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Implicit Wiener Series
Part II: Regularised Estimation

P. V. Gehler and M. O. Franz

Abstract. Classical Volterra and Wiener theory of nonlinear systems does not address the problem of noisy
measurements in system identification. This issue is treated in the present part of the report. We first show
how to incorporate the implicit estimation technique for Volterra and Wiener series described in Part I into the
framework of regularised estimation without giving up the orthogonality properties of the Wiener operators. We
then proceed to a more general treatment of polynomial estimators (Volterra and Wiener models are two special
cases) in the context of Gaussian processes. The implicit estimation technique from Part I can be interpreted as
Gaussian process regression using a polynomial covariance function. Polynomial covariance functions, however,
have some unfavorable properties which make them inferior to other, more localised covariance functions in terms
of generalisation error. We propose to remedy this problem by approximating a covariance function with more
favorable properties at a finite set of input points. Our experiments show that this additional degree of freedom can
lead to improved performance in polynomial regression.

1 Introduction
In its classical formulation, the estimation of the Wiener series assumes noise-free measurements of the system
outputs during system identification. This assumption was also adopted in the kernel-based implicit estimation
procedure described in Part I of this report. For real, noise-contaminated data, the estimated Wiener series will
model both signal and noise of the training data which results in reduced prediction performance on independent
test sets. But even in the ideal case of noise-free signals, Volterra and Wiener models typically show a reduced
generalisation performance as compared to other types of nonlinear models. Roughly speaking, this is due to
the divergence property of polynomial models: for test inputs outside the range of the training data, polynomial
models tend to assign output values well beyond the range of the training outputs. This results in a high sensitivity
against outliers in the test data which in turn leads to a reduced prediction performance. An illustrative example
of the divergence property is shown in Fig. 1. Here, we trained two models on 350 examples from the KIN40K
dataset (Schwaighofer & Tresp, 2003), using either the inhomogeneous polynomial kernel (1 + x>1 x2)p or the
Gaussian kernel exp(−‖x1 − x2‖2). Fig. 1a. shows the histograms of the model outputs on the training set and
independent test data. As expected, we find that the polynomial model produces output values on the test set that
lie significantly beyond the range of the training outputs. Although these values constitute only a small fraction
of the entire range, their contribution to the overall prediction error is disproportionately large (shaded regions in
Fig. 1b.). Indeed, we find that the prediction performance of the polynomial model is considerable worse than that
of the Gaussian kernel (cf. Sect. 4).

In the second part of this report, we address the generalisation problems of Volterra and Wiener system mod-
els using two closely related frameworks: regularisation and Gaussian processes. Regularisation is the standard
approach in machine learning to address the generalisation problem. The basic idea is to restrict the possible solu-
tions in a suitable manner that reflects the prior knowledge of the experimenter about the different characteristics
of the true signal and the corrupting noise. For instance, noise often affects more the high-frequency components
of a signal than its low-frequency components. This knowledge can be incorporated into an estimation problem
by restricting the possible solutions to smooth functions. The learning procedure is thus prevented from modelling
noise-corrupted fine details of the system output which typically results in an improved generalisation perfor-
mance. In a similar train of thought, we can try to restrict our solutions not only to be smooth, but also to remain
non-divergent in the input domains that are relevant to the problem at hand.

One approach to regularisation is to augment the mean squared error (MSE) objective function we used in Part I
for estimating Volterra and Wiener models (xi ∈ Rm, i = 1 . . . N are the training inputs, yi the corresponding
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Figure 1: Divergence property of polynomial models: a. logarithmic plot of the normalised output histograms of an eighth-
order inhomogeneous polynomial (ihp) and a Gaussian model trained on 350 examples from the KIN40K dataset (39650 test
examples, cf. Sect. 4); b. Sum of squared error per histogram bin for the polynomial and the Gaussian kernel. The shaded
regions denote output values outside the range of the training data.

scalar training outputs, and f(xi) the model outputs)

c((x1, y1, f(x1)), . . . , (xN , yN , f(xN ))) =
1
N

∑N

j=1
(f(xj)− yj)2 (1)

with a functional Ω(f) that penalizes unwanted properties of the solutions such as overly fine detail or divergent
behaviour. Choosing

c((x1, y1, f(x1)), . . . , (xN , yN , f(xN ))) =
1
N

∑N

j=1
(f(xj)− yj)2 + Ω(‖f‖F). (2)

(Ω is a nondecreasing function on R+ and ‖ · ‖F is the norm in the function space used for the regression),
and remembering from Part I that the polynomials constitute a reproducing kernel Hilbert space (RKHS), we are
allowed the apply again the representer theorem which means that also the regularised solution can be expressed
as a linear combination of polynomial kernel functions evaluated at the training points:

f(x) =
∑

i

αik(x,xi), αi ∈ R. (3)

Ω(f) is often given as a quadratic function of the weights αi of the kernel expansion and can thus be written as

ΩR = λ α>Rα, λ > 0 (4)

with a positive semidefinite matrix R. λ controls the tradeoff between the fidelity to the data and the penalty term.
R is chosen to enforce the desired characteristics of the solutions. For instance, when choosing R = IN as in ridge
regression, the RKHS norm of the solutions remain small which leads to smoother, less noise-sensitive solutions.
Alternatively, a suitable choice of a rank-deficient R can selectively penalize noise-contaminated subspaces of the
signal (Nowak, 1998).

When the penalising functional ΩR is used in addition to the MSE on the training set, we obtain the implicit
Volterra and Wiener series expansions

∑p
n=0 Hn(x) and

∑p
n=0 Gn(x)∑p

n=0
Gn(x) =

∑p

n=0
Hn(x) = y>(Kp + λR)−1 k(x) (5)

instead of ∑p

n=0
Gn(x) =

∑p

n=0
Hn(x) = y>K−1

p k(x) (6)

as before. Here, Kp denotes the Gram matrix computed with one of the polynomial kernels1∑p
n=0 a2

n(x>1 x2)n, (1 + x>1 x2)p or
∑p

n=0(x
>
1 x2)n, y = (y1, y2, . . . , yN )> and k(x) is the coefficient vector

1In Part I, we derived the implicit representation of the implicit Volterra series only for the last kernel. Analogous derivations
can be found for the other polynomial kernels (cf. Franz & Schölkopf, 2006)
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(k(x,x1), k(x,x2), . . . , k(x,xN ))> ∈ RN . As we said above, we obtain a less noise-sensitive solution when we
choose R = IN which was our first motivation for using the regularisation framework. This choice, however,
does not address our second problem of preventing the obtained Volterra and Wiener models from diverging in test
input domains that are far from the training inputs. In the following sections, we show how to attain both objectives
simultaneously using Gaussian processes (O’Hagan, 1978, overview in Rasmussen and Williams, 2006).

Before doing so, we have to clarify a further issue: if one is interested in single Wiener operators, the regularised
estimation has a decisive disadvantage, namely that the Wiener operators computed according to (see Part I)

Gn(x) =
∑n

i=0
Gi(x)−

∑n−1

i=0
Gi(x)

= y>
[
K−1

n k(n)(x)−K−1
n−1 k(n−1)(x)

]
. (7)

are no more orthogonal with respect to the input. However, orthogonality can be still enforced by considering the
(smoothed) output of the regularised Wiener system on the training set

ỹ> = y>(Kp + λR)−1 K (8)

as a modified, “noise-corrected” training set. The regularised Wiener operators are then given as

Gn(x) = ỹ>
[
K−1

n k(n)(x)−K−1
n−1 k(n−1)(x)

]
= y>(Kp +λR)−1 K

[
K−1

n k(n)(x)−K−1
n−1 k(n−1)(x)

]
(9)

constituting an orthogonal decomposition of the regularised solution over the training set.
The remainder of this text is organised as follows: we start in Sect. 2 by introducing the probabilistic framework

of Gaussian processes and clarifying its relation to the regularisation approach described above. We will see that in
Gaussian process point of view, the matrix R determines a prior distribution over the function space F. In Sect. 3,
we show how to choose this prior such that the solutions have (at least approximately) the properties of any other
Gaussian process which can be prescribed by the experimenter. In particular, the desired Gaussian process can be
chosen such that the solutions are smooth and non-divergent in at least some region of the feature space. In Sect. 4,
we show in a number of experiments that this particular type of regularisation is indeed capable of remedying the
above-mentioned estimation problems of the Volterra and Wiener approach to nonlinear system identification. As
usual, we conclude with a discussion in Sect. 5.

2 Gaussian process Regression
In the standard regression setting, our task is to infer a functional relationship f(x) from a set of observations
{(xi, yi) | i = 1, . . . , N} which can be used to predict the output f(x∗) on a test input x∗. Formally, a Gaussian
process is defined as a collection of random variables, any finite subset of which has a joint Gaussian distribution.
In our context, the random variables are the possible outcomes f(x) of the regression problem, with a continuous
index x. A Gaussian process is completely specified by its mean function m(x)2 and covariance function k(x,x′)

m(x) = E[f(x)] (10)
k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]. (11)

A sample drawn from the Gaussian process for all possible values of x defines a function f(x) over x. Thus, the
specification of a covariance function implies a distribution over functions. In Gaussian process regression, this
distribution is taken as a prior over the possible solutions. Since this prior can be chosen such as to limit the possible
outcomes of the regression procedure, an appropriate choice of the covariance is equivalent to regularisation. The
predictive distribution for the test output is then found by applying the standard rules of probability theory to
obtain the posterior probability distribution of f(x∗) at the test input x∗, given the training set. From the posterior
distribution, we can derive point estimates for the prediction by taking the mode or the mean of the posterior which
both coincide in Gaussian processes.

Assuming that the observations are corrupted by additive i. i. d. Gaussian noise ε with zero mean and variance
σ2

n such that y = f(x) + ε, the covariance of the noisy observations becomes

E[yiyj ] = k(xi,xj) + σ2
nδij , (12)

2Without loss of generality, m(x) is usually assumed to be zero for notational convenience.
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where δij is the Kronecker delta. Using the Gram matrix (K)ij = k(xi,xj), we can write the covariance matrix
of y as

E[yy>] = K + σ2
nI. (13)

From the definition of Gaussian processes, we know that any finite subset of observations will have a Gaussian
distribution. In particular, the joint distribution of the N observations and the function value at the test location
x∗ can be described by a (N + 1) × (N + 1) covariance matrix and mean 0. We write the joint covariance in a
partitioned form such that the joint distribution becomes(

y
f(x∗)

)
∼ N

(
0,

(
K + σ2

nI k∗
k∗ k∗∗

))
(14)

with the partitions being E[yy>], the N × 1 cross-covariance vector (k∗)i = k(xi,x∗), and the scalar prior
covariance of the test output k∗∗ = k(x∗,x∗). The predictive distribution of f(x∗) is obtained by conditioning
the joint distribution of Eq. (14) on the observations. The result is again a Gaussian distribution with mean f̄∗ and
covariance σ2

f∗
(see, e.g., Rasmussen & Williams, 2006)

f̄∗ = k>∗ (K + σ2
nI)−1y (15)

σ2
f∗ = k∗∗ − k>∗ (K + σ2

nI)−1k∗. (16)

Note that – as before in the case of kernel regression – the predictive mean is a linear combination of the N kernel
functions in k∗ with weights α = (K + σ2

nI)−1y. These weights are exactly the same as those obtained for
the regularised Volterra series of Eq. (5) if we take one of the polynomial kernels as covariance function and the
regulariser R = IN . In other words, Gaussian process regression can be used as an alternative regression technique
for estimating implicit Volterra and Wiener series. The interpretation of the polynomial kernel as a covariance
function leads us also to an alternative explanation of the unfavorable generalisation properties of polynomial
regression: a polynomial covariance function implies a high covariance for distant inputs. In most real-world
problems we have the reverse situation, i.e. nearby inputs typically result in similar outputs. Therefore, in the
Gaussian process view, a polynomial covariance implies a prior over the function space which favors functions not
suited for most real-world problems.

The choice of the covariance function specifies both the space of functions that can be generated by the Gaus-
sian process, and a probability measure on that space. It also determines the function basis in which the regression
solutions are expressed: as before in the case of kernel regression, all solutions are linear combinations of the
covariance function k(·,xi) evaluated for the training inputs. Consequently, the choice of the basis and the prob-
ability space are tightly coupled in the standard Gaussian process formulation. In our case, however, we would
like to have the freedom of choosing the covariance function independently of the function basis, i.e., we would
like to express our solution in a basis of polynomial kernel functions, but with a different prior covariance func-
tion kGP(·,xi) for the entire Gaussian process such that the regression solutions have the desired properties of
smoothness and non-divergence.

A handle on how to decouple the basis and the covariance can be found by looking at an alternative derivation of
Gaussian process regression, the so-called weight-space view on Gaussian processes 3. Here, one assumes that f(x)
can be represented as weighted sum f(x) = φ(x)>w of m basis functions φ(x) = (ϕ1(x), ϕ2(x), . . . , ϕm(x))>,
where the weights w from Rm are distributed according to N (0,Σw). This fits nicely into our framework: we
always have a finite basis in which we express our solutions consisting either of monomials in explicit Wiener
series or polynomial kernels in implicit Wiener series. The basis together with Gaussian prior on the weights again
defines a distribution over functions with covariance function

k(xi,xj) = φ(xi)>Σwφ(xj) (17)

and mean function
m(x) = φ(x)>E[w] = 0. (18)

When we substitute this covariance function into (15) and (16), we obtain

f̄∗ = φ(x∗)>ΣwΦ>(ΦΣwΦ> + σ2
nI)−1y (19)

σ2
f∗ = φ(x∗)>Σwφ(x∗)− φ(x∗)>ΣwΦ>(ΦΣwΦ> + σ2

nI)−1ΦΣwφ(x∗) (20)
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Figure 2: Toy experiment using the first 6 canonical polynomial as basis: a. 10 examples drawn from an isotropic prior in
weight space and b. generated by a non-isotropic prior; c and d. Mean squared value in the interval [−1, 1] of 1000 examples
drawn from both distributions; e and f . Regression on 10 training samples (stars) for both Gaussian processes. The dashed line
denotes the true function, the solid line the prediction from regression. The shaded areas show the 95%-confidence intervals.

where Φ = (φ(x1), φ(x2), . . . , φ(xn)).
In the weight-space view, the implications of choosing a polynomial covariance can be seen immediately by

sampling from the Gaussian process prior. Consider a simple toy example where the basis function set consists of
the first six canonical polynomials φ1(x) = 1, φ2(x) = x, φ3(x) = x2, . . . , φ6(x) = x5. Let us assume that the
weights are distributed according to an isotropic Gaussian, i.e., w ∼ N (0, σ2I6). In our first experiment, we draw
samples from this distribution (Fig. 2a) and compute the mean square of f(x) at all x ∈ [−1, 1] for 1000 functions
generated by the dictionary (Fig. 2b). It is immediately evident that our prior narrowly constrains the possible
solutions around the origin while admitting a broad variety near the interval boundaries. If we do regression with
this dictionary, the solutions tend to have a similar behaviour as long as they are not enough constrained by the
data points (see the diverging solution at the left interval boundary in Fig. 2c. The function to be regressed is of

3The above derivation represents the so-called function-space view.
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the form ti = sin(axi)/(axi) + ni with an additive Gaussian noise signal ni ∼ N (0, σ2
ν)). This can lead to bad

predictions in sparsely populated areas.
If we choose a non-isotropic prior on the weights instead of an isotropic one (in our example we force the

overall covariance to be flat), we observe a different behaviour although we did not change the polynomial basis:
the functions sampled from the prior show a richer structure (Fig. 2d) with a relatively flat mean square value over
the interval [−1, 1] (Fig. 2e). As a consequence, the predicted mean of the Gaussian process (solid line) usually
shows a smaller tendency to diverge in the sparsely populated regions near the interval boundaries (see the left
interval boundary region in Fig. 2f ). For both priors, the predicted variances (the shaded areas depict the 2σ-
interval) become large in unpopulated regions. In the case of the isotropic prior, however, the true function values
are still outside the predicted 2σ-interval.

3 Decoupling the covariance and basis
The two alternative views of Gaussian processes give us a handle on how to decouple the covariance and basis:
we have to construct a suitable basis φ(x) from the kernel functions k(·,xi) along with a weight covariance Σw

such that their covariance function φ(xi)>Σwφ(xj) assumes the desired form kGP(xi,xj). Of course, we cannot
hope to approximate kGP(xi,xj) at all possible input pairs, but a closer look at Eqns. (15) - (20) reveals that the
covariance function is only evaluated at either training or test inputs. Consequently, we have to approximate our
desired covariance only at a finite set of input points.

An obvious choice for φ(x) would be the polynomial kernel functions themselves (the empirical kernel map,
see Schölkopf & Smola, 2002), but here we consider only the Kernel PCA Map (Schölkopf & Smola, 2002)

φ(x) = K− 1
2 (k(x,x1), k(x,x2), . . . , k(x,xn))> (21)

which usually leads to a better conditioned regression problems in other contexts. Having specified our basis, we
have to find a suitable Σw to approximate kGP(xi,xj) on a finite set S = {x1, . . . ,xp} of input points. Formally,
we have a set of p2 linear equations

kGP(xi,xj) = φ(xi)>Σwφ(xj) ∀xi,xj ∈ S (22)

which, in general, cannot be solved exactly. An approximate solution is given by

Σw = ([φ(x1), . . . , φ(xp)]>)+KGP(S)[φ(x1), . . . , φ(xp)]+, (23)

where KGP(S) = (kGP(xi,xj))ij ∀xi,xj ∈ S and A+ denotes the Moore-Penrose pseudoinverse of A. The
approximation accuracy clearly depends on the choice of the set S which describes the input region in which one
wants to mimic the covariance function CGP . As already mentioned we are most often only interested in prediction
and thus it is at hand to use the training and, if available, the test inputs in the calculation of Σw. Note that no
output values enter Equation (23), so we can use any possible input set from the region of interest and are not
restricted to the training or test set. It is conceivable to sample the set S artifically according to some arbritary
distribution.

For our choice of the basis functions, Eq. (23) becomes

Σw = ((K− 1
2 K(S))>)+KGP(S)(K− 1

2 K(S))+ (24)

where we wrote the cross-covariance between the training points and the points in S as (K(S))i,j =
k(xi,xj) ∀xj ∈ S, 1 ≤ j ≤ n. The equations above hold for a general S and simplify to

Σw = K− 1
2 KGPK− 1

2 (25)

when only the training inputs are used. Note that for general sets S and kernels, positive definiteness of the
resulting covariance matrix cannot be guaranteed. Although KGP(S) is positive definite, (K− 1

2 K(S))+ can be
rank-deficient such that the overall covariance becomes positive semidefinite. In practice, however, this problem
turned out to be less serious since we always approximate a valid covariance function. If the approximation is good
enough this automatically leads to positive definite covariance matrices. Moreover, the size of the approximation
set S typically exceeds that of the training set. In this case, (K− 1

2 K(S))+ becomes only rank-deficient when the
basis functions are linearly dependent.
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Figure 3: Decoupling of basis and covariance in a one-dimensional toy example. (a) Gaussian covariance, (b) inhomogeneous
polynomial kernel with degree 5, (c)+(d) inhomogeneous kernel with degree p = 5 adapted to the Gaussian covariance function
on [−1, 1]. (e)+(f) same as (c)+(d), but for degree p = 3. Note that (c) and (d) ((e) and (f) resp.) show the same covariance
functions, plotted on different input ranges.
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In Figure 3 a one-dimensional toy example is plotted which illustrates the decoupling technique. An example
of a polynomial covariance function (inhomogeneous polynomial kernel kihp(x,x′) = (1 + x>x′)p with degree
p = 5) is shown in Fig. 3 (b). The Gaussian covariance function kgauss(x,x′) = exp(−‖x−x′‖2) is chosen as our
target covariance kGP(x,x′) (Fig. 3(a)). The training inputs consisted of 10 points drawn uniformly from [−1, 1].
As our basis, we chose the Kernel PCA map (Eq. 21) for the inhomogeneous polynomial kernel and computed
Σw according to Eq.( 23) using an artificially created set S of 20 equidistant points in [−1, 1]. The resulting
covariances for the degree p = 5 are shown in Figures 3(c)+(d), and for p = 3 in (e)+(f). Note that in both cases
the left plot shows the range [−1.1, 1.1]2 in which the approximation was computed, whereas the same function is
shown in the right plot on a larger input region, namely [−1.5, 1.5]2.

One can clearly see that the target covariance is well approximated in the domain of the data points. However,
we can deform the covariance structure only locally leading to considerable deviations from the target outside
[−1, 1]2. The polynomial kernel with p = 5 results in a better approximation on S in this example, both visibly
and numerically, but shows a stronger deviation outside of S. However, it is not always the case that a higher
degree leads to a better approximation. In the next section we show examples of the opposite behaviour.

4 Experiments
The decoupling approach was evaluated on three regression datasets: Boston Housing (Harrison & Rubinfeld,
1978), KIN40K (Schwaighofer & Tresp, 2003), and Stereopsis (Sinz, Quiñonero-Candela, Bakır, Rasmussen, &
Franz, 2004). The boston dataset consists of 506 points in 13 dimensions. The results are averaged over 10 splits
of the data with 10% used for testing and the rest for training. We created 5 splits of the 8-dimensional KIN40K
dataset using 500 training and 39500 test examples. The Stereopsis dataset is the smallest among the three with 4
dimensions, 200 training and 792 testing examples. For this dataset, the task is to predict three different function
values (3 dimensions) for each of which a single Gaussian process was trained and the given results are averaged
over these three functions.

Approximation accuracy of the desired Gram matrix In our first experiment, approximation accuracy was
measured using the 2-norm of the difference of the target Gram matrix and the obtained Gram matrix. In Figure
4 this quantity is shown as a function of the degree of the inhomogeneous polynomial kernel, along with the
resulting difference in regression performance. Fig. 4(a) shows the results on one split of the Boston housing
dataset, Fig. 4(b) the average over all three Gaussian Processes for the Stereopsis dataset. In both cases there
is an optimal degree for both the approximation accuracy and the regression performance. Since polynomials
with higher degree usually lead to ill-conditioned Gram matrices we included the condition numbers (ratio of the
largest to the smallest singular value) of the covariance of the weights and the Gram matrix in the plot. One can
see that the condition number of Σw and the approximation accuracy show similar behavior. In particular, the
best approximation coincides with the best conditioned matrix Σw. Hence, we used the approximation accuracy to
select the polynomial degree during model selection in the following experiment.

Regression performance In a baseline experiment, we used standard Gaussian process regression with the Gaus-
sian kernel kgauss(x,x′) and the inhomogeneous polynomial kernel kihp(x,x′). Model selection was done by
maximizing the marginal log-likelihood (see, e.g., Rasmussen & Williams, 2006). The results of the baseline ex-
periment are shown in the 3rd and 4th column of Table 1. The Gaussian covariance leads to a better regression
performance on all three datasets although on the Stereopsis dataset the difference was very small.

To test our approach, we chose the Gaussian covariance as our target covariance as kGP(x,x′), and the Kernel
PCA map computed for kihp as our basis. Calculation of Σw was done either on the training inputs only, or on
both training and test inputs. Due to the required expensive matrix inverse we did not use all but only a subset
of 2000 test points from the KIN40K dataset in the calculation of Σw. The results are summarized in the 5th and
6th column of Table 1. The model parameters σ and σn were again selected by maximizing the standard marginal
log-likelihood criterion. The choice of the polynomial degree turned out to be sometimes problematic since the
marginal log-likelihood as a function of polynomial degree tended to be very flat. We therefore used the above
mentioned approximation accuracy of the covariance matrix as model selection criterion for the polynomial degree.

When only the training inputs were used for approximating the desired covariance, improvements over standard
regression were only small, or - in the case of KIN40K - performance severely degraded because the training inputs
were not sampled densely enough. Since the training error was the same as in the original Gaussian covariance,

8
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Figure 4: Condition number of Gram matrix and approximation accuracy as a function of the kernel degree. Experiments were
done with the Kernel PCA map of the inhomogeneous polynomial kernel and are shown here on a log scale. Figure (a) shows
the results on one split of the Boston dataset, Figure (b) the averages over all three Gaussian processes on the stereo dataset.

this is a clear indicator of overfitting to the training data. However, the results consistently improved on all datasets
when the approximation was computed on both training and test inputs, so this should be the method of choice
when the performance of polynomial regression is to be improved. The fact that the performance for the Boston
Housing and Stereopsis datasets is slightly better than that of the Gaussian kernel is due to the approximation
error of the target covariance. In principle, we should get the same results, but in these cases the approximated
covariance yields by accident better results than the original one.

5 Discussion

In the second part of this report, we set out to offer some solutions to the severe generalisation problems of classical
Wiener and Volterra models. As we have shown, both smoothness and non-divergence of the found solutions can
be enforced by a special type of regularisation in the framework of Gaussian processes. We achieved this by
approximating the covariance function of another Gaussian process with the desired properties (in our examples,
this was the Gaussian covariance function) on a finite set of points. Our results show that the generalisation
performance of the regularised Wiener models comes very close to that of the approximated Gaussian process. As a
consequence, Wiener and Volterra models can be pushed to have a comparable performance to current state-of-the-
art regression methods. Taken together, the methods presented in both parts of this report allow for extending the
methodology of Wiener and Volterra analysis to novel application fields, largely alleviating the previous restrictions
on input dimensionality, output noise and generalisation performance.

The idea of separately controlling the regularisation properties of the basis and the regulariser Σw has already
been suggested by Smola and Schölkopf (1998) in the context of kernel regression. An application of this principle
is the whitened regression approach of Franz, Kwon, Rasmussen, and Schölkopf (2004) in which Σw was chosen
to flatten the covariance function over a given input range. Whitened regression was applied to the same scenario as
considered here, i.e., improving polynomial regression for Wiener and Volterra analysis. Flattening alone, however,

Dataset kgauss kihp Strain Strain ∪ Stest

Boston housing train 3.58 5.11 3.58 3.59
test 8.36 9.79 9.53 8.3

KIN40K train 0.59 9.84 0.59 2.57
test 10.41 21.07 114 13.76

Stereo train 1.80 2.55 1.80 1.80
test 3.26 3.38 3.30 3.25

Table 1: Averaged mean squared error on training and test set (10 folds for Boston, 5 for KIN40K, 3 for Stereo). For the
inhomogeneous polynomial kernel with approximated Gaussian covariance, Σw is computed either on the training inputs only
(Strain), or on both training and test inputs (Strain ∪ Stest).
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turned out to be not sufficient to significantly improve polynomial regression performance. Our results suggest that
approximating a localized covariance function instead leads to significant improvements in polynomial regression.

Walder, Schölkopf, and Chapelle (2006) proposed a method which computes the regulariser norm within the
span of the chosen function basis. However, this method is not directly applicable to the case of polynomial basis
functions as the involved integral is divergent. Still one might apply their method to this case by restricting it to
a smaller domain e.g. by using an indicator function in the integral which would be similar to our approach of
adapting the covariance on a finite domain only.

Finally, it should be pointed out that the presented method is not limited to approximating a Gaussian process
with an infinite-dimensional function dictionary by a finite one (as is the case in our example of approximating a
Gaussian covariance with polynomials). The presented derivation does not rely on this property. As a consequence,
the method can be applied to arbitrary combinations of covariances and bases.
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