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We provide more details for the method and experiments,
as well as more quantitative and qualitative results, as an
extension of Sec. 3, Sec. 4 and Sec. 5 of the main paper.

1. Method & Experiment Details
1.1. Dataset (Sec. 4.2)

Dataset size. We evaluate the performance of ICON and
SOTA methods for a varying training-dataset size (Fig. 6
and Tab. 9). For this, we first combine AGORA [12] (3, 109
scans) and THuman [16] (600 scans) to get 3, 709 scans
in total. This new dataset is 8x times larger than the 450
Renderpeople (“450-Rp”) scans used in [13, 14]. Then, we
sample this “8x dataset” to create smaller variations, for
1/8x, 1/4x, 1/2x, 1x, and 8x the size of “450-Rp”.
Dataset splits. For the “8x dataset”, we split the 3, 109
AGORA scans into a new training set (3, 034 scans), val-
idation set (25 scans) and test set (50 scans). Among
these, 1, 847 come from Renderpeople [3] (see Fig. 9a),
622 from AXYZ [4], 242 from Humanalloy [2], 398 from
3DPeople [1], and we sample only 600 scans from THuman
(see Fig. 9b), due to its high pose repeatability and lim-
ited identity variants (see Tab. 1), with the “select-cluster”
scheme described below. These scans, as well as their
SMPL-X fits, are rendered after every 10 degrees rotation
around the yaw axis, to totally generate (3109 AGORA +
600 THuman+ 150 CAPE)× 36 = 138, 924 samples.
Dataset distribution via “select-cluster” scheme. To cre-
ate a training set with a rich pose distribution, we need to
select scans from various datasets with poses different from
AGORA. Following SMPLify [6], we first fit a Gaussian
Mixture Model (GMM) with 8 components to all AGORA
poses, and select 2K THuman scans with low likelihood.
Then, we apply M-Medoids (n cluster = 50) on these
selections for clustering, and randomly pick 12 scans per
cluster, collecting 50 × 12 = 600 THuman scans in total;
see Fig. 9b. This is also used to split CAPE into “CAPE-FP”
(Fig. 9c) and “CAPE-NFP” (Fig. 9d), corresponding to scans
with poses similar (in-distribution poses) and dissimilar
(out-of-distribution poses) to AGORA ones, respectively.

Perturbed SMPL. To perturb SMPL’s pose and shape pa-
rameters, random noise is added to θ and β by:

θ += sθ ∗ µ,
β += sβ ∗ µ,

(7)

where µ ∈ [−1, 1], sθ = 0.15 and sβ = 0.5. These are
set empirically to mimic the misalignment error typically
caused by off-the-shell HPS during testing.
Discussion on simulated data. The wide and loose cloth-
ing in CLOTH3D++ [5, 10] demonstrates strong dynamics,
which would complement commonly used datasets of com-
mercial scans. Yet, the domain gap between CLOTH3D++
and real images is still large. Moreover, it is unclear how to
train an implicit function from multi-layer non-watertight
meshes. Consequently, we leave it for future research.

1.2. Refining SMPL (Sec. 3.1)

Figure 8. SMPL refinement error (y-axis) with different losses (see
colors) and noise levels, sθ , of pose parameters (x-axis).

To statistically analyze the necessity of LN diff and LS diff
in Eq. (4), we do a sanity check on AGORA’s validation
set. Initialized with different pose noise, sθ (Eq. (7)), we
optimize the {θ, β, t} parameters of the perturbed SMPL by
minimizing the difference between rendered SMPL-body
normal maps and ground-truth clothed-body normal maps
for 2K iterations. As Fig. 8 shows, LN diff + LS diff always
leads to the smallest error under any noise level, measured
by the Chamfer distance between the optimized perturbed
SMPL mesh and the ground-truth SMPL mesh.



Methods SMPL-X AGORA-50 CAPE-FP CAPE-NFP CAPE
condition. Chamfer ↓ P2S ↓ Normal ↓ Chamfer ↓ P2S ↓ Normal ↓ Chamfer ↓ P2S ↓ Normal ↓ Chamfer ↓ P2S ↓ Normal ↓

ICON ✓ 1.583 1.987 0.079 1.364 1.403 0.080 1.444 1.453 0.083 1.417 1.436 0.082

D

SMPL-X perturbed ✓ 1.984 2.471 0.098 1.488 1.531 0.095 1.493 1.534 0.098 1.491 1.533 0.097
ICONenc(I,N) ✓ 1.569 1.784 0.073 1.379 1.498 0.070 1.600 1.580 0.078 1.526 1.553 0.075
ICONenc(N) ✓ 1.564 1.854 0.074 1.368 1.484 0.071 1.526 1.524 0.078 1.473 1.511 0.076
ICONN† ✓ 1.575 2.016 0.077 1.376 1.496 0.076 1.458 1.569 0.080 1.431 1.545 0.079

Table 4. Quantitative errors (cm) for several ICON variants conditioned on perturbed SMPL-X fits (sθ = 0.15, sβ = 0.5).

1.3. Perceptual study (Tab. 3)

Reconstruction on in-the-wild images. We perform a per-
ceptual study to evaluate the perceived realism of the recon-
structed clothed 3D humans from in-the-wild images. ICON
is compared against 3 methods, PIFu [13], PIFuHD [14], and
PaMIR [15]. We create a benchmark of 200 unseen images
downloaded from the internet, and apply all the methods
on this test set. All the reconstruction results are evaluated
on Amazon Mechanical Turk (AMT), where each partici-
pant is shown pairs of reconstructions from ICON and one
of the baselines, see Fig. 10. Each reconstruction result is
rendered in four views: front, right, back and left. Partici-
pants are asked to choose the reconstructed 3D shape that
better represents the human in the given color image. Each
participant is given 100 samples to evaluate. To teach partic-
ipants, and to filter out the ones that do not understand the
task, we set up 1 tutorial sample, followed by 10 warm-up
samples, and then the evaluation samples along with catch
trial samples inserted every 10 evaluation samples. Each
catch trial sample shows a color image along with either (1)
the reconstruction of a baseline method for this image and
the ground-truth scan that was rendered to create this image,
or (2) the reconstruction of a baseline method for this image
and the reconstruction for a different image (false positive),
see Fig. 10c. Only participants that pass 70% out of 10 catch
trials are considered. This leads to 28 valid participants out
of 36 ones. Results are reported in Tab. 3.
Normal map prediction. To evaluate the effect of the body
prior for normal map prediction on in-the-wild images, we
conduct a perceptual study against prediction without the
body prior. We use AMT, and show participants a color
image along with a pair of predicted normal maps from two
methods. Participants are asked to pick the normal map that
better represents the human in the image. Front- and back-
side normal maps are evaluated separately. See Fig. 11 for
some samples. We set up 2 tutorial samples, 10 warm-up
samples, 100 evaluation samples and 10 catch trials for each
subject. The catch trials lead to 20 valid subjects out of 24
participants. We report the statistical results in Tab. 5. A
chi-squared test is performed with a null hypothesis that
the body prior does not have any influence. We show some
results in Fig. 12, where all participants unanimously prefer
one method over the other. While results of both methods
look generally similar on front-side normal maps, using the
body prior usually leads to better back-side normal maps.

w/ SMPL prior w/o SMPL prior P-value
Preference (front) 47.3% 52.7% 8.77e-2
Preference (back) 52.9% 47.1% 6.66e-2

Table 5. Perceptual study on normal prediction.

w/ global pixel point total
encoder dims dims dims

PIFu∗ ✓ 12 1 13
PaMIR∗ ✓ 6 7 13
ICONenc(I,N) ✓ 6 7 13
ICONenc(N) ✓ 6 7 13
ICON ✗ 0 7 7

Table 6. Feature dimensions for various approaches. “pixel dims”
and “point dims” denote the feature dimensions encoded from
pixels (image/normal maps) and 3D body prior, respectively.

1.4. Implementation details (Sec. 4.1)

Network architecture. Our body-guided normal prediction
network uses the same architecture as PIFuHD [14], orig-
inally proposed in [8], and consisting of residual blocks
with 4 down-sampling layers. The image encoder for PIFu∗,
PaMIR∗, and ICONenc is a stacked hourglass [11] with 2
stacks, modified according to [7]. Tab. 6 lists feature dimen-
sions for various methods; “total dims” is the neuron number
for the first MLP layer (input). The number of neurons in
each MLP layer is: 13 (7 for ICON), 512, 256, 128, and 1,
with skip connections at the 3rd, 4th, and 5th layers.

Training details. For training GN we do not use THuman
due to its low-quality texture (see Tab. 1). On the contrary,
IF is trained on both AGORA and THuman. The front-side
and back-side normal prediction networks are trained indi-
vidually with batch size of 12 under the objective function
defined in Eq. (3), where we set λVGG = 5.0. We use the
ADAM optimizer with a learning rate of 1.0 × 10−4 until
convergence at 80 epochs.



Test-time details. During inference, to iteratively refine
SMPL and the predicted clothed-body normal maps, we
perform 50 iterations (each iteration takes ∼ 460 ms on a
Quadro RTX 5000 GPU) and set λN = 2.0 in Eq. (4). We
conduct an experiment to show the influence of the number
of iterations (#iterations) on accuracy, see Tab. 7.

The resolution of the queried occupancy space is 2563.
We use rembg1 to segment the humans in in-the-wild im-
ages, and use Kaolin2 to compute per-point the signed
distance, Fs, and barycentric surface normal, Fb

n .

# iters (460ms/it) 0 10 50
Chamfer ↓ 1.417 1.413 1.339

P2S ↓ 1.436 1.515 1.378
Normal ↓ 0.082 0.077 0.074

Table 7. ICON errors w.r.t. iterations

Discussion on receptive field size. As Tab. 8 shows, simply
reducing the size of receptive field of PaMIR does not lead to
better performance. This shows that our informative 3D fea-
tures as in Eq. (6) and normal maps N̂ c also play important
roles for robust reconstruction. A more sophisticated design
of smaller receptive field may lead to better performance and
we would leave it for future research.

Receptive field 139 271 403
Chamfer ↓ 1.418 1.478 1.366

P2S ↓ 1.236 1.320 1.214
Normal ↓ 0.083 0.084 0.078

Table 8. PaMIR’s receptive field

1https://github.com/danielgatis/rembg
2https://github.com/NVIDIAGameWorks/kaolin

2. More Quantitative Results (Sec. 4.3)
Table 4 compares several ICON variants conditioned on

perturbed SMPL-X meshes. For the plot of Fig. 6 of the
main paper (reconstruction error w.r.t. training-data size),
extended quantitative results are shown in Tab. 9.

Training set scale 1/8x 1/4x 1/2x 1x 8x

PIFu∗ Chamfer ↓ 3.339 2.968 2.932 2.682 1.760
P2S ↓ 3.280 2.859 2.812 2.658 1.547

PaMIR∗ Chamfer ↓ 2.024 1.780 1.479 1.350 1.095
P2S ↓ 1.791 1.778 1.662 1.283 1.131

ICON Chamfer ↓ 1.336 1.266 1.219 1.142 1.036
P2S ↓ 1.286 1.235 1.184 1.065 1.063

Table 9. Reconstruction error (cm) w.r.t. training-data size. “Train-
ing set scale” is defined as the ratio w.r.t. the 450 scans used
in [13,14]. The “8x” setting is all 3, 709 scans of AGORA [12] and
THuman [16]. Results outperform ground-truth SMPL-X, which
has 1.158 cm and 1.125 cm for Chamfer and P2S in Tab. 2.

3. More Qualitative Results (Sec. 5)
Figures 13 to 15 show reconstructions for in-the-wild

images, rendered from four different view points; normals
are color coded. Figure 16 shows reconstructions for images
with out-of-frame cropping. Figure 17 shows additional
representative failures. The video on our website shows
animation examples created with ICON and SCANimate.

https://github.com/danielgatis/rembg
https://github.com/NVIDIAGameWorks/kaolin


(a) Renderpeople [3] (450 scans) (b) THuman [16] (600 scans)

(c) “CAPE-FP” [9] (fashion poses, 50 scans) (d) “CAPE-NFP” [9] (non fashion poses, 100 scans)

Figure 9. Representative poses for different datasets.



(a) A tutorial sample.
(b) An evaluation sample.

(c) Two samples of catch trials. Left: result from this image (top) vs from another image (bottom). Right: ground-truth (top) vs reconstruction mesh (bottom).

Figure 10. Some samples in the perceptual study to evaluate reconstructions on in-the-wild images.

(a) The two tutorial samples.

(b) Two evaluation samples. (c) Two catch trial samples.

Figure 11. Some samples in the perceptual study to evaluate the effect of the body prior for normal prediction on in-the-wild images.
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(a) Examples of perceptual preference on front normal maps. Unanimously preferred results are in
�� ��black boxes . The back normal maps are for reference.
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(b) Examples of perceptual preference on back normal maps. Unanimously preferred results are in
�� ��black boxes . The front normal maps are for reference.

Figure 12. Qualitative results to evaluate the effect of body prior for normal prediction on in-the-wild images.
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Figure 13. Qualitative comparison of reconstruction for ICON vs SOTA. Four view points are shown per result.
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Figure 14. Qualitative comparison of reconstruction for ICON vs SOTA. Four view points are shown per result.
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Figure 15. Qualitative comparison of reconstruction for ICON vs SOTA. Four view points are shown per result.



PIFu

PaMIR

PIFuHD

PIFu

PaMIR

PIFuHD

PIFu

PaMIR

PIFuHD

PIFu

PaMIR

PIFuHD

PIFu

PaMIR

PIFuHD

PIFu

PaMIR

PIFuHD

Figure 16. Qualitative comparison (ICON vs SOTA) on images with out-of-frame cropping.



A: Loose clothing

B: Anthropomorphous input

C: HPS failure

Input Reconstruction from 4 viewpoints HPS

Figure 17. More failure cases of ICON.
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