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1. Data Collection
1.1. Model-Agency Identity Filtering

We collect internet data consisting of images and
height/chest/waist/hips measurements, from model agency
websites. A “fashion model” can work for many agencies
and their pictures can appear on multiple websites. To cre-
ate non-overlapping training, validation and test sets, we
match model identities across websites. To that end, we use
ArcFace [2] for face detection and RetinaNet [3] to com-
pute identity embeddings Ei ∈ R512 for each image. For
every pair of models (q, t) with the same gender label, let
Q, T be the number of query and target model images and
EQ ∈ RQ×512 and ET ∈ RT×512 the query and target
embedding feature matrices. We then compute the pairwise
cosine similarity matrix S ∈ RQ×T between all images in
EQ andET , and the aggregate and average similarity:
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Each pair with S and ST that has no element larger than
the similarity threshold τ = 0.3 is ignored, as it contains
dissimilar models. Finally, we check if STQ is larger than
τ , and we keep a list of all pairs for which this holds true.

1.2. Crowd-Sourced Linguistic Shape-Attributes

To collect human ratings of how much a word describes
a body shape, we conduct a human intelligence task (HIT)
on Amazon Mechanical Turk (AMT). In this task, we show
an image of a person along with 15 different gender-specific
attributes. We then ask participants to indicate how strongly
they agree or disagree that the provided words describe the
shape of this person’s body. We arrange the rating buttons
from strong disagreement to strong agreement with equal
distances to create a 5-point Likert scale. The rating choices
are “strongly disagree” (score 1), “rather disagree” (score

2), “average” (score 3), “rather agree” (score 4), “strongly
agree” (score 5).

We ask multiple persons to rate each body and image,
to “average out” the subjectivity of individual ratings [15].
Additionally, we compute the Pearson correlation between
averaged attribute ratings and ground-truth measurements.
Examples of highly correlated pairs are “Big / Weight”, and
“Short / Height”.

The layout of our CAESAR annotation task is visualized
in Fig. R.1. To ensure good rating quality, we have sev-
eral qualification requirements per participant: submitting a
minimum of 5000 tasks on AMT and an AMT acceptance
rate of 95%, as well as having a US residency and passing a
language qualification test to ensure similar language skills
and cultures across raters.

2. Mapping Shape Representations

2.1. Shape to Anatomical Measurements (S2M)

An important part of our project is the computation
of body measurements. Following “Virtual Caliper” [11],
we present a method to compute anatomical measurements
from a 3D mesh in the canonical T-pose, i.e. after “un-
doing” the effect of pose. Specifically, we measure the
height, H(β), weight, W (β), and the chest, waist and
hip circumferences, Cc(β), Cw(β), and Ch(β), respec-
tively. Let vhead(β), vleft heel(β), vchest(β), vwaist(β), vhip(β)
be the head, left heel, chest, waist and hip vertices. H(β)
is computed as the difference in the vertical-axis “Y” co-
ordinates between the top of the head and the left heel:
H(β) = |vyhead(β)−vyleft heel(β)| . To obtain W (β) we mul-
tiply the mesh volume by 985 kg/m3, which is the average
human body density. We compute circumference measure-
ments using the method of Wuhrer et al. [17].

Here, T ∈ RF×3×3 , where F = 20, 908 is the number
of triangles in the SMPL-X mesh, denotes “shaped” vertices
of all triangles of the mesh M(β,θ) ; we drop expressions,
ψ, which are not used in this work. Let us explain this
using the chest circumference Cc(β) as an example. We



Figure R.1. Layout of the AMT task for a male subject. Left: the 3D body mesh in A-pose. Right: the attributes and ratings buttons.

form a plane P with normal n = (0, 1, 0) that crosses the
point vchest(β). Then, let I = {pi}Ni=1 be the set of points

of P that intersect the body mesh (red points in Fig. R.2).
We store their barycentric coordinates (ui, vi, wi) and the



Figure R.2. Automatic anatomical measurements on a 3D mesh.
The red points lie on the intersection of planes at chest/waist/hip
height with the mesh, while their convex hull is shown with black
lines.

corresponding body-triangle index ti. Let H be the convex
hull of I (black lines in Fig. R.2), and E the set of edge
indices of H. Cc(β) is equal to the length of the convex
hull:
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where i, j are point indices for line segments of E .
The process is the same for the waist and hips, but
the intersection plane is computed using vwaist, vhip. All
of H(β),W (β), Cc(β), Cw(β), Ch(β) are differentiable
functions of body shape parameters, β.

Note that SMPL-X knows the height distribution of hu-
mans and acts as a strong prior in shape estimation. Given
the ground-truth height of a person (in meter), H(β) can be
used to directly supervise height and overcome scale ambi-
guity.

2.2. Mapping Attributes to Shape (A2S)

We introduce A2S, a model that maps the input attribute
ratings to shape components β as output. We compare a
2nd degree polynomial model with a linear regression model
and a multi-layer perceptron (MLP), using the Vertex-to-
Vertex (V2V) error metric between predicted and ground-
truth SMPL-X meshes, and report results in Tab. R.1.

Model Input V2V mean ± std
Females Males

Mean Shape 18.01 ± 8.73 19.24 ± 10.36
Linear Regression A 10.83 ± 4.77 10.43 ± 4.63
Polynomial (d=2) A 10.58 ± 4.67 10.25 ± 4.48
MLP A 10.73 ± 4.62 10.33 ± 4.57

Linear Regression A+H+W 7.00 ± 2.59 6.56 ± 2.21
Polynomial (d=2) A+H+W 7.31 ± 2.56 6.71 ± 2.21
MLP A+H+W 7.03 ± 2.6 6.68 ± 2.24
Linear Regression A+H+ 3√

W 6.97 ± 2.58 6.54 ± 2.22
Polynomial (d=2) A+H+ 3√

W 6.88 ± 2.55 6.49 ± 2.20

Table R.1. Comparison of models for A2S and AHW2S regres-
sion.

When using only attributes as input (A2S), the polyno-
mial model of degree d = 2 achieves the best perfor-
mance. Adding height and weight to the input vector re-
quires a small modification, namely using the cubic root of
the weight and converting the height from (m) to (cm). We.
With these additions, the 2nd degree polynomial achieves
the best performance.

2.3. Images to Attributes (I2A)

We briefly experimented with models that learn to pre-
dict attribute scores from images (I2A). This attribute pre-
dictor is implemented using a ResNet50 for feature extrac-
tion from the input images, followed by one MLP per gen-
der for attribute score prediction. To quantify the model’s
performance, we use the attribute classification metric de-
scribed in the main paper. I2A achieves 60.7 / 69.3%
(fe-/male) of correctly predicted attributes, while our S2A
achieves 68.8 / 76% on CAESAR. Our explanation for this
result is that it is hard for the I2A model to learn to correctly
predict attributes independent of subject pose. Our ap-
proach works better, because it decomposes 3D human esti-
mation into predicting pose and shape. Networks are good
at estimating pose even without GT shape [8]. “SHAPY
’s losses” affect only the shape branch. To minimize these
losses, the network has to learn to correctly predict shape
irrespective of pose variations.

3. SHAPY- 3D Shape Regression from Images
Implementation details:: To train SHAPY, each batch of
training images contains 50% images collected from model
agency websites and 50% images from ExPose’s [1] train-
ing set. Note that the overall number of images of males and
females in our collected model data differs significantly;
images of female models are many more. Therefore, we
randomly sample a subset of female images so that, even-
tually, we get an equal number of male and female images.
We also use the BMI of each subject, when available, as
a sampling weight for images. In this way, subjects with



Figure R.3. The 20K body mesh surface points (in black) used to
evaluated body shape estimation accuracy.

higher BMI are selected more often, due to their smaller
number, to avoid biasing the model towards the average
BMI of the dataset. Our pipeline is implemented in Py-
Torch [10] and we use the Adam [6] optimizer with a learn-
ing rate of 1e − 4. We tune the weights of each loss term
with grid search on the MMTS and HBW validation sets.
Using a batch size of 48, SHAPY achieves the best perfor-
mance on the HBW validation set after 80k steps.

4. Experiments

4.1. Metrics

P2P20K: SMPL-X has more than half of its vertices on the
head. Consequently, computing an error based on vertices
overemphasizes the importance of the head. To remove this
bias, we also report the mean distance between P = 20k
mesh surface points; see Fig. R.3 for a visualization on the
ground-truth and estimated meshes. For this, we uniformly
sample the SMPL-X template mesh and compute a sparse
matrix HSMPL-X ∈ RP×N that regresses the mesh surface
points from SMPL-X vertices V , as P = HSMPL-XV .

To use this metric in a mesh with different topology,
e.g. SMPL, we simply need to compute the corresponding
HSMPL. For this, we align the SMPL model to the SMPL-X
template mesh. For each point sampled from the SMPL-X
mesh surface, we find the closest point on the aligned SMPL
mesh surface. To obtain the SMPL mesh surface points
from SMPL vertices, we again compute a sparse matrix,
HSMPL ∈ RP×6,890. The distance between the SMPL-X
and SMPL mesh surface points on the template meshes is

Method P2P20K Height Weight Chest Waist Hips
- (mm) (mm) (kg) (mm) (mm) (mm)

fe
m

al
e

A2S 10.9 ± 5.2 27 ± 21 5 ± 5 30 ± 26 32 ± 31 28 ± 22

H2S 12.8 ± 7.0 5 ± 5 12 ± 11 93 ± 72 101 ± 88 60 ± 52

AH2S 7.2 ± 2.8 4 ± 3 3 ± 4 27 ± 23 29 ± 28 23 ± 19

HW2S 7.9 ± 3.2 5 ± 5 1 ± 1 25 ± 22 22 ± 18 26 ± 25

AHW2S 6.4 ± 2.5 4 ± 3 1 ± 1 14 ± 12 14 ± 12 17 ± 14

C2S 19.5 ± 10.8 58 ± 46 8 ± 6 54 ± 36 57 ± 42 47 ± 36

AC2S 9.6 ± 4.3 24 ± 18 3 ± 2 18 ± 15 19 ± 16 19 ± 14

HC2S 7.3 ± 2.8 5 ± 5 2 ± 2 19 ± 16 16 ± 14 15 ± 13

AHC2S 6.3 ± 2.4 4 ± 3 1 ± 1 15 ± 12 14 ± 12 14 ± 12

HWC2S 7.2 ± 2.9 5 ± 5 1 ± 1 14 ± 12 13 ± 11 14 ± 12

AHWC2S 6.2 ± 2.4 4 ± 3 1 ± 1 11 ± 9 12 ± 10 13 ± 11

m
al

e

A2S 11.1 ± 5.2 29 ± 21 5 ± 4 30 ± 22 32 ± 24 28 ± 21

H2S 12.1 ± 6.1 5 ± 4 11 ± 11 81 ± 66 102 ± 87 40 ± 33

AH2S 6.8 ± 2.3 4 ± 3 3 ± 3 27 ± 21 29 ± 23 24 ± 18

HW2S 8.1 ± 2.7 5 ± 4 1 ± 1 24 ± 17 26 ± 20 21 ± 18

AHW2S 6.3 ± 2.1 4 ± 3 1 ± 1 19 ± 15 19 ± 14 20 ± 16

C2S 19.7 ± 11.1 59 ± 47 9 ± 8 55 ± 41 63 ± 49 37 ± 28

AC2S 9.6 ± 4.4 25 ± 19 3 ± 3 23 ± 19 21 ± 17 18 ± 14

HC2S 7.7 ± 2.6 5 ± 4 2 ± 2 28 ± 23 18 ± 15 13 ± 11

AHC2S 6.0 ± 2.0 4 ± 3 2 ± 2 21 ± 17 17 ± 14 13 ± 10

HWC2S 7.3 ± 2.6 5 ± 4 1 ± 1 20 ± 15 14 ± 12 13 ± 11

AHWC2S 5.8 ± 2.0 4 ± 3 1 ± 1 16 ± 13 13 ± 10 13 ± 10

Table R.2. Results of A2S and its variations on CMTS test set, in
mm or kg. Trained with gender-specific SMPL-X model.

0.073 mm, which is negligible.
Given two meshes M1 and M2 of topology T1 and T2

we obtain the mesh surface points P1 = HT1U1 and P2 =
HT2U2, where U1 and U2 denote the vertices of the shaped
zero posed (t-pose) meshes. To compute the P2P20K error
we correct for translation t = P̄2 − P̄1 and define

P2P20K(U1, U2) = ||HT1
U1 + t−HT2

U2||22.

4.2. Shape Estimation

A2S and its variations: For completeness, Table R.2 shows
the results of the female A2S models in addition to the
male ones. The male results are also presented in the main
manuscript. Note that attributes improve shape reconstruc-
tion across the board. For example, in terms of P2P20K,
AH2S is better than just H2S, AHW2S is better than just
HW2S. It should be emphasized that even when many mea-
surements are used as input features, i.e. height, weight,
and chest/waist/hip circumference, adding attributes still
improves the shape estimate, e.g. HWC2S vs. AHWC2S.
Attribute/Measurement ablation: To investigate the ex-
tent to which attributes can replace ground truth measure-
ments in network training, we train SHAPY’s variations
in a leave-one-out manner: SHAPY-H uses only height
and SHAPY-C only hip/waist/chest circumference. We
compare these models with SHAPY-AH and SHAPY-AC,
which use attributes in addition to height and circumfer-
ence measurements, respectively. For completeness, we
also evaluate SHAPY-HC and SHAPY-AHC, which use all
measurements; the latter also uses attributes. The results
are reported in Tab. R.3 (MMTS) and Tab. R.4 (HBW).



Mean absolute error (mm) ↓

Method Height Chest Waist Hips
SHAPY-H 52 113 172 108
SHAPY-HA 60 64 96 77
SHAPY-C 119 66 70 70
SHAPY-CA 74 60 82 69
SHAPY-HC 54 62 72 69
SHAPY-HCA 57 61 85 73

Table R.3. Leave-one-out evaluation on MMTS.

Mean absolute error (mm) ↓

Method Height Chest Waist Hips P2P20K

SHAPY-H 54 90 77 54 22
SHAPY-HA 49 62 71 58 20
SHAPY-C 72 65 77 60 26
SHAPY-CA 54 69 78 58 22
SHAPY-HC 53 61 77 55 23
SHAPY-HCA 47 66 75 52 20

Table R.4. Leave-one-out evaluation on the HBW test set.

The tables show that attributes are an adequate replace-
ment for measurements. For example, in Tab. R.3, the
height (SHAPY-C vs. SHAPY-CA) and circumference er-
rors (SHAPY-H vs. SHAPY-AH) are reduced significantly
when attributes are taken into account. On HBW, the
P2P20K errors are equal or lower, when attribute informa-
tion is used, see Tab. R.4. Surprisingly, seeing attributes
improves the height error in all three variations. This sug-
gests that training on model images introduces a bias that
A2S antagonizes.
S2A: Table R.5 shows the results of S2A in detail. All at-
tributes are classified correctly with an accuracy of at least
58.05% (females) and 68.14% (males). The probability of
randomly guessing the correct class is 20%.
AHWC and AHWC2S noise: To evaluate AHWC’s ro-
bustness to noise in the input, we fit AHWC using the per-
rater scores instead of the average score. The P2P20K ↓ error
only increases by 1.0 mm to 6.8 when using the per-rater
scores.

4.3. Pose evaluation

3D Poses in the Wild (3DPW) [16]: This dataset is mainly
useful for evaluating body pose accuracy since it contains
few subjects and limited body shape variation. The test set
contains a limited set of 5 subjects in indoor/outdoor videos
with everyday clothing. All subjects were scanned to obtain
their ground-truth body shape. The body poses are pseudo
ground-truth SMPL fits, recovered from images and IMUs.
We convert pose and shape to SMPL-X for evaluation.

We evaluate SHAPY on 3DPW to report pose estimation
accuracy (Tab. R.6). SHAPY’s pose accuracy is slightly be-
hind ExPose which also uses SMPL-X. SHAPY’s perfor-

Attribute
Male Female

MAE ± SD CCP MAE ± SD CCP
Big 0.25 ± 0.18 71.68% 0.31 ± 0.23 70.00%

Broad Shoulders 0.26 ± 0.20 73.75% 0.33 ± 0.24 63.90%

Long Legs 0.23 ± 0.17 81.12% 0.43 ± 0.33 58.05%

Long Neck 0.27 ± 0.21 73.75% 0.29 ± 0.21 69.51%

Long Torso 0.27 ± 0.20 70.80% 0.36 ± 0.27 62.68%

Muscular 0.31 ± 0.24 69.03% 0.26 ± 0.21 73.17%

Short 0.28 ± 0.22 72.27% 0.27 ± 0.21 67.56%

Short Arms 0.20 ± 0.15 84.07% 0.27 ± 0.22 72.20%

Tall 0.27 ± 0.22 70.80% 0.30 ± 0.23 70.98%

Average 0.27 ± 0.19 78.76% n / a n / a
Delicate Build 0.21 ± 0.16 78.17% n / a n / a
Masculine 0.23 ± 0.18 78.17% n / a n / a
Rectangular 0.27 ± 0.20 80.24% n / a n / a
Skinny Arms 0.25 ± 0.19 76.40% n / a n / a
Soft Body 0.32 ± 0.23 68.14% n / a n / a
Large Breasts n / a n / a 0.31 ± 0.23 72.93%

Pear Shaped n / a n / a 0.32 ± 0.22 64.39%

Petite n / a n / a 0.40 ± 0.30 61.95%

Skinny Legs n / a n / a 0.25 ± 0.18 81.22%

Slim Waist n / a n / a 0.30 ± 0.23 71.71%

Feminine n / a n / a 0.26 ± 0.20 73.41%

Table R.5. S2A evaluation. We report mean, standard devia-
tion and percentage of correctly predicted classes per attribute on
CMTS test set.

Model MPJPE PA-MPJPE

HMR [5] SMPL 130 81.3
SPIN [7] SMPL 96.9 59.2
TUCH [9] SMPL 84.9 55.5
EFT [4] SMPL - 54.2
HybrIK [8] SMPL 80.0 48.8
STRAPS [12]* SMPL - 66.8
Sengupta et al. [14]* SMPL - 61.0
Sengupta et al. [13]* SMPL 84.9 53.6
ExPose [1] SMPL-X 93.4 60.7
SHAPY (ours) SMPL-X 95.2 62.6

Table R.6. Evaluation on 3DPW [16]. * uses body poses sampled
from the 3DPW training set for training.

mance is better than HMR [5] and STRAPS [12]. However,
SHAPY does not outperform recent pose estimation meth-
ods, e.g. HybrIK [8]. We assume that SHAPY’s pose esti-
mation accuracy on 3DPW can be improved by (1) adding
data from the 3DPW training set (similar to Sengupta et al.
[13] who sample poses from 3DPW training set) and (2)
creating pseudo ground-truth fits for the model data.

4.4. Qualitative Results

We show additional qualitative results in Fig. R.5 and
Fig. R.7. Failure cases are shown in Fig. R.8. To deal with
high-BMI bodies, we need to expand the set of training im-
ages and add additional shape attributes that are descriptive
for high-BMI shapes. Muscle definition on highly muscular
bodies is not well represented by SMPL-X, nor do our at-



tributes capture this. The SHAPY approach, however, could
be used to capture this with a suitable body model and more
appropriate attributes.



Figure R.4. Qualitative results of SHAPY predictions for female bodies.



Figure R.5. Qualitative results of SHAPY predictions for female bodies. (Cont.)



Figure R.6. Qualitative results of SHAPY predictions for male bodies.



Figure R.7. Qualitative results of SHAPY predictions for male bodies (Cont.) .

Figure R.8. Failure cases. In the first example (upper left) the weight is underestimated. Other failure cases of SHAPY are muscular bodies
(upper right) and body shapes with high BMI (second row).
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