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Geometric Feature Tensor

A pose-dependent shape model of clothed humans that
generalizes across multiple subjects and outfits, which can
create an animatable avatar from a single static 3D scan.

• Represent 3D clothed humans as dense point clouds, decoded from continuous bilinear local features.
• Model the common properties of pose-dependent deformation with a cross-outfit shape decoder.
• Decouple the intrinsic, pose-independent clothed body shape using a geometric feature tensor.
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Point cloud decoded from:

• Existing models for clothed humans are mostly
subject-specific and cannot generalize to unseen
outfits.

• Existing 3D shape representations cannot satisfy the
need for high-quality cross-outfit modeling:
• Meshes: fixed topology;
• Implicit surfaces: slow inference, incompatibility
with thin cloth structures;
• Surface patches: discontinuity between patches.

Cross-outfit modeling: results on the CAPE [3] data
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• Training: auto-decoding. Enforce a consistent
instance for each outfit across all poses.

• Inference: optimize the tensor w. r. t. an unseen scan
to get a shape representation of it.

• Serves as a “garment template” as in traditional
mesh-based modeling but allows for varied topology.

Illustration: per-patch features [2] vs bilinear features (ours)
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Chamfer-L2
(×10—4m2) ↓ 6.087 0.721 0.639 0.592 0.598

Normal Diff.
(×10—1) ↓ 1.275 1.168 1.146 1.115 1.122


