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Abstract— An inherent challenge of learning-based control
tasks is posed by uncertainty due to finite training datasets.
Even though there are principled tools to obtain confidence
bounds for pointwise evaluation of learned dynamics models, it
remains a challenging task to quantify the induced uncertainty
in downstream quantities of interest due to the intrinsic
recursive structure of dynamical systems. In this paper, we
view the unknown one-step dynamics as a smooth function in a
reproducing kernel Hilbert space and leverage random features
for an approximate but highly structured parameterization of
pointwise confidence bounds. As a result, we obtain downstream
confidence bounds through an optimal control formulation
under an uncertainty-aware random feature dynamics model.
Our model is effectively a shallow neural network, which
enables us to view the whole dynamical system as a deep
neural network. Exploiting this perspective, we show that a
Pontryagin’s minimum principle solution is equivalent to using
the Frank-Wolfe algorithm on the induced neural network.
Various numerical experiments on dynamics learning showcase
the capacity of our methodology.

I. INTRODUCTION

Data-driven dynamics models have become commonplace
in modern control tasks, given the availability of machine
learning tools and potentially large training datasets. These
models are, however, inherently subject to uncertainty since
they are derived from finite datasets. The assessment of this
so-called epistemic uncertainty, although often neglected, is
of utmost importance in certain control settings such as safe
operation [1] or active exploration [2]. Intuitively, uncertainty
quantification entails establishing confidence bounds for a
variable of interest in the light of a specific training dataset.

Principled uncertainty quantification is in general a very
difficult task without further regularity assumptions on the
true data-generating mechanism. For instance, in the context
of unknown dynamical systems, we can assume that the func-
tion class of the true dynamics function f is a Reproducing
Kernel Hilbert Space (RKHS) similar to [1], [3]. This non-
restrictive assumption on f enables us to use a Gaussian
Process (GP) as an statistical tool for robustly bounding
plausible evaluations of f given access to potentially noisy
observations thereof [4]. We remark that these bounds are
defined in an pointwise manner such that for a set of input
variables z0, . . . , zH−1, we deal with confidence sets of the
form fh := f(zh) ∈ Fh, h = 0, . . . ,H − 1, which typically
hold with high probability. We emphasize that the bounded
confidence sets F0, . . . ,FH−1 depend on a particular set of
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observations D and are determined by a GP under an RKHS
hypothesis space.

We are particularly interested in computing confidence
bounds for downstream quantities that depend in a complex
manner on an unknown dynamics model f . Consider, for
instance, any typical cost function J in an optimal control
problem (OCP), under an unknown dynamics function f ,
that penalizes the full state trajectory in a certain way for a
given fixed controller. Ultimately, we would like to determine
a set J of plausible values such that J ∈ J with high
probability under D. This set can be characterized harnessing
the confidence bounds for evaluations of f as follows

J = {J(f0, . . . , fH−1) ∈ R | fh ∈ Fh, h = 0, . . . ,H − 1},
(1)

where we make explicit the dependence of the cost func-
tion on the (unknown) dynamics through the evaluations
f0, . . . , fH−1. Note that the total number of evaluations H
corresponds in this case with the horizon of the considered
OCP.

A natural approach to estimate (1) consists in sampling
plausible realizations of the unknown dynamics fh from their
corresponding confidence sets Fh for h = 0, . . . ,H − 1,
which requires exhaustive simulations of the data-driven
dynamics and therefore might be impractical in certain
settings. Another perspective to estimate (1) is based on
uncertainty propagation, which implies the difficult task of
characterizing how the uncertainty is transformed through
the unknown and potentially nonlinear dynamics f during
the evaluation of J . Given this difficulty, some methods
rely on approximate propagation strategies such as those
based on linearization of the dynamics model [5], [6]. A
notable exception is [1], where the uncertainty propagation
is overapproximated leveraging a Lipschitz assumption on
f , which enables rigorous guarantees but might lead to
overconservatism [7].

In this work, we depart from the previous approaches by
exploiting the specific form of both the quantity of interest
and the structure of the data-driven confidence sets. More
formally, we adopt a constrained optimization perspective
and define an upper confidence bound on J as

UJ := max
fh∈Fh,h=0,...,H−1

J(f0, . . . , fH−1), (2)

and we likewise define the corresponding lower confidence
bound LJ by taking min in (2) instead. The resulting
confidence interval can then be defined as J = [LJ , UJ ].
Note that the worst-case cost UJ can be used to stress test a
system or certify certain controller design, whereas the best-
case cost LJ can drive active exploration under the principle



of optimism in the face of uncertainty [3].
From a practical perspective, computing confidence

bounds using exact GP inference is computationally de-
manding due to its cubic scaling in the number of train-
ing observations and the difficulty to efficiently incorporate
new observations. There are, however, a handful of well-
established alternatives for approximate GP regression that
exhibit a better scaling in terms of computational tractability
for which we refer to [8] for an overview. We focus on
Random Features (RF), an approximation tool originated
from large-scale kernel machines [9], not only for its practi-
cality but also for yielding a structured parameterization of
pointwise confidence bounds (See Section II-C), which we
set out to exploit for the estimation of downstream confidence
bounds. Due to its simple linear-in-parameter structure, RF
have been extensively used to speed up kernel methods such
as GPs [10], see, e.g., [11] for a recent survey.

Remarkably, the convenient uncertainty representation in-
duced by RF enables an efficient gradient-based solution of
(2) under structured constraints. We summarize our con-
tributions as: 1) We revisit existing GP-based pointwise
confidence bounds under the lenses of RF and show that
the resulting bounds are highly structured. Based on this,
we propose the set-valued uncertainty-aware random fea-
ture (URF) dynamics, which we can efficiently infer from
available observations. 2) Exploiting the structure of URF,
we propose an algorithm to solve (2) based on Pontryagin’s
minimum principle (PMP). 3) We point out an equivalence
of our PMP-based method to the conditional gradient (a.k.a.,
Frank-Wolfe) by adopting a neural network view of URF.
4) Finally, we show that the eigenvalue-decay structure of
common RKHSs allows us to learn a convenient lower
dimensional representation of the URF dynamics model.

II. PRELIMINARIES

In this section, we will formally introduce our problem
setting and briefly review GP methods, the RF framework
and GP-based confidence bounds.

A. Problem Formulation

We assume a partially-known discrete-time dynamics ac-
cording to

xh+1 = h(xh, uh) + f(xh, uh), (3)

where xh ∈ Rp, uh ∈ Rq denote the system state and input
action respectively, h : Rp ×Rq → Rp represents a (known)
nominal model and f : Rp×Rq → Rp accounts for unknown
deviations from the nominal component. We also assume that
both h and f are differentiable functions. We are interested
in learning f from collected transitions

D := {(zi, xi+1)}ti=1, (4)

where zi := (xi, ui) denotes the concatenated inputs of (3)
and we assume full observability of the system state and

actions. Furthermore, we consider a particular task specified
as a finite-horizon cost function

J(f) =

H∑
h=0

ch(xh, uh), (5)

where ch(·, ·) denotes a differentiable stage-wise cost and
we emphasize the dependence on the unknown dynamics
f through the dynamics constraint (see (3)) assuming a
constant sequence of control inputs U = [u0, u1, . . . , uH ]
and a fixed initial condition x0. In particular, we want to
determine the worst- and best-case plausible performance
we could possibly have given a limited training dataset D, as
measured by (5). Establishing such confidence bounds is, in
general, an extremely difficult task without further regularity
assumptions on the unknown f . Following previous work
[4], we assume that f belongs to an RKHS Hk, which can
be alternatively stated as follows.

Assumption 1. The unknown function f in (3) has bounded
norm in an RKHS associated with a known kernel k; i.e,
‖f‖Hk

≤ Bf <∞.

Intuitively, Hk contains well behaved functions whose
smoothness w.r.t. the kernel k is measured through ‖g‖Hk

=√
〈g, g〉Hk

for any g ∈ Hk . Note that every positive definite
kernel function k is associated with a Hilbert space Hk

and a feature map ϕ : Z → Hk, for which k(z, z′) =
〈ϕ(z), ϕ(z′)〉Hk

defines an inner product on Hk. The space
Hk contains real-valued functions on Z and is called an
RKHS, equipped with the reproducing property: g(z) =
〈g, ϕ(z)〉Hk

for any g ∈ Hk, z ∈ Z .
Assumption 1 is not only motivated by the expressiveness

of RKHSs to represent the true data-generating functions in
nature such as f based on empirical data, but also for the
existence of statistical tools to obtain principled uncertainty
estimates. In fact, it enables us to use GPs as statistical
models to derive confidence bounds for the evaluation of
f , which we briefly introduce next.

B. Gaussian Process Regression

A GP can be intuitively understood as a Gaussian
distribution defined over a space of functions. We write
g(·) ∼ GP(µ(·), k(·, ·)) to denote that the scalar-valued1

function g is a sample from a GP with mean function
µ(·) and covariance function k(·, ·). Formally, this
means that any finite collection of function evaluations
[g(z1), g(z2), . . . , g(zm)] is a priori jointly Gaussian
distributed with mean E[g(zi)] = µ(zi) and covariance
E[(g(zi)− µ(zi))(g(zj)− µ(zj))] = k(zi, zj), 1 ≤ i, j ≤ m.
GP regression therefore amounts to computing the
resulting posterior distribution after conditioning on
potentially noisy observations y1:t = [y1, . . . , yt]

> at input
locations At = {z1, . . . , zt}, where the noise realizations
εi = yi − g(zi) are assumed i.i.d. samples from N (0, λ2)
if present. The resulting posterior distribution over g can

1we focus on the scalar-valued case for ease of exposition. In the vector-
valued setting we assume independent GP priors across state dimensions.



be shown to be again a GP [8], g(·) ∼ GP(µt(·), kt(·, ·)).
By using standard properties of Gaussian distributions and
assuming µ(·) = 0 from now on w.l.o.g. we obtain

µt(z) = kt(z)
>(Kt + λ2I)−1y1:t,

kt(z, z
′) = k(z, z′)− kt(z)>(Kt + λ2I)−1kt(z

′), (6)

σ2
t (z) = kt(z, z),

where Kt := [k(z, z′)]z,z′∈At
is the so-called Gram matrix,

kt(z) := [k(z1, z), . . . , k(zt, z)]
> and σ2

t (z) denotes the
marginal variance at z.

There is an important and well-known practical consider-
ation relevant for the implementation of GP-based methods,
namely the computational burden of exact GP regression. As
dictated by (6), computing µt(·) and σt(·) is computationally
taxing given the O(t3) time complexity of matrix inversion
and the O(t2) memory requirement to store the Gram matrix.
We now introduce an alternative approach to approximate
GP regression that offers a favourable trade-off in terms of
computational complexity.

C. Random Features for Gaussian Process Regression
Instead of adopting a function-space view of GP regression

(Section II-B), we can alternatively leverage a weight-space
perspective, in which GP samples are seen as a linear
combinations of basis functions. The RF framework seeks
to approximate the kernel k(·, ·) (and the corresponding
RKHS functions) through a randomized finite feature map
φ : Z → Rl such that for a sufficiently large number of
basis functions l,

k(z, z′) ≈ φ(z)>φ(z′), ∀z ∈ Z, (7)

where φ(z) := [φ1(z), . . . , φl(z)]> ∈ Rl are the random fea-
tures, e.g., Random Fourier Features2(RFF) [9]. To illustrate
how the kernel approximation in (7) can be exploited for GP
regression consider the Bayesian linear-in-parameter model

g(·) = w>φ(·), w ∼ N (ŵ,Σ), (8)

which can be shown to be a l-dimensional approximation
of the prior GP(0, k(·, ·)) for ŵ = 0 and Σ = Id by
(7). We emphasize that RF effectively yields a parametric
approximation of g, which implies that the uncertainty over
g is expressed (approximately) as the uncertainty over the
weights w in (8). Crucially, this means that the corresponding
posterior GP can be computed by means of Bayesian linear
regression (BLR) as first proposed by [10] under the name
of Sparse Spectrum GP regression. In fact, under i.i.d.
measurement errors drawn from N (0, λ2), as in Section II-
B, conditioning on the observed inputs At and measurements
y1:t, the posterior over weights is also Gaussian with mo-
ments

ŵt = (Φ(At)
>Φ(At) + λ2Il)

−1Φ(At)
>y1:t,

Σt = (Φ(At)
>Φ(At) + λ2Il)

−1λ2,
(9)

2RFF approximate stationary (i.e., shift-invariant) kernels, where φi(z) =√
2/L cos(a>i z + bi) and the vector ai is sampled proportional to the

kernel’s spectral density and the offset as bi ∼ U(0, 2π). We can therefore
approximate the popular Gaussian kernel k(z, z′) = e−‖z−z′‖2

2
/2l2 by

sampling ai ∼ N (0, l−2Id).

where Φ(At) := [φ(z1), φ(z2), . . . , φ(zt)]
> ∈ Rt×l denotes

the RF evaluated at the training inputs At. Analogous to (6),
we can compute the Gaussian posterior over a function value
at a test input z ∈ Z , whose moments can be easily derived
thanks to the linear structure of (8) and are given by

µ̃t(z) = ŵ>t φ(z),

σ̃2
t (z) = φ(z)>Σtφ(z) = ‖φ(z)‖2Σt

.
(10)

The RF-based representation of GPs has proven to be a prac-
tical alternative to the function-space approach, particularly
in the context of large-scale regression problems. Note that
computing the posterior distribution in (9) scales proportional
to O(l3+tl2), which compares favourably with respect to the
O(t3) scaling of exact GP regression when l� t. Moreover,
it is also possible to perform efficient online incremental
posterior updates as new data becomes available.

These are all useful properties in the context of GP-
based dynamics models, where we might want to update
the dynamics model with freshly-acquired data, as in a
receding-horizon MPC scheme. We focus in this work on
the RF approximation of GP regression and exploit it for the
estimation of downstream confidence bounds.

D. Gaussian Process-based Pointwise Confidence Bounds

Given our problem of interest and assumptions, we now
state a key result that enables us to use a GP to obtain
rigorous confidence bounds for pointwise evaluation of an
unknown function, such as f in (3).

Proposition 1 ([1], Lemma 5). Let Assumption 1 hold
and assume access to t measurements of f subject to λ-
sub-Gaussian noise, then with probability at least 1 − δ,
δ ∈ (0, 1), there exists βt > 0 such that it holds for all
z ∈ X × U ,j = 1, . . . , p and t ≥ 0 that3

|fj(z)− µt,j(z)| ≤ βtσt,j(z), (11)

where we use fj(·) to denote the j-th output of the
vector-valued function f(·) and µt,j(·), σt,j(·) to denote the
predictive mean and variance functions of its corresponding
GP model. We emphasize that this holds jointly for all
z ∈ X × U . This means that we have access to principled
model uncertainty quantification uniformly across the input
domain through the GP-posterior statistics µt(·), σt(·) and
scaling constant βt.

III. RANDOM FEATURES CONFIDENCE BOUNDS FOR
UNCERTAINTY-AWARE DYNAMICS MODELS

In this Section, we set out to first revisit Proposition (1)
under the finite-dimensional GP approximation introduced
in Section II-C. Based on this, we then proceed to define
our RF-based dynamics model, which involves multiple
evaluations of the unknown dynamics term f .

3βt = Bf + 4λ
√
γt+1 + 1 + ln (1/δ), where γt+1 is the information

capacity associated with the kernel k and depends on the number of obser-
vations t, is a theoretically motivated choice [1]. However, our methodology
is agnostic to its specific choice.



A. Pointwise Confidence Bounds with Random Features

Instead of using µt(·) and σt(·) in (6), we can use the
finite-dimensional approximations µ̃t(·) and σ̃t(·) in (10)
yielding confidence intervals of the form

|fj(z)− µ̃t,j(z)| ≤ βtσ̃t,j(z),
|fj(z)− ŵ>t,jφj(z)| ≤ βt‖φj(z)‖Σt,j , (12)

for appropriately defined βt. Equivalently, we can write (12)
as

min
w∈Wt,j

w>φj(z) ≤fj(z) ≤ max
w∈Wt,j

w>φj(z), (13)

where we define for j = 1, . . . , p the ellipsoid

Wt,j := {w ∈ Rl | ‖w − ŵt,j‖Σ−1
t,j
≤ βt}, (14)

with radius βt, center ŵt,j and orientation defined by Σt,j ,
cf., (9). To verify (13) note that w ∈ Wt,j implies that ∀a ∈
Rl, |a>(w−ŵt,j)| ≤ βt‖a‖Σt,j . Remarkably, (13) enables us
to take a set-valued perspective, where under the RF-based
approximation of GPs and assumptions in Proposition 1 (11)
reads as

fj(z) ∈ {w>φj(z) |w ∈ Wt,j}, (15)

and holds for j = 1, . . . , p, ∀z ∈ Z and t ≥ 0. This is a
highly structured parametrization of confidence bounds for
pointwise evaluation of fj , namely (15) exhibits linear-in-
parameter structure and ellipsoidal parametric uncertainty.

B. Uncertainty-aware Random Feature Dynamics Model

We leverage the RF framework and the set-valued view
in (15) to approximately bound the (unknown) vector-valued
dynamics in (3) with high probability as

f(z) ∈ {Wφ(z) |W ∈ Wt}, (16)

where W = [w1, . . . , wp]> ∈ Rp×l denotes the uncertain
parameters of the multiple-output mapping, and we assume
for ease of exposition that the RF vector φ is shared across
state dimensions and therefore drop the state index j. We
write W ∈ Wt in (16) to denote that wj ∈ Wt,j holds
across state dimensions j = 1, . . . , p; i.e, we have an
ellipsoidal constraint for each row of W , cf., (14). Using
the terminology of robust optimization, we refer to Wt as
an uncertainty set and consider the following equivalent but
more concise parameterization

Wt := {W : diag((W −Ŵt)Σ
−1
t (W −Ŵt)

>) ≤ β2
t }, (17)

where Ŵt = [ŵt,1, . . . , ŵt,p]> ∈ Rp×l, the positive-
definitive matrix Σt ∈ Rl×l fully characterize the uncertainty
set and the inequality is interpreted componentwise4. We
highlight that Wt is a data-driven uncertainty set given its
dependence on the posterior distribution over the weights
determined by (9), which in turn depends on the observed
data. We refer to the special case Wt = {Ŵt} as certainty-
equivalent random feature (CERF) dynamics model, where

4diag(A) is the column vector containing the diagonal elements of matrix
A.

the uncertainty encoded by Σt is neglected yielding a point
estimate for the unknown dynamics.

For ease of exposition we introduce the notation

f̂(x, u,W ) := Wφ(x, u), (18)

where we unpack z = (x, u), and propose our main
set-valued dynamics model, the uncertainty-aware random
feature (URF) dynamics model

Xh+1 :=

{
xh+1 = h(xh, uh)+f̂(xh, uh,Wh)

∣∣∣∣ Wh ∈ Wt,
xh ∈ Xh

}
,

(19)
for h = 0, 1, . . . ,H − 1, and X0 = {x0}. As in Section
II, we assume that both the initial condition x0 and con-
trols u0, . . . , uH−1 are given and fixed. In fact, the sets
X0,X1, . . . ,XH are reachable sets induced by the parametric
uncertainty Wt, and we would expect them to contain the
true state trajectory under (3) with high probability in the
light of Proposition (1). We note however that we rely
on an approximate GP representation in this work, which
implies that the obtained reachable sets should be likewise
interpreted in an approximate sense.

Remark. We note that (19) considers potentially different
realizations of the parameters W0,W1, . . . ,WH−1. This is
because the URF dynamics model fundamentally stems from
a robust view where confidence bounds are defined pointwise
and independently across the input domain, as in (11).

IV. WORST- AND BEST-CASE DYNAMICS VIA
PONTRYAGIN’S MINIMUM PRINCIPLE (PMP)

In this section we focus on finding the worst-case UJ (or
analogously the best-case LJ ) with respect to a given cost
function J as an optimization problem — see (2). Formally,
given some overall cost objective J and a horizon H as
in (5) subject to the URF dynamics constraint in (19), we
wish to find the worst pointwise realizations of the unknown
dynamics across the horizon by solving

(W ∗0 , . . . ,W
∗
H−1) = arg max

Wh∈Wt,h=0,...,H−1
J(W0, . . . ,WH−1),

(20)
where we emphasize the dependence on the uncertain RF
parameters Wh, h = 0, . . . ,H − 1, and assume everything
else (e.g., controls) fixed.

Due to the nonlinear dynamics, solving for the worst-
case dynamics under URF model (19) is a non-convex
optimization problem, which prohibits finding globally opti-
mal solutions of (20). However, the shallow structure of
URF, and the reproducing property in general, views the
dynamics as linear in a lifted space, which together with
an optimal control perspective allows us to characterize a
tailored necessary optimality condition for the worst-case
dynamics via PMP.

Let us denote, with a slight abuse of notation, the total neg-
ative cost as Ĵ(W0, . . . ,WH−1) =

∑H
h=1 ĉh(xh, uh), where

ĉh(xh, uh) = −ch(xh, uh) denotes the negative of the stage
cost ch in (5). Then the maximization in (20) can equivalently



be formulated as the minimization of Ĵ . Following the PMP
formalism, we define the control Hamiltonian as

Hh(z, p,W ) := ĉh(z) + p>f̂(z,W ),

where p ∈ Rp denotes the so-called co-state variable and
z := (x, u) as before. We omit for simplicity the known part
h(z) of the model since it does not depend on W .

Proposition 2 (PMP for worst-case dynamics). Suppose
(W ∗0 , . . . ,W

∗
H−1) are the worst-case parameter realizations

in the uncertainty set Wt and (x∗0, x
∗
1, . . . , x

∗
H) is the corre-

sponding state trajectory under a fixed sequence of controls
(u0, u1, . . . , uH). Then there exists a sequence of (co-state)
variables (p∗0, p

∗
1, . . . , p

∗
H) that satisfy the adjoint equations

p∗H = ∇xĉH(z∗H), p∗h = ∇xHh(z∗h, p
∗
h+1,W

∗
h ),

for h = 0, 1, . . . ,H−1 and z∗h := (x∗h, uh), under which the
worst-case dynamics parameters (W ∗0 , . . . ,W

∗
H−1) minimize

the corresponding Hamiltonian5

W ∗h = arg min
W∈Wt

Hh(z∗h, p
∗
h+1,W ), for h = 0, . . . ,H − 1.

(21)

The PMP motivates us to find the worst-case dynamics
via an indirect method of optimal control in which we find
a candidate solution of (20) by solving for the necessary
condition stated in Proposition 2. Specifically, we rely on
the method of successive approximations (MSA) [13] to do
so, which alternates between forward-backward passes and
Hamiltonian minimization, as illustrated in Algorithm 1. We

Input: Controls u0, . . . , uH , set Wt, initial x0

Output: Worst-case parameters W0,W1, . . . ,WH−1

1 Initialize W0,W1, . . . ,WH−1 (e.g., Wi = Ŵt, cf. (17))
2 for e = 0, 1, . . . , E do

// Forward pass/Shooting dynamics
3 Initialize z0 = (x0, u0)
4 for h = 0 to H − 1 do
5 xh+1 = f̂(zh,Wh)

// Backward pass/Adjoint equation
6 Initialize pH = ∇xĉH(zH)
7 for h = H − 1 to 0 do
8 ph = ∇xHh(zh, ph+1,Wh)

// Update worst-case dynamics
9 for h = 0 to H − 1 do

10 Set Wh = argminW∈Wt
Hh(zh, ph+1,W )

Algorithm 1: Worst-case dynamics MSA

note that PMP-based optimality conditions are stronger than
typical first-order necessary conditions, in particular because
of the global Hamiltonian minimization in (21), which under
our URF dynamics reads as

min
W∈Wt

{
Hh(zh, ph+1,W ) = ĉh(zh)+p>h+1Wφ(zh)

}
, (22)

5Once we interpret the worst-case dynamics parameters Wh ∈ Wt,
h = 0, . . . , H − 1 as control inputs to the RF dynamics f̂(zh,Wh), the
proposition follows from the standard discrete-time PMP; see, e.g., [12,
Volume I, 4th Edition].

where Wt is an uncertainty set defined by some Ŵt and Σt,
as in (17). Thanks to the linear objective and the ellipsoidal
constraints on the rows of W , (22) can be globally minimized
in closed-form as follows.

Proposition 3. Under URF dynamics, the minimizer of the
Hamiltonian in (22) for h = 0, ...,H − 1, is given by 6

W ∗h = Ŵ − λh+1φ(zh)>Σt

‖φ(zh)‖Σt

, λh+1 := sgn(ph+1) ∈ Rp.

(23)

Remark. The URF dynamics is effectively a shallow neural
network; i.e, its computation can be interpreted in terms of
an input layer, a hidden layer (defined by φ) and an output
layer (defined by W ). Consequently, the whole dynamical
system can be seen as a deep neural network (DNN) and the
optimization in (20) as (constrained) DNN training.

A. Incremental update of Hamiltonian dynamics: equiva-
lence to deep learning optimization

We note however that the convergence of MSA can only
be established for particular choices of dynamics and cost
functions, and it might diverge in the case of nonlinear
dynamics such as URF. [14] recently analyzed this issue in
the context of PMP-based training of DNN and advocated
for an incremental update of the Hamiltonian to avoid
divergence. This means that the parameters Wh in Step 10 of
Algorithm 1 can be updated in the direction of the minimizer
W ?

h of (23) rather than set equal to it. Formally, we update
each Wh to W+

h according to

W ?
h = arg min

W∈Wt

Hh(zh, ph+1,W ),

W+
h = Wh + γe(W

?
h −Wh),

(24)

for some step size schedule γe and h = 0, ...,H−1. We will
refer to Algorithm 1 with the incremental update (24) as the
inexact PMP. We now show that, the incremental minimiza-
tion of Hamiltonian under URF dynamics is equivalent to
performing the conditional gradient method, also known as
the Frank-Wolfe algorithm [15], on the weights of a DNN.

Proposition 4 (Equivalence of inexact PMP and Frank-Wolfe
for deep learning). Inexact PMP, i.e., Algorithm 1 with
update step replaced by (24), is equivalent to performing
a Frank-Wolfe update on the total negative cost Ĵ:

W̄h = arg min
W∈Wt

〈∇Wh
Ĵ(W0, . . . ,WH−1),W 〉F,

W+
h = Wh + γe(W̄h −Wh).

(25)

Furthermore, this Frank-Wolfe algorithm with γe = 1 recov-
ers the exact PMP update7.

6This follows from the simpler fact that w? = arg minw∈W a>w
(whereW is an ellipsoid defined by ŵ and Σ) has the closed-form solution
w? = ŵ − Σa

‖a‖Σ
. We use sgn(·) to denote the sign function.

7It holds that ∇Wh
Ĵ(W0, . . . ,WH−1) = ∇Wh

Hh(zh, ph+1,Wh) =
ph+1φ(zh)>[14, Proposition 5], which in turn implies that W ?

h in (24)
and W̄h in (25) are equivalent. If γe = 1, then the exact minimization of
the Hamiltonian is obtained given the linear-in-parameter URF dynamics.
Hence, we recover exact PMP.



Remark. Note that, if the dynamics f̂ is not linear-in-
parameter, the last statement of Proposition 4 does not hold,
which can also be seen as an implication of the reproducing
property in Hamiltonian dynamics. That is the motivation of
using PMP in the context of URF dynamics.

To the best of our knowledge, Proposition 4 also con-
stitutes a contribution to the current deep learning litera-
ture, aside from this paper’s context of URF dynamics. It
characterizes the equivalence of constrained minimization of
the Hamiltonian via PMP and optimizing deep models via
conditional gradient method, which generalizes the results in
[14], [16] in the context of DNNs. In summary, it tells us that,
to compute a candidate worst-case dynamics, it suffices to
apply the conditional gradient method on the DNN induced
by the URF dynamics across the time horizon H .

We note that we can take advantage of algorithmic
differentiation (AD) tools, such as PyTorch, to avoid the
explicit implementation of the backward pass in Algorithm
1. Moreover, AD can compute the backward pass with a
cost proportional to the cost of forward simulation. Given
that both the forward and backward passes can be efficiently
implemented, we should also consider the cost of solving the
Hamiltonian optimization in Step (10) of Alg. 1. The com-
putational complexity in this step is dominated by matrix-
vector products w.r.t. Σt according to (23), which are very
efficient to compute in modern computer architectures and
often implemented as an optimized primitive operation.

V. LOWER-DIMENSIONAL REPRESENTATION USING
RANDOM FEATURE NONLINEAR COMPONENT ANALYSIS

The more features we sample to form φ, as detailed
in Section II-C, the better we can approximate exact GP
regression. From the computational viewpoint, however, we
want to keep the number of features reasonably low such
that it is still cheaper to compute the weights posterior in
(9) than the exact GP posterior in (6). In this section, we
propose to use a tailored dimensionality reduction procedure
that enables us to leverage the expressivity of a large number
of features while retaining computational tractability.

It is well-known that, for some common kernels, the Gram
matrix Kt, which in the context of RF approximations we
write as Kt = Φ(At)Φ(At)

> following the notation in (9),
has special eigenspectrum structure [17], [8]. For example,
the eigenvalues of Gaussian kernel Gram matrices decay at
an exponential rate. As the RF approximate the feature maps
associated with the RKHS of the Gaussian kernel, we can
expect Kt to have rapidly decaying eigenvalues. Intuitively,
this gives us the power to reduce the dimensionality of the
feature representation, such as by using kernel PCA. We
now show how to exploit this structure to learn a lower-
dimensional representation of the URF dynamics.

Specifically, we perform PCA on the Gram matrix Kt

to obtain the lower-dimensional representation, which we
denote as ψ(z) := Pφ(z), where P ∈ Rl̂×l is a PCA
projection matrix obtained, e.g., by performing singular
value decomposition of Kt. Note that l̂ � l denotes the
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Fig. 1. Worst-case dynamics MSA over Source Spiral (Section VI). The
worst-case trajectory is show in dark green for scarce (left column) and
large (right column) data regimes under different learning rates (rows). We
denote intermediate trajectories with lighter green.
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Fig. 2. Computed worst- (UJ ) and best-case (LJ ) trajectory cost under
a fixed initial condition as a function of the number of training rollouts. In
the small-data regime the mean cost (CERF) might be biased, however the
true cost (J) is always within the computed bounds, i.e., J ∈ [LJ , UJ ].
The sampling-based bounds [L̂J , ÛJ ] severely underestimate [LJ , UJ ].
Note that both the uncertainty set Wt and the induced bounds shrink with
observed rollouts.

new dimension of the feature-based representation of the
dynamics. As a result, our URF dynamics in (18) can be
approximated using the lower dimensional representation as

f̂PCA(z,W ) := Wψ(z) = WPφ(z),

where now W ∈ Rp×l̂. We highlight that the BLR algo-
rithm described in section II-C can seamlessly incorporate
the lower dimensional representation by using Ψ(At) :=
[ψ(z0), ψ(z1), . . . , ψ(zt)]

> instead of Φ(At) in (9). A rigor-
ous statistical analysis of the approximation error is beyond
our current scope, for which we refer to [18], [11]

VI. NUMERICAL EXPERIMENT

We use three nonlinear autonomous systems as testbeds
since we do not focus on the control problem. We assume
limited prior information about the true systems and our
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Fig. 3. Worst- (red) and Best-case (green) MSA trajectories (Sec. VI) under
high (left column) and low uncertainty (right column). In uncertain settings,
the URF model characterizes a set of plausible trajectories in contrast with a
potentially biased point estimate given by CERF (blue). Intermediate MSA
trajectories are denoted with lighter tones.

model consists therefore of an identity nominal component
h(xt) = xt. We learn the residuals xt+1 − h(xt) with
our URF model using as training data a varying number
trajectories (N ) of fixed length (T ) with randomly-sampled
initial conditions. We use l = 1000 RFFs throughout and
apply RF nonlinear component analysis (Section V) to obtain
a lower-dimensional representation (l̂ = 100). Following
common practice, we assume βt = 2 in Proposition 1, since
the theoretical choice is known to be conservative [1].

a) Source Spiral: First we consider the plant xt+1 =
Axt +cos(Bxt +c), where A is fixed such that the resulting
plot exhibits a source-spiral pattern as shown in Fig. 1, and
the affine mapping (B,c) is randomly sampled. We assume
as cost function the quadratic form c(xt) = x>t xt and
sample initial conditions according to x0 ∼ N (0, I2). The
left column of Fig. 1 depicts the scarce training data setting
(N = 3, T = 50) and the right column accounts for the
large training data regime (N = 200, T = 50). We also show
the certainty-equivalent prediction (i.e., CERF) alongside the
true trajectory (black).

Moreover, we explore the role of the learning rate in
the (incremental) Hamiltonian minimization (24) to find
the worst plausible dynamics and the corresponding state
trajectory in the aforementioned system. In each row panel
of Fig. 1 we consider a variation in the scheduling of
said learning rate in the Frank-Wolfe algorithm, namely a
standard Frank-Wolfe scheduling γe = 2/(e + 2), γe = 1
(i.e., exact PMP, Prep. 4) which implies that the optimization
successively moves along the uncertainty set boundary and
γe = 1/E, with E being the total number of optimization
steps. Lighter green denotes earlier iterations of the opti-

mization with the final result being shown in dark green
(e = E). The optimization behavior is strongly dependent
on the used learning rate schedule, with the standard Frank-
Wolfe scheduling yielding the highest cost (i.e., the worst)
dynamics for the performed experiments. Furthermore, we
note that the setting γe = 1 exhibits a divergent behavior
in Fig. 1, which is due to large errors in the Hamiltonian
dynamics between consecutive iterations according to [14].

b) Van der Pol oscillator: This system is governed by
the second-order differential equation ẋ1 = (1 − x2

2)x1 −
x2, ẋ2 = x1. We use an explicit Runge-Kutta integrator
for its discrete-time simulation. We sample initial condi-
tions from U(−1, 1) for training data generation. The URF
model’s prediction and obtained worst- and best-case trajec-
tories are shown in Fig. 3a for the quadratic cost c(xt) =
x>t xt for both the scarce- and big-data regimes (left and
right, respectively) following a similar convention to Fig. 1.

c) Pendulum: we consider the continuous-time pendu-
lum dynamics ẋ1 = x2, ẋ2 = −(g/l) sinx1 − (β/(ml2))x2,
where the gravity is set to g = 9.81; and the mass m,
the rod length l and the friction parameter β are all set to
1. We sample the initial pendulum’s angle from U(−π, π)
and the initial angular velocity from U(−1, 1) for rollout
generation. We discretize the system using the semi-implicit
Euler integrator and use a cost function that encourages
the pendulum to stay upright8. As previously, we show the
resulting worst- and best-case trajectories in Fig. 3b.

We highlight that in the absence of large amounts of train-
ing data, the computed uncertainty set contains dynamics that
could drive the system to high cost regions, as shown in the
left columns of Figures 1 and 3. However, once the inferred
uncertainty set is reduced as a result of a larger training
dataset, the obtained worst-case state trajectory is closer to
the CERF trajectory.

A finer-grained analysis of the previous point is presented
in Fig. 2, where we see that both the computed worst- and
best-case cost (UJ and LJ , respectively) of a test trajectory
define a range containing the true cost across different
training data sizes and systems; i.e., J ∈ [LJ , UJ ]. Note that
the gaps among the worst, best, mean and true cost vanish
after large enough training datasets. However, we emphasize
that although we might get poor cost (mean) predictions
under scarce training data (e.g., rightmost column of Fig.
2), the true cost is always within the region defined by the
best- and worst-case curves. We remark that our cost bounds
are computed using E = 50 forward/backward passes in Alg.
1 initialized at the CERF trajectory.

We also consider sampling-based bounds as a base-
line where we set the empirical wort-case cost as ÛJ =
maxi=1,...,S J(Ŵ i

0, Ŵ
i
1, . . . , Ŵ

i
H−1) by drawing each Ŵ i

h

uniformly at random from Wt and set L̂J analogously by
taking the minimum instead. The empirical bounds [L̂J , ÛJ ]
with S = 1000 samples consistently underestimate our
optimization-based bounds [LJ , UJ ], as shown in Fig. 2.

8To ease implementation we use as state representation x̂ = (a, b, c) =
(l cosx1, l sinx1, x2) and define the cost as c(x̂) = b2 − a+ 0.1c2.



This is particularly evident in the scarce data regime, which
hints that our method can be a more reliable estimator of
downstream uncertainty induced by limited training data.

VII. OTHER RELATED WORKS

Our use of PMP for finding the worst-case URF dynamics
is similar to the use of adjoint sensitivity in robust nonlinear
optimization [19]. [16] used PMP for deep adversarial learn-
ing, but with no equivalence theorems for the constrained
optimization. Moreover, they used gradient projection algo-
rithms which typically perform poorly in nonlinear programs.
In [20], a PMP-based analysis is presented for Model Pre-
dictive Control (MPC) with GP dynamics, however they rely
on approximate uncertainty propagation.

Our perspective, which views the whole dynamical system
as a DNN instead of the one-step dynamics model, is in
contrast with a large body of deep learning literature that
employ DNN as dynamics model [21].

In the GP context, [10] proposed the Sparse Spectrum GP
based on RFF, which has been previously considered to learn
dynamics for filtering and control problems in [22] and to
sample from GP dynamics in [23].

[24] and [3] make similar assumptions regarding the
function class of the unknown dynamics (i.e., an RKHS)
but focus on theoretical guarantees for system identification
and online control, respectively.

VIII. DISCUSSION AND FUTURE WORK

By leveraging a RF perspective on GP confidence bounds,
we propose in this paper the uncertainty-aware random fea-
ture (URF) model for learning unknown dynamical systems
from data. We exploit the structure present in our model
to devise a PMP-based numerical algorithm to estimate
worst- and best-case bounds on quantities that are complex
functions of the unknown dynamical system (e.g., cost of an
OCP). We also show that this algorithm is equivalent to per-
forming the conditional gradient (i.e., Franke-Wolfe) method
on a DNN by viewing our (one-step) URF model as a shallow
neural net, which we believe to be of independent interest.
We also validate the usefulness of the URF model through
various numerical experiments under different amounts of
training data. In future work, we envision applications of
our dynamics model in data-driven robust control, such as
learning-based MPC, or in active learning strategies based
on optimism, where we offer an alternative characterization
of confidence bounds.
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simulation and trajectory prediction with Gaussian process dynamics,”
in Proceedings of the 2nd Conference on Learning for Dynamics and
Control, vol. 120. The Cloud: PMLR, Jun. 2020, pp. 424–434.

[24] H. Mania, M. I. Jordan, and B. Recht, “Active Learning for Nonlinear
System Identification with Guarantees,” arXiv:2006.10277 [cs, math,
stat], Jun. 2020.


	Introduction
	Preliminaries
	Problem Formulation
	Gaussian Process Regression
	Random Features for Gaussian Process Regression
	Gaussian Process-based Pointwise Confidence Bounds

	Random Features Confidence Bounds for Uncertainty-aware Dynamics Models
	Pointwise Confidence Bounds with Random Features
	Uncertainty-aware Random Feature Dynamics Model

	Worst- and best-case dynamics via Pontryagin's Minimum Principle (PMP)
	Incremental update of Hamiltonian dynamics: equivalence to deep learning optimization

	Lower-dimensional representation using random feature nonlinear component analysis
	Numerical experiment
	Other related works
	Discussion and future work
	References

