben-
efit from their complementary strengths, initializing the model parameters from
a regressor, followed by energy minimization using a classic optimizer.

If we look one level deeper, optimization-based model fitting methods have
another disadvantage of often requiring hand-crafted energy functions that are
difficult to define and non-trivial to tune. Besides the data terms, each fitting
problem effectively requires the definition of their own prior terms and regular-
ization terms. Besides the work required to formulate these terms and train the
priors, domain experts needs to spend significant amounts of time to balance
the effect of each term. Since these priors are often hand-defined or assumed to
follow distributions that are tractable / easy to optimize, the resulting fitting
energy usually contains biases that can limit the accuracy of the resulting fits.

To get the best of both regression using deep learning and classical numerical
optimization, we turn to the field of machine learning based continuous optimiza-
tion [2, 16, 63, 64, 67, 84]. Here, instead of updating the model parameters using
a first or second order model fitter, a network learns to iteratively update the
parameters that minimize the target loss, with the added benefit of optimized
ML back-ends for fast inference. End-to-end network training removes the need
for hand-crafted priors, since the model learns them directly from data.

Inspired by the properties of the popular Levenberg–Marquardt and Adam
[38] algorithms, our main contribution extends the system presented in [67] with
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an iterative machine learning solver which (i) keeps information from previ-
ous iterations, (ii) controls the learning rate of each variable independently and
(iii) combines updates from gradient descent and from a network that is capable
of swiftly reducing the fitting energy, for robustness and convergence speed. We
evaluate our approach on different challenging scenarios: full-body tracking from
head and hand inputs only, e.g. given by a device like the HoloLens 2, body esti-
mation from 2D keypoints and face tracking from 2D landmarks, demonstrating
both high quality results and versatility of the proposed framework.

2 Related Work

Learning to optimize [2, 63, 64] is a field that, casts optimization as a learning
problem. The goal is to create models that learn to exploit the problem struc-
ture, producing faster and more effective energy minimizers. In this way, we can
remove the need for hand-designed parameter update rules and priors, since we
can learn them directly from the data. This approach has been used for image
denoising and depth-from-stereo estimation [73], rigid motion estimation [47],
view synthesis [24], joint estimation of motion and scene geometry [16], non-
linear tomographic inversion problem with simulated data [1], face alignment
[77] and object reconstruction from a single image [41].
Parametric human model fitting: The seminal work of Blanz and Vetter
[8] introduced a parametric model of human faces and a user-assisted method
to fit the model to images. Since then, the field has evolved and produced bet-
ter face models and faster, more accurate and more robust estimation methods
[21]. With the introduction of SMPL [46], the field of 3D body pose and shape
estimation has been rapidly progressing. The community has created large mo-
tion databases [48] from motion capture data, as well as datasets, both real and
synthetic, with images and corresponding 3D body ground-truth [27, 50, 57].
Thanks to these, we can now train neural network regressors that can reliably
predict SMPL parameters from images [34, 36, 42, 43, 45, 85] and videos [14, 39].
With the introduction of expressive models [35, 58, 78], the latest regression ap-
proaches [15, 23, 62] can now predict the 3D body, face and hands. However,
one common issue, present in all regression scenarios, is the misalignment of the
predictions and the input data [65, 85]. Thus, they often serve as the initial point
for an optimization-based method [9, 58, 75], which refines the estimated param-
eters until some convergence criterion is met. This combination produces system
that are effective, robust and able to work in real-time and under challenging
conditions [52, 66, 69]. These hybrid regression-optimization systems are also
effective pseudo annotators for in-the-wild images [42], where standard capture
technologies are not applicable. However, formulating the correct energy terms
and finding the right balance between them is a challenging and time-consuming
task. Furthermore, adapting the optimizer to run in real-time is a non-trivial op-
eration, even when using popular algorithms such as the Levenberg–Marquardt
algorithm [32, 44, 51] which has a cubic complexity. Thus, explicitly computing
the Jacobian [16, 47] is often prohibitive in practice, either in terms of memory



4 Choutas et al.

or runtime. The most common and practical way to speedup the optimization is
to utilize the sparsity of the problem or make certain assumptions to simplify it
[22]. Learned optimizers promise to overcome these issues, by learning the para-
metric model priors directly from the data and taking more aggressive steps,
thus converging in fewer iterations. The effectiveness of these approaches has
been demonstrated in different scenarios, such as fitting a body model [46, 78]
to images [67, 84] and videos [82], to sparse sensor data from electromagnetic
sensors [37] and multi-body estimation from multi-view images [19].

We propose a new update rule, computed as a weighted combination of the
gradient descent step and the network update [67], where their relative weights
are a function of the residuals. Many popular optimizers have an internal mem-
ory, such as Adam’s [38] running averages, Clark et al.’s [16] and Neural Descent’s
[84] RNN. We adopt this insight, using an RNN to predict the network update
and the combination weights. The network can choose to follow either the gradi-
ent or the network direction more, using both current and past residual values.
Estimating 3D human pose from a head-mounted device is a difficult
problem, due to self-occlusions caused by the position of the headset and the
sparsity of the input signals [79]. Yuan and Kitani [80, 81] cast this as a control
problem, where a model learns to produce target joint angles for a Proportional-
Derivative (PD) controller. Other methods [71, 72] tackle this as a learning
problem, where a neural network learns to predict the 3D pose from the cameras
mounted on the HMD. Guzov et al. [26] use sensor data from IMUs placed
on the subject’s body and combine them with camera self-localization. They
formulate an optimization problem with scene constraints, enabling the capture
of long-term motions that respect scene constraints, such as foot contact with
the ground. Finally, Dittadi et al. [18] propose a likelihood model that maps
head and hand signals to full body poses. In our work, we focus on this scenario
and empirically show that the proposed optimizer rule is competitive, both with
a classic optimization baseline and a state-of-the-art likelihood model [18].

3 Method

3.1 Neural Fitter

Levenberg–Marquardt (LM) [32, 44, 51] and Powell’s dog leg method (PDL) [59]
are examples of popular iterative optimization algorithms used in applications
that fit either faces or full human body models to observations. These techniques
employ the Gauss-Newton algorithm for both its convergence rate approaching
the quadratic regime and its computational efficiency, enabling real-time model
fitting applications, e.g. generative face [70, 88] and hand [66, 69] tracking. For
robustness, LM and PDL both combine the Gauss-Newton algorithm and gradi-
ent descent, leading to implicit and explicit trust region being used when calcu-
lating updates, respectively. In LM, the relative contribution of the approximate
Hessian and the identity matrix is weighted by a single scalar that is changing
over iterations with its value carried over from one iteration to the next. Given
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an optimization problem over a set of parameters Θ, LM computes the param-
eter update ∆Θ as the solution of the system (JTJ + λdiag(JTJ))∆Θ = JTR,
where J is the Jacobian and R are the current residual values. It is interesting
to note that several popular optimizers, including ADAGRAD [20] and Adam
[38], also carry over information about previous iteration(s), in this case to help
control the learning rate for each parameter.

Inspired by the success of these algorithms, we aim at constructing a novel
neural optimizer that (a) is easily applicable to different fitting problems, (b) can
run at interactive rates without requiring significant efforts, (c) does not require
hand crafted priors. (d) carries over information about previous iterations of
the solve, (e) controls the learning rate of each parameter independently, (f) for
robustness and convergence speed, combines updates from gradient descent and
from a method capable of very quickly reducing the fitting energy. Note that the
Learned Gradient Descent (LGD) proposed in [67] achieves (a), (b), and (c), but
does not consider (d), (e), and (f). As demonstrated experimentally in Section 4,
each of these additional properties leads to improved results compared to [67],
and the best results are achieved when combined together.

Algorithm 1 Neural fitting

Require: Input data D
Θ0 = Φ (D)
h0 = Φh (D)
while not converged do

∆Θn, hn ← f([gn−1,Θn−1], D, hn−1)
Θn ← Θn−1 + u (∆Θn, gn−1,Θn−1)

end while

Our proposed neural fitter esti-
mates the values of the parameters Θ
by iteratively updating an initial esti-
mate Θ0, see Algorithm 1. While the
initial estimate Θ0 obtained from a
deep neural network Φ might be suffi-
ciently accurate for some applications,
we will show that a careful construc-

tion of the update rule (u(.) in Alg. 1) leads to significant improvements after
only a few iterations. It is important to note that we do not focus on building
the best possible initializer Φ for the fitting tasks at hand, which is the focus of
e.g. VIBE [39] and SPIN [42]. That being said, note that these regressors could
be leveraged to provide Θ0 from Alg. 1. h0 and hn are the hidden states of the
optimization process. At the n-th iteration in the loop of Alg. 1, we use a neural
network f to predict ∆Θn, and then apply the following update rule:

u(∆Θn, gn−1,Θn−1) = λ∆Θn + (−γgn−1) (1)

λ,γ = fλ,γ(R(Θn−1),R(Θn−1 +∆Θn)),λ,γ ∈ R|Θ| (2)

Note that LGD [67] is a special case of Eq. 1, with λ = 1, γ = 0, and with no
knowledge preserved across fitting iterations. gn is the gradient of the target
data term w.r.t. to the problem parameters: gn = ∇LD.

The proposed neural fitter satisfies the requirements (a), (b) and (c) in a
similar fashion to LGD [67]. In the following, we describe how the properties
(d), (e), and (f) outlined earlier in this section are satisfied.
(d): keeping track of past iterations. The functions f, fλ,γ are implemented
with a Gated Recurrent Unit (GRU) [13]. Unlike previous work, where the
learned optimizer only stores past parameter values and the total loss [84], lever-
aging GRUs allows to learn an abstract representation of the knowledge that is
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important to use and forget about the previous iteration(s), and of the knowledge
about the current iteration that should be preserved.

(e): independent learning rate. When fitting face or body models to data,
the variables being optimized over are of different nature. For instance, rotations
might be expressed in Euler angles while translation in meters. Since each of these
parameter has a different scale and / or unit, it is useful to have per-parameter
step size values. Here, we propose to predict vectors λ and γ independently to
scale the relative contribution of∆Θn and gn to the update applied to each entry
of Θn. It is interesting to note that fλ having knowledge about the current value
of residuals at Θn and the residual at Θn + ∆Θn, effectively makes use of an
estimate of the step direction before setting a step size which is analogous to
how line-search operates. Motivated by this observation we tried a few learned
versions of line search which yielded similar or inferior results to what we propose
here. The alternatives we tried are described in the Sup. Mat..

(f): combining gradient descent and network updates. LM interpolates
between Gradient Descent (GD) and Gauss-Newton (GN) using an iteration
dependent scalar. LM combines the benefits of both approaches, namely fast
convergence near the minimum like GN and large descent steps away from the
minimum like GD. In this work, we replace the GN direction, which is often
prohibitive to compute, with a network-predicted update, described in Eq. (1).
The neural optimizer should learn the optimal descent direction and the relative
weights to minimize the data term in as few steps as possible. In the Sup. Mat.
we provide alternative combinations, e.g. via convex combination, which yielded
inferior results in our experiments.

3.2 Human Body Model and Fitting Tasks

Fig. 2: Left to right: 1) In-
put 6-DoF transformations
TH, TL, TR and fingertip posi-
tions P L

i=1,...5, P
R
i=1,...5, given

by the head-mounted device,
2) ground-truth mesh, 3) half-
space visibility, everything be-
hind the headset is not visible.

We represent the human body using SMPL
[46]/SMPL+H [61], a differentiable function
that computes mesh vertices M(θ,β) ∈ RV×3,
V = 6890, from pose θ and shape β, using
standard linear blend skinning (LBS). The 3D
joints, J (β), of a kinematic skeleton are com-
puted from the shape parameters. The pose
parameters θ ∈ RJ×D+3 contain the parent-
relative rotations of each joint and the root
translation, where D is the dimension of the
rotation representation and J is the number
of skeleton joints. We represent rotations us-
ing the 6D rotation parameterization of Zhou
et al. [87], thus θ ∈ RJ×6+3. The world trans-
formation Tj(θ) ∈ SE(3) of each joint j is com-
puted by following the transformations of its
parents in the kinematic tree: Tj(θ) = Tp(j)(θ)∗

T (θj ,Jj(β)), where p(j) is the index of the parent of joint j and T (θj ,Jj(β))
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is the rigid transformation of joint j relative to its parent. Variables with a hat
denote observed quantities.

We focus on two 3D human body estimation problems: 1) fitting a body
model [46] to 2D keypoints and 2) inferring the body, including hand articu-
lation [61], from head and hand signals returned by AR/VR devices, shown in
Fig. 2. The first is by now a standard problem in the Computer Vision commu-
nity. The second, which uses only head and hand signals in the AR/VR scenario,
is a significantly harder task which requires strong priors, in particular to pro-
duce plausible results for the lower body and hands. The design of such priors
is not trivial, requires expert knowledge and a significant investment of time.
2D keypoint fitting: We follow the setup of Song et al. [67], computing the
projection of the 3D SMPL joints J with a weak-perspective camera Π with
scale s ∈ R, translation t ∈ R2: j = Πo(J (θ,β), s, t). Our goal is to estimate
SMPL and camera parameters ΘB = {θ,β}, KB = {s, t}, such that the pro-
jected joints j match the detected keypoints DB = {ĵ}, e.g. from OpenPose
[11]. Fitting SMPL+H to AR/VR device signals: We make the follow-
ing assumptions: 1. the device head tracking system provides a 6-DoF trans-
formation T̂ H, that contains the position and orientation of the headset in the
world coordinate frame. 2. the device hand tracking system gives us the orien-
tation and position of the left and right wrist, T̂ L, T̂ R ∈ SE(3), and the posi-
tions of the fingertips P̂ L

1,...,5, P̂
R
1,...,5 ∈ R3 in the world coordinate frame, if and

when they are in the field of view (FOV) of the HMD. In order to estimate
the SMPL+H parameters that best fit the above observations, we compute the
estimated headset position and orientation from the SMPL+H world transfor-
mations as T H(Θ) = THMDTjH(Θ), where jH is the index of the head joint of
SMPL+H. THMD is a fixed transform from the SMPL+H head joint to the
headset, obtained from an offline calibration phase.
Visibility is represented by vL, vR ∈ {0, 1} for the left and right hand respectively.
We examine two scenarios: 1. full visibility, where the hands are always visible,
2. half-space visibility, where only the area in front of the HMD is visible. Specif-
ically, we transform the points into the coordinate frame of the headset, using
T H. All points with z ≥ 0 are behind the headset and thus invisible. Fig. 2 right
visualizes the plane that defines what is visible or not.
To sum up, the sensor data are: DHMD = {T̂ H, T̂ L, T̂ R, P̂ L

i=1,...,5, P̂
R
i=1,...,5, vL, vR}.

The goal is to estimate the parametersΘHMD = {θ} ∈ R315, that best fit DHMD.
Note that we assume we are given body shape β for the HMD fitting scenario.

3.3 Human Face Model and Fitting Task

We represent the human face using the parametric face model proposed by Wood
et al. [74]. It is a blendshape model [21], with V = 7667 vertices, 4 skeleton joints
(head, neck and two eyes), with their rotations and translations denoted with
θ, identity β ∈ R256 and expression ψ ∈ R233 blendshapes. The deformed face
mesh is obtained with standard linear blend skinning.
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Fig. 3: Blue: The face model
template of Wood et al. [74].
White: 669 dense landmarks.

For face fitting, we select a set of mesh ver-
tices as the face landmarks P(θ,ψ,β) ∈ RP×3,
P = 669 (see Fig. 3 right). The input data are
the corresponding 2D face landmarks p̂ ∈ RP×2,
detected using the landmark neural network
proposed by Wood et al. [74].

For this task, our goal is to estimate trans-
lation, joint rotations, expression and identity
coefficients ΘF = {θ,ψ,β} ∈ R516 that best fit
the 2D landmarks DF = p̂. We assume we are
dealing with calibrated cameras and thus have
access to the camera intrinsics K. Πp(P; K) is
the perspective camera projection function used

to project the 3D landmarks P onto the image plane.

3.4 Data Terms

The data term is a function LD(Θ;D) that measures the discrepancy between
the observed inputs D and the parametric model evaluated at the estimated
parameters Θ.

At the n-th iteration of the fitting process, we compute both 1) the array
R(Θn) that contains all the corresponding residuals of the data term LD for the
current set of parameters Θn, and 2) the gradient gn = ∇LD(Θn).

Let JK by any metric appropriate for SE(3) [18] and ∥∥ψ a robust norm [6].
To compute residuals, we use the Frobenius norm for JK and ∥∥ψ Note that any
other norm choice can be made compatible with LM [83].

Body fitting to 2D keypoints: We employ the re-projection error between
the detected joints and those estimated from the model as the data term:

LD(ΘB ;DB) = ∥ĵ−Πp

(
J (ΘB),KB

)
∥ψ (3)

Here J (ΘB) denotes the “posed” joints.

Body fitting to HMD signals: We measure the discrepancy between the
observed data DHMD and the estimated model parameters ΘHMD with the fol-
lowing data term:

LD(ΘHMD;DHMD) = JT̂ H, T H(ΘHMD)K+∑
w∈L,R

vw

(
JT̂w, Tw(ΘHMD)K +

∑5

i=1
∥P̂wi − Pwi (ΘHMD)∥ψ

)
(4)

Face fitting to 2D landmarks: The data term is the landmark re-projection
error:

LD(ΘF ;DF ) = ∥p̂−Πp

(
P(ΘF ); KF

)
∥ψ (5)
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3.5 Training Details

Training losses: We train our learned fitter using a combination of model pa-
rameter and mesh losses. Their precise formulation can be found in the Sup. Mat.

Model structure: Unless otherwise specified, f, fλ,γ (in Alg. 1, (2)) use a stack
of two GRUs with 1024 units each. The initialization Φ,Φh in Alg. 1 are MLPs
with two layers of 256 units, ReLU [54] and Batch Normalization [33].
Datasets: For the body fitting tasks, we use AMASS [48] to train and test
our fitters. When fitting SMPL to 2D keypoints, we use 3DPW’s [50] test set to
evaluate the learned fitter’s accuracy, using the detected OpenPose [11] keypoints
as the target. The face fitter is trained and evaluated on synthetic data. Please
see the Sup. Mat. for more details on the datasets.

4 Experiments

4.1 Metrics

Metrics with a PA prefix are computed after undoing rotation, scale and trans-
lation, i.e. Procrustes alignment. Variables with a tilde are ground-truth values.
Vertex-to-Vertex (V2V): As we know the correspondence between ground-
truth M̃ and estimated vertices M , we are able to compute the mean per-vertex
error: V2V(M̃,M) = 1

V

∑V
i=1∥M̃i −Mi∥2. For SMPL+H, in addition to the full

mesh error (FB), we report error values for the head (H) and hands (L, R). A
visualization of the selected parts is included in the Sup. Mat. The 3D per-
joint error (JntErr) is equal to: JntErr(J̃ ,J ) = 1

J

∑J
i=1∥J̃i − Ji∥2.

Ground penetration (GrPe.): We report the average distance to the ground
plane for all vertices below ground [82]: GrPe.(M) = 1

|S|
∑
n∈S|dgnd(Mi)|, where

dgnd(Mi) = Mi · ngnd and S = {i | dgnd(Mi) < 0}.
Face landmark error (LdmkErr): We report the mean distance between
estimated and ground-truth 3D landmarks LdmkErr(P̃,P) = 1

P

∑P
i=1∥P̃i−Pi∥2.

4.2 Quantitative Evaluation

Fitting the body to 2D keypoints: We compare our proposed update rule
with existing regressors, classic and learned optimization methods on 3DPW [50].
For a fairer comparison with Song et al. [67], we train two versions of our pro-
posed fitter, one where we change the update rule of LGD with Eq. 1, and our
full system which also has network architecture changes. Table 1 shows that just
by changing the update rule (Ours, LGD + Eq. 1), we outperform all baselines.
Fitting the body to HMD data: In Tab. 2 we compare our proposed learned
optimizer with a standard optimization pipeline, a variant of SMPLify [9, 58]
adapted to the HMD fitting task (first 3 rows), and two neural network regres-
sors (a VAE predictor [18] in the 4th row and our initializer Φ of Alg. 1 in the
5th row), on the task of fitting SMPL+H to sparse HMD signals, see Sec. 3.2.
The optimization baseline minimizes the energy with data term (LD in Eq. (4)),
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Table 1: Using 3DPW [50] to compare different approaches that estimate SMPL from
images, 2D keypoints and part segmentation masks. Replacing LGD’s [67] update rule
with ours leads to a 2 mm PA-MPJPE improvement. Our full system, that uses GRUs,
leads to a further 1.6 mm improvement. “O/R” denotes Optimization/Regression.

Method Type Image 2D keypoints Part segmentation PA-MPJPE

SMPLify [9] O ✗ ✓ ✗ 106.1

SCOPE [22] O ✗ ✓ ✗ 68.0

SPIN [42] R ✓ ✗ ✗ 59.6

VIBE [39] R ✓ ✗ ✗ 55.9

Neural Descent [84] R+O ✓ ✓ ✓ 57.5

LGD [67] R+O ✗ ✓ ✗ 55.9

Ours, LGD + Eq. 1 R+O ✗ ✓ ✗ 53.9

Ours (full) R+O ✗ ✓ ✗ 52.2

gravity term LG , prior term Lθ
prior, without/with temporal term LT (first/second

row of Tab. 2) to estimate the parameters Θ1,...,T of a sequence of length T:

LO(ΘHMD) = LD(ΘHMD;DHMD) + LG + Lθ
prior + LT

LG(ΘHMD) = 1− Tpelvis(1, : 3) · u
∥Tpelvis(1, : 3)∥2∥u∥2

, u = (0, 1, 0)

LT(ΘHMD) =
∑T−1

t=1
JTt+1(Θ

HMD
t+1 )− Tt(Θ

HMD
t )K

(6)

Table 2: Fitting SMPL+H to simulated sequences of HMD data. Our proposed fitter
outperforms the classical optimization baselines (L-BFGS prefix) on the full body and
ground penetration metrics, with similar or better performance on the part metrics,
and the regressor baselines (the VAE predictor [18] and the regressor Φ), on all metrics.
“F/H” denotes full / half-plane visibility.

Vertex-to-vertex (mm) ↓ JntErr GrPe.

Method Full body Head L / R hand (mm) ↓ (mm) ↓
F H F H F H F H F H

L-BFGS, GMM 73.1 116.2 2.9 3.4 3.2 / 3.0 5.6 / 5.3 49.7 137.26 70.8 74.0

L-BFGS, GMM, Tempo. 72.6 113.3 2.9 3.4 3.3 / 3.1 6.8 / 6.5 49.4 132.1 70.7 73.5

L-BFGS, VAE Enc. 76.1 119.3 3.9 4.1 5.3 / 4.7 8.7 / 7.6 52.6 140.5 63.6 66.7

Dittadi et al. [18] n/a n/a n/a 43.3 n/a n/a

Ours Φ, (N = 0) 44.2 69.7 19.1 22.7 27.8 / 25.9 32.1 / 29.9 38.9 84.9 16.1 20.1

Ours (N = 5) 26.1 49.9 2.2 3.2 3.0 / 3.3 3.1 / 3.7 18.1 62.1 12.5 15.5
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Fig. 4: Errors per iteration when fitting SMPL+H to HMD data for the half-
space visibility scenario, see Sup. Mat. for full visibility. Left to right: 1) full
body vertex and joint errors, 2) head, left and right hand V2V errors and 3)
vertex and joint ground distance, computed on the set of points below ground.

We use two different pose priors, a GMM [9] and a VAE encoder E(∗) [58]:

Lθ
GMM = −min

j
log (wjN (θ;µθ,j , Σθ,j)) (7)

Lθ
VAE = Neg. Log-Likelihood(N (E(θ), I)) (8)

We minimize the loss above using L-BFGS [55, Ch. 7.2] for 120 iterations
on the test split of the MoCap data. We choose L-BFGS instead of Levenberg-
Marquardt, since PyTorch currently lacks the feature to efficiently compute ja-
cobians, without having to resort to multiple backward passes for derivative
computations. We report the results for both full and half-space visibility in
Tab. 2 using the metrics of Section 4.1. Our method outperforms the baselines
in terms of full-body and penetration metrics, and shows competitive perfor-
mance w.r.t. to the part metrics. Regression-only methods [18] cannot tightly fit
the data, due to the lack of a feedback mechanism.
Runtime: Our method (PyTorch) runs at 150 ms per frame on a P100 GPU,
while the baseline L-BFGS method (PyTorch) above requires 520 ms, on the
same hardware. We are aware that a highly optimized real-time version of the
latter exists and runs at 0.8 ms per frame, performing at most 3 LM iterations,
but it requires investing significant effort into a problem specific C++ codebase.

Fig. 4 contains the metrics per iteration of our method, averaged across the
entire test dataset. It shows that our learned fitter is able to aggressively optimize
the target data term and converge quickly.
Ablation study: We perform our ablations on the problem of fitting SMPL+H
to HMD signals, using the half-space visibility setting. Unless otherwise stated,
we report the performance of regression and 5 iterations of the learned fitter.

We first compare two variants of the fitter, one with shared and the other
with separate network weights per optimization step. Table 3 shows that the
latter can help reduce the errors, at the cost of an N-fold increase in memory.
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Table 3: Using per-step network weights
reduces head and ground penetration er-
rors, albeit at an N-folder parameter in-
crease.

Weights V2V (mm) ↓ JntErr GrPe.

FB H L / R (mm) ↓ (mm)↓

Shared 52.3 3.5 3.6 / 3.7 64.1 18.2

Per-step 49.9 3.2 3.1 / 3.7 62.1 15.5

Table 4: GRU vs a residual feed-forward
network [29, 68]. GRU’s memory makes it
more effective. Multiple layers bring fur-
ther benefits, but increase runtime.
Network V2V (mm) ↓ JntErr GrPe.

Structure FB H L / R (mm) ↓ (mm)↓

ResNet 65.3 6.8 7.3 / 7.6 73.1 16.2

GRU (1024) 53.6 3.7 3.4 / 4.0 66.1 15.1

GRU (1024, 1024) 49.9 3.2 3.1 / 3.7 62.1 15.5

Table 5: Comparison of our update rule
(Eq. 1) with the pure network update
∆Θn. Our proposed combination im-
proves the results for all metrics.
Update V2V (mm) ↓ JntErr GrPe.

Rule FB H L / R (mm) ↓ (mm)↓

+∆Θn 53.8 14.7 7.8 / 7.9 66.3 15.8

+Eq. 1 49.9 3.2 3.1 / 3.7 62.1 15.5

Table 6: Learning to predict γ is better
than a constant, with performance de-
grading gracefully, providing an option for
a lower computational cost.

Learning V2V (mm) ↓ JntErr GrPe.

rate γ FB H L / R (mm) ↓ (mm)↓

1e-4 51.9 3.5 3.8 / 4.6 64.2 15.5

Learned 49.9 3.2 3.1 / 3.7 62.1 15.5

Secondly, we investigate the effect of the type and structure of the net-
work, replacing the GRU with a feed-forward network with skip connections,
i.e., ResNet [29, 68]. We also train a version of our fitter with a single GRU
with 1024 units. Table 4 shows that the GRU is better suited to this type of
problem, thanks to its internal memory. This is very much in line with many
popular continuous optimizer work [84].

Thirdly, we compare the update rule of Eq. 1 with a learned fitter that only
uses the network update, i.e. γ = 0,λ = 1 in Eq. 1. This is an instantiation
of LGD [67], albeit with a different network and task. Table 5 shows that the
proposed weighted combination is better than the pure network update.

Fourthly, we investigate whether we need to learn the step size γ or if a
constant value is enough. Table 6 shows that performance gracefully degrades
when using a constant learning value. Therefore, it is an option for decreasing
the computational cost, without a significant performance drop.

Finally, we present some qualitative results in Fig. 6. Notice how the learned
fitter corrects the head pose and hand articulation of the initial predictions.

Table 7: Face fitting to 2D land-
marks.

V2V (mm) ↓ LdmkErr

Face Head (mm) ↓
Method - PA - PA - PA

LM 34.4 3.7 33.8 5.3 33.8 3.4

Ours 7.9 3.5 8.5 4.1 8.0 3.7

Face fitting to 2D landmarks: We com-
pare our proposed learned optimizer with a
C++ production grade solution that uses LM
to solve the face fitting problem described in
Sec. 3.3. Given the per-image 2D landmarks
as input, the optimization baseline minimizes
the energy with data term (LD in Eq. 5)
and a simple regularization term to estimate
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ΘF = {θ,ψ,β}:

LO(ΘF ) = LD(ΘF ;DF ) +w ∗ ∥ΘF ∥2 (9)

w contains the different regularization weights for θ,ψ,β, which are tuned man-
ually for the best baseline result.

a) b) c) d)

Fig. 5: Face model [74] fitting
to to dense 2D landmarks a)
target 2D landmarks, b) LM
fitter, c) ours, d) ground-truth.

The quantitative comparison in Tab. 7
shows that our proposed fitter outperforms the
LM baseline on almost all metrics. The large
value in absolute errors (“-” columns) is due to
the wrong estimation of the depth of the mesh.
After alignment (PA columns), the gap is much
smaller. See Fig. 5 for a qualitative comparison.
Runtime: Here, the baseline optimization is in
C++ and thus for a fair comparison, we only
compare the time it takes to compute the pa-
rameter update given the residuals and jaco-
bians (per-iteration). Computing the values of
the learned parameter update (ours, using Py-
Torch) takes 12 ms on a P100 GPU, while com-
puting the LM update (baseline, C++) requires
34.7 ms (504 free variables). Note that the LM
update only requires 0.8 ms on a laptop CPU

when optimizing over 100 free variables. The difference is due to the cubic com-
plexity of LM w.r.t. the number of free variables of the problem.

4.3 Discussion

If we apply the proposed method to a sequence of data, we will get plausible
per-frame results, but the overall motion will be implausible. Since the model
is trained on a per-frame basis and lacks temporal context, it cannot learn the
proper dynamics present in temporal data. Thus, limbs in successive frames will
move unnaturally, with large jumps or jitter. Future extensions of this work
should therefore explore how to best use past frames and inputs. This could be
coupled with a physics based approach, either as part of a controller [82] or using
explicit physical losses [60, 76, 86] in LD. Another interesting direction is the use
of more effective parameterizations for the per-step weights [17, 31]. While all the
problems we tackle here are under-constrained and could thus have multiple so-
lutions, the current system returns only one. Therefore, combining the proposed
system with multi-modal regressors [7, 43] is another possible extension.

5 Conclusion

In this work, we propose a learned parameter update rule inspired from clas-
sic optimization algorithms that outperforms the pure network update and is
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1) Initial Φ output 2) Iteration N = 5 3) Ground-truth

Fig. 6: Estimates in yellow, ground-truth in blue, best viewed in color. Our
learned optimizer successfully fits the target data and produces plausible poses
for the full 3D body. Points that are greyed out are outside of the field of view,
e.g. the hands in the second row, and thus not perfectly fitted.

competitive with standard optimization baselines. We demonstrate the utility
of our algorithm on three different problem sets, estimating the 3D body from
2D keypoints, from sparse HMD signals and fitting the face to dense 2D land-
marks. Learned optimizers combine the advantages of classic optimization and
regression approaches. They greatly simplify the development process for new
problems, since the parameter priors are directly learned from the data, with-
out manual specification and tuning, and they run at interactive speeds, thanks
to the development of specialized software for neural network inference. Thus,
we believe that our proposed optimizer will be useful for any applications that
involve generative model fitting.
Acknowledgement: We thank Pashmina Cameron, Sadegh Aliakbarian, Tom Cash-

man, Darren Cosker and Andrew Fitzgibbon for valuable discussions and proof read-

ing.



Learning to Fit Morphable Models 15

References
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Supplementary Material

1 Social impact

Accurate tracking is a necessary pre-requisite for the next generation of commu-
nication and entertainment through virtual and augment reality. Learned opti-
mizers represent a promising avenue to realize this potential. However, it can
also be used for surveillance and tracking of private activities of an individual,
if the corresponding sensor is compromised.

2 Errors per iteration

Figure A.2 shows the metric values per iteration, averaged across the test set,
for our fitter on the task of fitting SMPL+H to HMD head and hand signals.
Different to the main paper, this figure corresponds to the full visibility scenario,
i.e. the hands are always visible. The learned fitter aggressively optimizes the
target data term and quickly converges to the minimum.

3 Update rule

In addition to the update rule described in Eq. 1 of the main paper, we inves-
tigated two other alternatives, based on the convex combination of the network
update and gradient descent. The first is a simple re-formulation of Eq. 1, with
λ ∈ [0, 1], selecting either the network update or the gradient descent direction.
In the second, we first compute a convex combination between the normalized
network update and gradient descent, i.e. selecting a direction, and then scale
the computed direction according to γ.

u(∆Θn, gn,Θn) = λ∆Θn + (1− λ) (−γgn)

u(∆Θn, gn,Θn) = γ

[
λ

(
∆Θn

∥∆Θn∥

)
+ (1− λ)

(
−gn
∥gn∥

)]
λ = σ

(
fλ(R(Θn),R(Θn +∆Θn)),λ ∈ R|Θ|

) (10)

Here, σ() is the sigmoid function: σ(x) = 1
1+exp (−x) . The learning rate of the

gradient descent term is the same as the main text:

γ = fγ(R(Θn),R(Θn +∆Θn)),γ ∈ R|Θ| (11)

We empirically found that the performance of these two variants is inferior
to the proposed update rule, but we nevertheless list them for completeness.
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Fig.A.1: Top: the general fitting process described in Alg. 1. Bottom: A
schematic representation of our update rule, described in Eq. 1, 2 of the main
paper.

4 Additional ablation

Table A.1 contains an additional ablation experiment, where we compare differ-
ent options for the type of variable for λ, γ, namely whether to use a scalar or a
vector variable, and and whether to use a common network predictor for λ, γ.
We use the problem of fitting SMPL to 2D keypoint predictions, evaluating our
results using the 3DPW test set.

5 Qualitative comparisons

We present a qualitative comparison of the proposed learned optimizer with a
classic optimization-based method in Fig. A.3. Without explicit hand-crafted
constraints, the classic approach cannot resolve problems such as ground-floor
penetration. Formulating a term to represent this constraint is not a trivial pro-
cess. Furthermore, tuning the relative weight of this term to avoid under-fitting
the data term is not a trivial process. Our proposed method on the other hand
can learn to handle these constraints directly from data, without any heuristics.
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Fig.A.2: Errors per iteration when fitting SMPL+H to HMD data, assuming
that the hands are always visible. From left to right: 1) Full body vertex and
joint errors, 2) head, left and right hand V2V errors and 3) vertex and joint
ground distance, computed on the set of points below ground.

Table A.1: Predicting vector values for λ,γ is always better than scalars. This is ex-
pected, since each variable to be optimized has different scale and the learned fitter
must adapt its predicted updates accordingly. Having a shared network for λ,γ im-
proves performance and lowers the number of parameters of the learned fitter.

Vector λ Vector γ Shared network for λ,γ PA-MPJPE (mm)

✓ ✗ ✗ 52.8

✗ ✓ ✗ 52.7

✓ ✓ ✗ 52.3

✓ ✓ ✓ 52.2

6 Training details

6.1 GRU formulation

All our recurrent networks are implemented with Gated Recurrent Units (GRU)
[13], with layer normalization [4]:

zn = σg (LN(Wzx) + LN(Uzhn−1))

rn = σg (LN(Wrx) + LN(Urhn−1))

ĥn = ϕh (LN(Whx) + LN(Uh (rn ⊙ hn−1)))

hn = (1− zn)⊙ hn−1 + zn ⊙ ĥn, h0 = Φh (D)

(12)

We also tried replacing the GRUs with LSTMs [30], but did not observe sig-
nificant performance benefit. Hence we chose the computationally lighter GRUs.
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6.2 Training losses

We apply a loss on the output of every step of our network:

L({Θn}Nn=0, {Θ̂n}Nn=0;D) =
∑N

i=0
Li(Θi, Θ̂i;D) (13)

The loss Li contains the following terms:

Li = λMLMi + λELE
i + λTLTi + λθLθ

i (14)

LMi = ∥M̂ −M∥1 (15)

LE
i =

∑
(i,j)∈E

∥(M̂i − M̂j)− (Mi −Mj)∥1 (16)

LTi =
∑J

j=1
∥T̂j − Tj∥1 (17)

Lθ
i = ∥R̂θ −Rθ∥1 + ∥t̂− t∥1 (18)

M represents the mesh vertices deformed by parameters Θ. E is the set of
vertex indices of the mesh edges. T denotes the transformations in world coor-
dinate while Rθ denotes the rotation matrices (in the parent-relative coordinate
frame) computed from the pose values θ. t is the root translation vector. We use
the following values for the weights of the training losses: λM = 1000, λE = 1000,
λT = 100, λθ = 1, λt = 100.

6.3 Datasets

For body fitting from HMD signals, we use a subset of AMASS [48] to train and
test our method. Specifically, we use CMU [12], KIT [49] and MPI HDM05 [53],
adopting the same pre-processing and training, test splits as [18]. An important
difference is that we fit the neutral SMPL+H to the gendered SMPL+H data
found in AMASS, to preserve correct contact with the ground and avoid the use
of heuristics [60]. We attach random hand poses from the MANO [61] training set
to simulate hand articulation. In all our experiments that involve SMPL+H, we
use the ground-truth shape parameters β. Future work could include estimating
a subset of the shape parameters corresponding to height from the position of the
headset. For the learned fitter that estimates body parameters from 2D joints,
we use the data, augmentation and evaluation protocol of Song et al. [67]. To be
more precise, we use AMASS [48] to train the fitter and evaluate the resulting
model on 3DPW [50], which contains sequences of subjects in complex poses in
outdoor scenes, along with SMPL parameters captured using RGB cameras and
IMUs.
For face fitting from 2D landmarks, we use the face model proposed in [74] to
generate a synthetic face dataset by sampling 50000 sets of parameters from the
model space. For each sample, we vary pose, identity and expression. We use
a perspective camera with focal length (512, 512) and principal point (256, 256)
(in pixels) to project the 3D landmarks onto the image for 2D landmarks. Af-
terwards, we randomly split this by 80/20 into training and testing sets.
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6.4 Training schedule

We implement our model in [56] and train it with a batch size of 512 on 4 GPUs
using Adam [38]. We anneal the learning rate by a factor of 0.1 after 400 epochs.
We apply dropout with a probability of p = 0.5 on the hidden states of the
GRUs. We initialize the weights of the output linear layer of Eq. 12 with a gain
equal to 0.01 [25].

6.5 Edge loss

We empirically observed that the loss between the 3D edges of the predicted and
ground-truth meshes helps training converge faster.

6.6 Runtimes

We measure time on the 2D keypoint fitting problem on a Quadro P5000 GPU
and with a batch size of 512 data points. Our extra networks and update rule
add 6 (ms) per iteration to LGD’s [67] runtime. Using a common network for γ
and λ reduces this to 4 (ms).

6.7 Number of iterations

Similar to LGD [67], we observe limited gains beyond 5 iterations. Training
with more iterations, e.g. 10 or 20, leads to similar performance, at the cost of
increased training time. Picking a random number of iterations during training,
e.g. 5 to 20, does not affect the final result.
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Fig.A.3: Comparison of our learned fitter with a Levenberg-Marquardt based
optimization method. Left to right: 1) Input HMD data and Ground-Truth mesh
(blue), 2) LM solution (orange) overlayed on the GT, 3) our solution (yellow)
overlayed on the GT. While the classic LM optimization successfully fits the
input data, it still needs hand-crafted priors to prevent ground floor penetration.
In contrast, our proposed fitter learns from the data to avoid such penetrations.
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Fig.A.4: Average norm for (left to right) 1) ∥gn∥2, 2) ∥γ∥2, 3) ∥λ∥2 and 4)
∥∆Θn∥2, computed across the test set, for the root rotation and translation.
The learned optimizer slows down as it approaches a minimum of the target
data term.


