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Abstract

In this paper we build upon the Multiple Kernel Learning (MKL) framework and
in particular on [2] which generalized it to infinitely many kernels . We rewrite the
problem in the standard MKL formulation which leads to a Semi-Infinite Program.
We devise a new algorithm to solve it (Infinite Kernel Learning, IKL). The IKL
algorithm is applicable to both the finite and infinite case and we find it to be faster
and more stable than SimpleMKL [8]. Furthermore we present the first large scale
comparison of SVMs to MKL on a variety of benchmark datasets, also comparing
IKL. The results show two things: a) for many datasets there is no benefit in using
MKL/IKL instead of the SVM classifier, thus the flexibility of using more than one
kernel seems to be of no use, b) on some datasets IKL yields massive increases in
accuracy over SVM/MKL due to the possibility of using a largely increased kernel
set. For those cases parameter selection through Cross-Validation or MKL is not
applicable.

1 Introduction

In this paper we consider the task of binary classification with a Support Vector Machine (SVM).
Assume a set of training points S = {(x1, y1), (x2, y2) . . . , (xn, yn)} is given, with feature vectors
xi ∈ RD and labels yi ∈ {−1,+1}. There are two ingredients which have to be specified prior
to SVM training: the kernel function k and the strength of regularization. We will use the notation
k(·, ·; θ) to express the dependency of the kernel on some parameters θ. We will think of θ as
specifying the type of kernel and its corresponding parameters, e.g. RBF and the bandwidth or
polynomial and the degree. The amount of regularization is given by a constant, denoted byC ∈ R+,
which controls the trade off between smoothness of the prediction function and the ability to explain
the training data correctly. Usually C and k are chosen according to a Cross Validation estimate.

Multiple Kernel Learning (MKL) [3, 7, 9] is a different approach to select a set of kernel parame-
ters. Here only the parameter C and a set of K so-called base-kernels {k(·, ·; θk)}k=1,...,K have to
be specified. The MKL objective function ensures that the final kernel is a convex combination of
the proposal kernels k(x, y; θ) =

∑K
k=1 dkk(x, y; θk). The parameters dk are found simultaneously

with the SVM parameters during the minimization of the SVM objective, while the parameters θk
are kept fixed at all times. It is possible to state this problem as a jointly-convex optimization prob-
lem [11, 9]. As already shown by [2] keeping the number of base kernels K fixed is an unnecessary
restriction and one can instead search over a possibly infinite set of base-kernels, e.g. all RBF ker-
nels with separate bandwidths σi ∈ [σmin, σmax] for each input dimension. Mixture of kernels of
different types e.g. polynomial and Gaussians can be encoded in the same way.

2 Infinite Kernel Learning as the optimal Multiple Kernel Learning

We adopt the formulation of the primal objective function for MKL from [11]. However we will
write the problem as one optimizing over general sets of kernel parameters Θ instead of only finite
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sets as is was done in all MKL approaches besides [2]. Since Θ this can in principle also be an
uncountable infinite set we dubbed our approach Infinite Kernel Learning (IKL). We will use the
notation Θf for finite sets and Θ for general sets to clarify the difference.

We are interested in is the best possible finite MKL solution.

inf
Θf⊂Θ:|Θf |<∞

min
d,v,ξ,b

X
θ∈Θf

1

dθ
‖vθ‖2 + C

nX
i=1

ξi (1)

sb.t. yi(
X

θ∈Θf ,dθ>0

〈vθ, φθ(xi)〉+ b) ≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n,
X
θ∈Θf

dθ = 1, dθ > 0, θ ∈ Θf .

The term inside the inf term is the standard primal objective function from e.g. [11]. The final
classification function is thus of the form f(x) = sign(

∑m
i=1 yiαi

∑
θ∈Θf

dθk(x, xi; θ) + b). For
brevity we skip some derivation details1 and directly write down the corresponding dual and also
extend the kernel parameters to the full set Θ and not only finite subsets Θf thereof.

(IKL-Dual) max
α,λ

nX
i=1

αi − λ (2)

sb.t. λ ∈ R, αi ∈ [0, C] i = 1, . . . , n

T (θ;α) ≤ λ, ∀θ ∈ Θ,

where we defined

T (θ;α) =
1

2

nX
i,j=1

αiαjyiyjk(xi, xj ; θ). (3)

This semi-infinite program (SIP) has as many constraints as there are possible kernel parameters,
in the limit infinitely many. The following theorem from the SIP literature ensures that the solution
consist of only finitely many kernels with nonzero dθ.
Theorem 2.1. [Hettich & Kortanek [6]] If for all θ ∈ Θ and for all α ∈ [0, C]n we have T (θ;α) <
∞, then there exists a finite set Θf ⊂ Θ for which the optimum of (IKL-Dual) restricted to this finite
set is achieved. The value of (IKL-Dual) is the same as the one obtained by restricting to Θf .

A new algorithm to solve IKL: Column Generation The dual (2) suggests a delayed constraint
generation approach to solve it. Since the kernel parameters become constraints in the dual we
use both terms interchangeably. Starting with a few kernel parameters Θ0 ⊂ Θ one reiterates
between the restricted master problem and the search for violated constraints indexed by θ which
are subsequently included in Θt ⊂ Θt+1 ⊂ Θ. Algorithm 1 summarizes the procedure. Let us
shortly explain the ingredients. The restricted master problem is the standard MKL formulation
with only finitely many kernel parameters. Thus any MKL algorithm can be used to solve it and
we chose to use SimpleMKL [8]2. The parameter λ is the Lagrange multiplier of the equality
constraint

∑
θ∈Θt

dθ = 1 and comes as a byproduct of the MKL algorithm. Efficiently finding
violated constraints is essential to the approach and we now state the subproblem explicitly which is
a weighted variant of kernel target alignment [4].
Problem 1 (Subproblem). Given 0 ≤ αi ≤ C and points {xi, yi}, i = 1, . . . , n, solve

θv = arg max
θ∈Θ

T (θ;α) = arg max
θ∈Θ

1
2

n∑
i,j=1

αiαjyiyjk(xi, xj ; θ). (4)

The following theorem gives a convergence guarantee for the case where we can solve the subprob-
lem. Even if the subproblem is not solvable all intermediate solutions of the algorithm are primal
feasible.
Theorem 2.2. [6, Theorem 7.2] If the subproblem can be solved, Algorithm 1 either stops after a
finite number of iterations or has at least one point of accumulation and each one of these points
solve (IKL-Dual).

1See the additional material for the complete derivation
2We reimplemented it using a mixture of LIBSVM and Coin-IpOpt-3.3.5
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Algorithm 1 Infinite Kernel Learning
Require: Regularization constant C, Kernel parameter set Θ, Training set S
Ensure: Parameters α, b, dθ

1: Select any θv ∈ Θ and set Θ0 = {θv}
2: t← 0
3: loop
4: (α, b, dθ, λ)←MKL solution with Θt {Solve restricted master problem}
5: θv ← arg maxθ∈Θ T (θ;α) {Solve subproblem}
6: if T (θv;α) ≤ λ then
7: break
8: end if
9: Θt+1 = Θt ∪ {θv}

10: t← t+ 1
11: end loop

The main difference of Algorithm 1 to the one proposed in [2] is that it is totally-corrective and
iteratively spans a subspace. At each iteration the optimum w.r.t. the entire subspace is found. In
contrast, the algorithm of [2] performs steps only in the newly found direction [10]. IKL allows
for multiple pricing, adding several constraints to the problem at each iterations which speeds up
convergence. Both algorithms however solve the same problem.

Solving the Subproblem The IKL algorithm is suited for any class of parametrized kernel families
but the most important ingredient is a solver for the resulting subproblem. Consider the finite MKL
case. The subproblem can easily be solved since we just need to check finitely many constraints.
Therefore Algorithm 1 is also a new MKL algorithm in a straightforward manner. For the case of
Gaussian kernels [2] devised a branch-and-bound algorithm to solve it. Whilst this guarantees the
global optimum of the subproblem it is feasible only for low dimensional problems and results in
[2] are reported for up to two parameters only.

We chose to give up on global optimality for the benefit of a much larger kernel class (see next
section). This means that in step 5 in the algorithm we do not search for the global optimum θ but
search for violating ones, those for which T (θ;α) > λ. We employ Newton optimization initialized
in all previously found constraints and some heuristic choices for the kernel parameters. This worked
very well in practice and is used for all the experiments reported in the experimental section.

3 Experiments
Up to now and to the best of our knowledge there is no extensive comparison between properly
tuned SVM classifiers and those which linearly combine multiple kernels. In this section we will fill
this gap. IKL is the limit of MKL and we need to decide whether the added flexibility increases the
performance, leads to overfitting or gives qualitatively the same results.

Thirteen different binary datasets with up to 100 independent splits and the experimental setup from
[1] are used. Five fold CV on the first 5 splits are used to determine the parameters (C, k for SVM
and C for MKL/IKL) which are subsequently used to obtain the results on all splits 3. Five more
multiclass datasets were taken from [5] and split 20 times each. On each split we use five fold CV
on the training set to determine the parameters and then test on the test set (one-versus-rest).4 All
data was scaled to have zero mean and unit variance. Gaussian kernels of the following form are
used

k(x, x′; {γ1, . . . , γD}) = exp

 
−

DX
d=1

γd[x]d[x
′]d

!
, γd ∈ [γmin, γmax] ⊂ R+, (5)

where [x]d denotes the dth element of x. We varied the free parameters: (single) isotropic Gaussian
(all γd equal) (separate) as (single) + each dimension separately (e.g. γ = (0, 0, γ3, 0, . . . , 0)) and
(products) all possible kernels with parameters in the interval γd ∈ [0, 30]. With the latter choice
it is possible to rescale the data in every dimension separately and model dependencies between
subsets of dimensions ignoring others altogether (γd = 0). This renders the subproblem (3) to be
D dimensional. Note that there are far too many parameters to perform CV or preselect choices for
MKL. For SVM we used a grid of kernel parameters (see footnotes), MKL had access to all those
kernels simultaneously, thus 13 for the binary datasets for (single) and 13*(D+1) for (separate).

313 kernel parameters are tested 1/([1, 2, 3, 5, 10, 20, 30, 40, 50, 75, 100, 125, 150]2
410 kernel parameters are tested 1/[0.5, 1, 2, 5, 7, 10, 12, 15, 17, 20]2.
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The results are shown in Table 1. Missing values correspond to settings which were far too expensive
to compute, even for the results reported here several millions of SVM trainings were performed.
We draw several conclusions from the results. Comparing only the (single) results we see that the
SVM almost always yields to slightly better results than MKL/IKL, which do not differ much. The
added flexibility of MKL and IKL to combine more than one kernel seems to be of little use with the
possible exception of ABE. In this setting the parameter space seems to be sampled densely enough
such that the results are very close. Adding the flexibility to model each dimension separately (sepa-
rate) yields better results only on Splice and SEG. The most general setting (products) reveals some
immense gains in performance, namely for Image, Splice and SEG. In these cases the possibility to
model correlations between different dimensions explicitly yields more discriminative kernels. For
the practitioner there are thus two methods to choose from: SVM because it is much faster than
the other two methods and with good performance or IKL because the enlarged kernel class might
lead to a significant performance increase. For some datasets we do observe worse results which are
probably due to overfitting behavior (Twonorm, Heart, WAV). During the course of the experiments

(single) (separate) (products)
SVM MKL IKL MKL IKL

Dataset #dim #tr / #te #cl err err #k err #k err #k err #k
Banana 2 400/4900 2 10.5 ± 0.5 10.5 ± 0.5 1.0 10.6 ± 0.5 2.3 10.5 ± 0.5 1.0 10.7 ± 0.5 3.7
Breast-cancer 9 200/77 2 25.9 ± 4.3 27.9 ± 4.0 2.3 26.9 ± 4.7 2.9 26.7 ± 4.2 4.5 25.7 ± 4.1 16.1
Diabetis 8 468/300 2 23.2 ± 1.6 24.2 ± 1.9 2.8 23.8 ± 1.7 3.4 24.5 ± 1.6 4.0 24.3 ± 1.8 22.3
Flare-Solar 9 666/400 2 32.4 ± 1.7 35.1 ± 1.7 1.9 35.0 ± 1.8 2.2 34.3 ± 2.1 2.9 32.8 ± 1.9 2.6
German 20 700/300 2 23.7 ± 2.1 25.3 ± 2.3 2.0 25.3 ± 2.5 3.4 25.1 ± 2.2 8.3 24.6 ± 2.4 46.1
Heart 13 170/100 2 15.2 ± 3.1 16.4 ± 3.3 1.0 16.9 ± 3.2 2.5 16.7 ± 4.1 9.0 20.1 ± 3.6 28.2
Image 18 130/1010 2 3.0 ± 0.6 3.3 ± 0.7 1.0 3.4 ± 0.6 5.3 3.0 ± 0.6 1.6 1.4 ± 0.3 27.1
Ringnorm 20 400/7000 2 1.6 ± 0.1 1.6 ± 0.1 1.0 1.6 ± 0.1 1.2 1.7 ± 0.1 2.6 2.1 ± 0.2 16.3
Splice 60 1000/2175 2 10.6 ± 0.7 11.1 ± 0.7 2.0 12.6 ± 0.9 2.0 6.0 ± 0.4 24.1 3.1 ± 0.3 72.8
Thyroid 5 140/75 2 4.0 ± 2.2 4.7 ± 2.1 1.0 3.6 ± 2.1 3.2 4.7 ± 2.1 1.0 4.1 ± 2.0 12.7
Titanic 3 150/2051 2 22.9 ± 1.2 22.4 ± 1.0 1.1 22.5 ± 1.1 2.2 22.4 ± 1.0 1.9 22.4 ± 1.1 5.2
Twonorm 20 400/7000 2 2.5 ± 0.1 2.5 ± 0.1 2.0 2.6 ± 0.2 2.0 2.5 ± 0.1 3.8 3.8 ± 0.4 36.2
Waveform 21 400/4600 2 10.1 ± 0.5 9.9 ± 0.4 2.9 9.9 ± 0.4 2.5 10.2 ± 0.4 9.7 11.4 ± 0.6 33.7
WAV 21 300/4700 3 15.6 ± 1.2 15.5 ± 0.6 2.7 15.8 ± 0.7 2.1 16.4 ± 1.7 13.6 18.0 ± 1.0 35.1
SEG 17 500/1810 7 6.5 ± 1.0 6.8 ± 0.9 2.8 6.9 ± 0.9 3.7 5.0 ± 0.7 8.4 3.0 ± 0.5 18.0
ABE 16 560/1763 3 1.1 ± 0.3 0.8 ± 0.3 2.5 0.8 ± 0.3 3.0 0.7 ± 0.3 11.3 0.7 ± 0.2 33.8
SAT 36 1500/4935 6 10.4 ± 0.4 10.2 ± 0.3 3.6 10.1 ± 0.4 4.0 n/a n/a
DNA 181 500/2686 3 7.7 ± 0.7 7.8 ± 0.7 1.4 7.7 ± 0.8 2.0 n/a n/a

Table 1: Test error and number of selected kernels on several datasets averaged over 100/20 runs. In bold face
are those results with much better results than plain SVM and in italic those which are much worse.

we found that some runs were only tractable using the IKL algorithm: starting with one kernel and
searching for new ones to include instead of SimpleMKL [8] with all kernels at once. This occurred
especially for high values of C and cases where Gram matrices are very similar. The IKL algorithm
is also faster in the case of many base kernels.

4 Conclusion
We generalized MKL to its infinite limit and presented a new algorithm to solve it. Since MKL is a
special case of IKL this algorithm can also be used to solve MKL problems. We found it to be more
efficient than [8, 9] in the case of many possible kernels (details not reported here). Our experiments
are the first large scale comparison between SVM and MKL learning and indicate there there is little
benefit of linearly combining kernels. With the largely increased flexibility of IKL to search over
general kernel classes not available to MKL/SVM we reported significant performance gains on
some datasets. Therefore it seems crucial to use such general kernel classes if performance gains are
to be expected. The subproblem provides a handle on how to select new kernels. This opens up the
possibility to design problem specific kernels, e.g. turning preprocessing steps to kernel parameters.
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