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Abstract

Cycle-consistent training is widely used for
jointly learning a forward and inverse map-
ping between two domains of interest with-
out the cumbersome requirement of collecting
matched pairs within each domain. In this
regard, the implicit assumption is that there
exists (at least approximately) a ground-truth
bijection such that a given input from either
domain can be accurately reconstructed from
successive application of the respective map-
pings. But in many applications no such bijec-
tion can be expected to exist and large recon-
struction errors can compromise the success
of cycle-consistent training. As one impor-
tant instance of this limitation, we consider
practically-relevant situations where there
exists a many-to-one or surjective mapping
between domains. To address this regime,
we develop a conditional variational autoen-
coder (CVAE) approach that can be viewed
as converting surjective mappings to implicit
bijections whereby reconstruction errors in
both directions can be minimized, and as a
natural byproduct, realistic output diversity
can be obtained in the one-to-many direc-
tion. As theoretical motivation, we analyze
a simplified scenario whereby minima of the
proposed CVAE-based energy function align
with the recovery of ground-truth surjective
mappings. On the empirical side, we con-
sider a synthetic image dataset with known
ground-truth, as well as a real-world appli-
cation involving natural language generation
from knowledge graphs and vice versa, a pro-
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totypical surjective case. For the latter, our
CVAE pipeline can capture such many-to-one
mappings during cycle training while promot-
ing textural diversity for graph-to-text tasks.1

1 Introduction

Given data x ∈ X from domain X and y ∈ Y from
domain Y, it is often desirable to learn bidirectional
mappings f : Y → X and g : X → Y such that for
matched pairs {x,y}, we have that x ≈ x̂ , f(y) and
y ≈ ŷ , g(x). When provided with a corpus of suitably
aligned data, this amounts to a straightforward super-
vised learning problem. However, in many applications
spanning computer vision (Zhu et al., 2017a), natural
language processing (Lample et al., 2018a; Artetxe et
al., 2018) and speech recognition (Hori et al., 2019),
we may only have access to individual samples from X
and Y but limited or no labeled ground-truth matches
between domains, since, for example, the labeling pro-
cess may be prohibitively expensive. To address this
commonly-encountered situation, cycle-consistent train-
ing represents an unsupervised means of jointly learn-
ing f and g by penalizing the cycle-consistency recon-
struction losses ‖x− f [g(x)]‖ and ‖y − g[f(y)]‖ using
non-parallel samples from X and Y and some norm or
distance metric ‖ · ‖ (Zhu et al., 2017a).

However, this process implicitly assumes that there
exists a suitable bijection between domains (imply-
ing f = g−1 and g = f−1), an assumption that fre-
quently does not hold for practical applications of cycle-
consistent training. As a representative example re-
lated to natural language understanding, each x may
represent a text segment while y corresponds with
the underlying knowledge graph describing the text
content. The relationship between these domains is
surjective, but not bijective, in the sense that multiple

1Our code is available https://github.com/QipengGuo/
CycleGT.

https://github.com/QipengGuo/CycleGT
https://github.com/QipengGuo/CycleGT


Fork or Fail: Cycle-Consistent Training with Many-to-One Mappings

sentences with equivalent meaning but different syn-
tactic structure can be mapped to the same knowledge
graph. Hence if we follow any possible learned map-
ping x→ ŷ → x̂, there will often be significant error
between x and the reconstructed x̂. In other words,
no invertible transformation exists between domains
and there will necessarily be information about x that
is lost when we map through Y space. Additionally,
deterministic mappings do not reflect the ground-truth
conditional distribution pgt(x|y), which is necessary for
the generation of diverse text consistent with a given
knowledge graph.

Despite these limitations, there has been relatively
little effort or rigorous analysis devoted to explicitly
addressing the lack of a bijection in applications of
cycle-consistent training; Section 2 on related work will
discuss this point in greater detail. As a step towards
filling this void, in Section 3 we will consider replacing
the typical deterministic cycle training pipeline with
a stochastic model reflecting pgt(x|y) and pgt(y|x) for
the x → ŷ → x̂ and y → x̂ → ŷ cycles respectively.
In doing so, we apply a conditional variational autoen-
coder (CVAE) formulation (Doersch, 2016; Sohn et al.,
2015) to deal with the intractable integrals that arise.
Note that although the proposed CVAE methodology
can be generalized, we will herein restrict ourselves
to situations where there exists a many-to-one map-
ping from x to y (i.e., a surjection) as originally moti-
vated by our interest in conversions between knowledge
graphs and diverse, natural language text.

Proceeding further, Section 4 provides theoretical sup-
port by analyzing a simplified scenario whereby minima
of the proposed CVAE-based energy function align with
the recovery of ground-truth surjective mappings. To
the best of our knowledge, this is the only demonstra-
tion of a cycle-consistent model with any type of per-
formance guarantee within a non-trivial, non-bijective
context. We then turn to empirical validation in Section
5 that corroborates our theory via a synthetic image
example and demonstrates real-world practicality on an
application involving the conversion between diverse
natural language and knowledge graphs taken from
the WebNLG dataset. Overall, experimental results
indicate that our proposed CVAE pipeline can approx-
imate surjective mappings during cycle training, with
performance on par with supervised alternatives, while
promoting diversity for the graph-to-text direction.

2 Related Work

General Cycle-Consistent Training The concept
of leveraging the transitivity of two functions that serve
as inverses to one another has been applied to a variety
of tasks. For example, in computer vision, forward-
backward consistency has been used extensively in com-

puter vision (Kalal et al., 2010; Sundaram et al., 2010),
and cycle-consistent training pipelines underlie image
style transfer (Zhu et al., 2017a; Liu et al., 2017), depth
estimation (Godard et al., 2017), and unsupervised
domain adaptation (Hoffman et al., 2018) pipelines.
Turning to natural language processing (NLP), back
translation (Sennrich et al., 2016; Edunov et al., 2018;
Jin et al., 2020) and dual learning (Cheng et al., 2016;
He et al., 2016) have been widely deployed for unsu-
pervised machine translation. Similar techniques have
also contributed to applications such as language style
transfer (Shen et al., 2017; Jin et al., 2019). How-
ever, the above models primarily rely on deterministic
pipelines that implicitly assume a bijection even if one
does not actually exist.

And finally, a VAE-inspired model for converting be-
tween knowledge graphs and text is considered in
(Tseng et al., 2020). But again there is no explicit
accounting for non-bijective data as a shared latent
space is assumed to contain all information from both
x and y domains, and the proposed model is designed
and tested for semi-supervised learning (not fully un-
supervised cycle-consistency). Moreover, for tractable
inference, some terms from the variational bound on the
log-likelihood (central to all VAE models) are heuristi-
cally removed; hence the relationship with the original,
motivating probabilistic model remains unclear.

Non-Bijective Mappings Non-bijective mappings
are investigated in applications such as multi-domain
image-to-image translation (Choi et al., 2018), voice
conversion (Kameoka et al., 2018), multi-attribute text
style transfer (Lample et al., 2018b), music transfer
(Bitton et al., 2018), and multi-modal generation (Shi
et al., 2019). Most of this work uses adversarial neu-
ral networks, or separate decoders (Lee et al., 2019;
Mor et al., 2018), and one case even applies a CVAE
model (Jha et al., 2018). However, all the above assume
multiple pre-defined style domains and require data be
clearly separated a priori according to these domains to
train non-bijective mappings. In contrast, our proposed
model assumes a completely arbitrary surjective map-
ping that can be learned from the data without such
additional domain-specific side information pertaining
to styles or related (so ours can fit unknown styles
mixed within an arbitrary dataset). One exception is
(Zhu et al., 2017b), which handles general non-bijective
image mappings using a hybrid VAE-GAN model but
unlike our approach, it requires matched {x,y} pairs
for training.

3 Model Development
We will first present a stochastic alternative to deter-
ministic cycle-consistency that, while useful in princi-
ple for handling surjective (but explicitly non-bijective)
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mappings, affords us with no practically-realizable in-
ference procedure. To mitigate this shortcoming, we
then derive a tractable CVAE approximation and dis-
cuss some of its advantages. Later in Section 4 we
will analyze the local and global minima of this cycle-
consistent CVAE model in the special case where the
decoder functions are restricted to being affine.

3.1 Stochastic Cycle-Consistent Formulation

Although the proposed methodology can be generalized,
we will herein restrict ourselves to situations where
there exists a many-to-one mapping from x to y (i.e.,
a surjection) and the resulting asymmetry necessitates
that the x → ŷ → x̂ and y → x̂ → ŷ cycles be
handled differently. In this regard, our starting point
is to postulate an additional latent variable u ∈ U that
contributes to a surjective matched pair {x,y} via

x = hgt (y,u) and y = h+gt (x) , (1)

where hgt : Y × U → X and h+gt : X → Y represent
ground-truth mappings we would ultimately like to
estimate. For this purpose we adopt the approxima-
tions hθ : Y × Z → X and h+θ : X → Y with trainable
parameters θ, noting that the second input argument
of hθ is now z ∈ Z instead of u ∈ U . This is because
the latter is unobservable and it is sufficient to learn
a mapping that preserves the surjection between x
and y without necessarily reproducing the exact same
functional form of hgt. For example, if hypothetically
u = π(z) in (1) for some function π, we could redefine
hgt as a function of z without actually changing the
relationship between x and y.

We are now prepared to define a negative conditional
log-likelihood loss for both cycle directions, averaged
over the distributions of y and x respectively. For the
simpler y → x̂→ ŷ cycle, we define

`y(θ) , −
∫ (

log

∫
pθ (y|x̂) p(z)dz

)
ρygt(dy), (2)

where x̂ = hθ (y, z), pθ (y|x̂) is determined by h+θ and
an appropriate domain-specific distribution, and p(z)
is assumed to be fixed and known (e.g., a standardized
Gaussian). Additionally, ρygt denotes the ground-truth
probability measure associated with Y. Consequently,
ρygt(dy) is the measure assigned to the infinitesimal
dy, from which it obviously follows that

∫
ρygt(dy) = 1.

Note that the resulting derivations can apply even if
no ground-truth density pgt(y) exists, e.g., a counting
measure over training samples or discrete domains can
be assumed within this representation.

Given that there should be no uncertainty in y when
conditioned on x, we would ideally like to learn parame-
ters whereby pθ (y|x̂), and therefore `y(θ), degenerates

while reflecting a many-to-one mapping. By this we
mean that

y ≈ ŷ = h+θ (x̂) = h+θ (hθ [y, z]) , ∀z ∼ p(z). (3)

Hence the y → x̂→ ŷ cycle only serves to favor (near)
perfect reconstructions of y while ignoring any z that
can be drawn from p(z). The latter stipulation is
unique relative to typical deterministic cycle-consistent
training, which need not learn to ignore randomness
from an additional confounding latent factor.

In contrast, the x→ ŷ → x̂ cycle operates somewhat
differently, with the latent z serving a more important,
non-degenerate role. Similar to before, we would ideally
like to minimize the negative conditional log-likelihood
given by

`x(θ) , −
∫ (

log

∫
pθ (x|ŷ, z) p(z)dz

)
ρxgt(dx),

(4)
where now ŷ = h+θ (x), pθ (x|y, z) depends on hθ, and
ρxgt represents the ground-truth probability measure
on X . Here ŷ can be viewed as an estimate of all the
information pertaining to the unknown paired y as
preserved through the mapping h+θ from x to y space.
Moreover, if cycle-consistent training is ultimately suc-
cessful, both ŷ and y should be independent of z,
and it should be the case that

∫
pθ (x|ŷ, z) p(z)dz =

pθ (x|ŷ) ≈ pgt (x|y).

Per these definitions, it is also immediately apparent
that pθ (x|ŷ) is describing the distribution of hθ (y, z)
conditioned on y being fixed to h+θ (x). This can be
viewed as a stochastic version of the typical x→ ŷ → x̂
cycle, whereas now the latent z allows us to spread
probability mass across all x that are consistent with
a given ŷ. In fact, if we set z = z′ to a fixed null value
(i.e., change p(z) to a Dirac delta function centered at
some arbitrary z′), we recover this traditional pipeline
exactly, with − log pθ(x|y, z′) simply defining the im-
plicit loss function, with limited ability to assign high
probability to multiple different values of x for any
given y.

3.2 CVAE Approximation

While `y(θ) from Section 3.1 can be efficiently mini-
mized using stochastic sampling from p(z) to estimate
the required integral, the `x(θ) term is generally in-
tractable. Note that unlike `y(θ), directly sampling z
is not a viable solution for `x(θ) since pθ(x|ŷ, z) can be
close to zero for nearly all values of z, and therefore, a
prohibitively large number of samples would be needed
to obtain reasonable estimates of the integral. Fortu-
nately though, we can form a trainable upper bound
using a CVAE architecture that dramatically improves
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sample efficiency (Doersch, 2016; Sohn et al., 2015).
Specifically, we define

`x(θ, φ) ,
∫ {

− Eqφ(z|x) [log pθ (x|ŷ, z)] p(z)dz

+ KL [qφ(z|x)‖p(z)]
}
ρxgt(dx), (5)

where in this context, pθ (x|ŷ, z) is referred to as a
decoder distribution while qφ (z|x) represents a train-
able encoder distribution parameterized by φ. And
by design of general VAE-based models, we have that
`x(θ, φ) ≥ `x(θ) for all φ (Kingma and Welling, 2014;
Rezende et al., 2014). Note that we could also choose to
condition qφ (z|x) and p(z) on ŷ, although this is not re-
quired to form a valid or maximally-tight bound. In the
case of qφ (z|x), ŷ is merely a function of x and there-
fore contains no additional information beyond direct
conditioning on x (and the stated bound holds regard-
less of what we choose for qφ). In contrast, p(z) defines
the assumed generative model which we are also free
to choose; however, conditioning on ŷ can be absorbed
into pθ (x|ŷ, z) such that there is no change in the repre-
sentational capacity of pθ (x|ŷ) =

∫
pθ (x|ŷ, z) p(z)dz.

Given (5) as a surrogate for `x(θ) and suitable distri-
butional assumptions, the combined cycle-consistent
loss

`cycle(θ, φ) = `x(θ, φ) + `y(θ) (6)

can be minimized over {θ, φ} using stochastic gradient
descent and the reparameterization trick from (Kingma
andWelling, 2014; Rezende et al., 2014). We henceforth
refer to this formulation as CycleCVAE. And as will be
discussed in more detail later, additional constraints,
regularization factors, or inductive biases can also be
included to help ensure identifiability of ground-truth
mappings. For example, we may consider penalizing or
constraining the divergence between the distributions
of y and ŷ = h+θ (x), both of which can be estimated
from unpaired samples from ρygt and ρxgt respectively.
This is useful for disambiguating the contributions of
y and z to x and will be equal to zero (or nearly so) if
h+θ ≈ h

+
gt (more on this in Section 4 below).

3.3 CycleCVAE Inference

Once trained and we have obtained some optimal Cy-
cleVAE parameters {θ∗, φ∗} ≈ arg minθ,φ `cycle(θ, φ),
we can compute matches for test data in either the
xtest → ytest or ytest → xtest direction. For the for-
mer, we need only compute ŷtest = h+θ∗(xtest) and
there is no randomness involved. In contrast, for the
other direction (one-to-many) we can effectively draw
approximate samples from the posterior distribution
pθ∗(x|ytest) by first drawing samples z ∼ p(z) and
then computing x̂test = hθ∗(ytest, z).

3.4 CycleCVAE Advantages in Converting
Surjections to Implicit Bijections

Before proceeding to a detailed theoretical analysis
of CycleCVAE, it is worth examining a critical yet
subtle distinction between CycleCVAE and analogous,
deterministic baselines. In particular, given that the
x→ ŷ → x̂ cycle will normally introduce reconstruc-
tion errors because of the lack of a bijection as discussed
previously, we could simply augment traditional deter-
ministic pipelines with a z such that x→ {ŷ, z} → x̂
forms a bijection. But there remain (at least) two unre-
solved problems. First, it is unclear how to choose the
dimensionality and distribution of z ∈ Z such that we
can actually obtain a bijection. For example, if dim[Z]
is less than the unknown dim[U ], then the reconstruc-
tion error ‖x− x̂‖ can still be large, while conversely,
if dim[Z] > dim[U ] there can now exist a many-to-one
mapping from {y, z} to x, in which case the superflu-
ous degrees of freedom can interfere with our ability to
disambiguate the role y plays in predicting x. This is-
sue, combined with the fact that we have no mechanism
for choosing a suitable p(z), implies that deterministic
cycle-consistent training is difficult to instantiate.

In contrast, CycleCVAE can effectively circum-
vent these issues via two key mechanisms that
underpin VAE-based models. First, assume that
dim[X ] > dim[Y ], meaning that X represents a higher-
dimensional space or manifold relative to Y, consis-
tent with our aforementioned surjective assumption.
Then provided we choose dim[Z] sufficiently large, e.g.,
dim[Z] ≥ dim[U ], we would ideally prefer that CVAE
regularization somehow prune away the superfluous
dimensions of z that are not required to produce good
reconstructions of x.2 For example, VAE pruning could
potentially be instantiated by setting the posterior dis-
tribution of unneeded dimensions of the vector z to
the prior. By this we mean that if dimension j is not
needed, then qφ(zj |x) = p(zj), uninformative noise
that plays no role in improving reconstructions of x.
This capability has been noted in traditional VAE mod-
els (Dai et al., 2018; Dai and Wipf, 2019), but never
rigorously analyzed in the context of CVAE extensions
or cycle-consistent training. In this regard, the anal-
ysis in Section 4 will elucidate special cases whereby
CycleCVAE can provably lead to optimal pruning, the
first such analysis of CVAE models, cycle-consistent
or otherwise. This serves to motivate the proposed
pipeline as a vehicle for learning an implicit bijection
even without knowing the dimensionality or distribu-
tion of data from U , a particularly relevant notion given
the difficulty in directly estimating dim[U ] in practice.

2Note that dim[X ] refers to the intrinsic dimensionality
of X , which could be a low-dimensional manifold embedded
in a higher-dimensional ambient space; same for dim[Y].
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Secondly, because the CycleCVAE model is explicitly
predicated upon a known prior p(z) (as opposed to the
unknown distribution of u), other model components
are calibrated accordingly such that there is no need
to provide an empirical estimate of an unknown prior.
Consequently, there is no barrier to cycle-consistent
training or the generation of new x conditioned on y.

4 Formal Analysis of Special Cases

To the best of our knowledge, there is essentially no
existing analysis of cycle-consistent training in the chal-
lenging yet realistic scenarios where a bijection between
x and y cannot be assumed to hold.3 In this section we
present a simplified case whereby the proposed CycleC-
VAE objective (with added distributional constraints)
is guaranteed to have no bad local minimum in a spe-
cific sense to be described shortly. The forthcoming
analysis relies on the assumption of a Gaussian CVAE
with an affine model for the functions {hθ, h+θ }; how-
ever, the conclusions we draw are likely to be loosely
emblematic of behavior in broader regimes of interest.
While admittedly simplistic, the resulting CVAE objec-
tive remains non-convex, with a combinatorial number
of distinct local minima. Hence it is still non-trivial to
provide any sort of guarantees in terms of associating
local minima with ‘good’ solutions, e.g., solutions that
recover the desired latent factors, etc. In fact, prior
work has adopted similar affine VAE decoder assump-
tions, but only in the much simpler case of vanilla VAE
models (Dai et al., 2018; Lucas et al., 2019), i.e., no
cycle training or conditioning as is our focus herein.

4.1 Affine CycleCVAE Model

For analysis purposes, we consider a CVAE model of
continuous data x ∈ Rrx , y ∈ Rry , and z ∈ Rrz , where
rx, ry, and rz are the respective sizes of x, y, and z.
We assume p(z) = N (z|0, I) and a typical Gaussian
decoder pθ (x|ŷ, z) = N (x|µx,Σx), where the mean
network satisfies the affine parameterizations

µx = hθ (ŷ, z) = W xŷ + V xz + bx,

with ŷ = h+θ (x) = W yx+ by. (7)

In this expression, {W x,W y,V x, bx, by} represents
the set of all weight matrices and bias vectors which de-
fine the decoder mean µx. And as is often assumed in
practical VAE models, we set Σx = γI, where γ > 0 is
a scalar parameter within the parameter set θ. Despite
these affine assumptions, the CVAE energy function
can still have a combinatorial number of distinct local
minima as mentioned previously. However, we will

3Note that (Grover et al., 2020) addresses identifiability
issues that arise during cycle training, but only in the
context of strictly bijective scenarios.

closely examine conditions whereby all these local min-
ima are actually global minima that correspond with
the optimal inversion of a non-trivial generative model.

Although we could proceed by allowing the encoder to
be arbitrarily complex, when the decoder mean function
is forced to be affine and Σx = γI, a Gaussian encoder
with affine moments is sufficient to achieve the optimal
CVAE cost. Specifically, without any loss of representa-
tional capacity, we may choose qφ(z|x) = N (z|µz,Σz)
with µz = W zx + bz and a diagonal Σz = diag[s]2,
where s is an arbitrary parameter vector independent
of x.4 Collectively, these specifications lead to the
complete parameterization θ = {W x,W y,V x, bx, γ},
φ = {W z, bz, s}, and the CVAE energy given by
`x(θ, φ) ≡∫ {

Eqφ(z|x)

[
1
γ ‖(I −W xW y)x− V xz − bx‖22

]
(8)

+ d log γ +

rz∑
k=1

(
s2k − log s2k

)
+ ‖W zx+ bz‖22

}
ρxgt(dx),

noting that, without loss of generality, we have ab-
sorbed a W xby factor into bx.

And finally, for the corresponding `y(θ) model we
specify pθ (y|x̂) = N (y|µy,Σy) using a shared, cycle-
consistent parameterization borrowed from (7). For
this purpose, we adopt

µy = h+θ (x̂) = W yx̂+by, with x̂ = W xy+V xz+bx,
(9)

and Σy = γI. Given these assumptions, we have

`y(θ) ≡
∫ (

ε>y Σ−1εy εy + log
∣∣Σεy

∣∣) ρygt(dy) (10)

excluding irrelevant constants, where εy ,
(I −W yW x)y − by, Σεy , γI +W yV xV

>
xW

>
y and

again, analogous to before we have absorbed W ybx
into by without loss of generality.

4.2 Properties of Global/Local Minima

As a preliminary thought experiment, we can consider
the minimization of `cycle(θ, φ), where `x(θ, φ) is de-
fined via (8) and `y(θ) via (10), but no assumptions are
placed on the distributions ρxgt and ρ

y
gt. In this situa-

tion, it is obvious that even CycleCVAE global minima,
were they obtainable, will not generally recover the
ground-truth mappings between paired x ∼ ρxgt and
y ∼ ρygt; there simply will not generally be sufficient ca-
pacity. Furthermore, it can even be shown that under

4Note also that because ŷ =W yx+ by is an affine func-
tion of x, including this factor in the encoder representation
is redundant, i.e., it can be absorbed into µz =W zx+ bz
without loss of generality.
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quite broad conditions there will exist a combinato-
rial number of non-global local minima, meaning local
minimizers that fail to achieve the lowest possible cost.

Hence we now present a narrower scenario with con-
straints on the ground-truth data to better align with
the affine simplification described in Section 4.1. This
will allow us to formulate conditions whereby all local
minima are actually global minima capable of accu-
rately modeling the ground-truth surjection. To this
end, we define the following affine ground-truth model:

Definition 1 (Affine Surjective Model) We de-
fine an affine surjective model whereby all matched
{x,y} pairs satisfy

x = Ay +Bu+ c and y = Dx+ e, (11)

with B ∈ null[D], DA = I, Dc = −e, rank[A] =
ry < rx and rank[B] ≤ rx − ry. Furthermore, we
assume that y ∼ ρygt and u ∼ ρugt are uncorrelated,
and the measure assigned to the transformed random
variable Wy + V u is equivalent to ρygt iff W = I
and V = 0. We also enforce that y and u have zero
mean and identity covariance, noting that any nonzero
mean components can be absorbed into c. Among other
things, the stated conditions of the affine surjective
model collectively ensure that the mappings y → x and
x→ y can be mutually satisfied.

Additionally, for later convenience, we also define rc ,
rank

(
Eρxgt

[
xx>

])
≤ rx. We then have the following:

Proposition 2 Assume that matched pairs {x,y} fol-
low the affine surjective model from Definition 1. Then
subject to the constraint ρygt = ρŷθ , where ρŷθ defines
the θ-dependent distribution of ŷ, all local minima of
the CycleVAE objective `cycle(θ, φ), with `x(θ, φ) taken
from (8) and `y(θ) from (10), will be global minima in
the limit γ → 0 assuming rz ≥ rc − ry. Moreover, the
globally optimal parameters {θ∗, φ∗} will satisfy

W ∗
x = A, V ∗x =

[
B̃,0

]
P , b∗x = c,

W ∗
y = D̃, b∗y = −D̃c, (12)

where B̃ has rank[B] columns, span[B̃] = span[B], P
is a permutation matrix, and D̃ satisfies D̃A = I and
B ∈ null[D̃].

Note that in practice, we are free to choose rz as large
as we want, so the requirement that rz ≥ rc− ry is not
significant. Additionally, the constraint ρygt = ρŷθ can
be instantiated (at least approximately) by including a
penalty on the divergence between these two distribu-
tions. This is feasible using only unpaired samples of
y (for estimating ρygt) and x (for estimating ρŷθ), and

most cycle-consistent training pipelines contain some
analogous form of penalty on distributional differences
between cycles (Lample et al., 2018a).

And finally, if ry + rank[B] = rx, then the dual re-
quirements that D̃A = I and B ∈ null[D̃] will ensure
that D̃ = D and b∗y = e. However, even if D̃ 6= D it
is inconsequential for effective recovery of the ground-
truth model since any x produced by Definition 1 will
nonetheless still map to the correct y when applying
D̃ instead of D.

Corollary 3 Given the same setup as Proposition 2,
let {W ∗

z, b
∗
z} denote the CVAE encoder parameters of

any minimum. Then W ∗
z = P

[
W̃
∗
z

0

]
and b∗z =

P

[
b̃
∗
z

0

]
, where W̃

∗
z has rank[B] rows, b̃

∗
z ∈ Rrank[B],

and there exists a bijection between x and {y, µ̃z}, with
µ̃z , W̃

∗
zx+ b̃

∗
z (i.e., the nonzero elements of µz).

We will now discuss various take-home messages related
to these results.

4.3 Practical Implications

As alluded to in Section 3.4, we will generally not know
in advance p(u) or even dim[U ], which reduces to rc−ry
in the simplified affine case. Hence inducing a bijec-
tion may seem problematic on the surface. Fortunately
though, Proposition 2 and Corollary 3 indicate that
as long as we choose rz ≥ dim[U ] in our CVAE model,
we can nonetheless still learn an implicit bijection be-
tween x and {y, µ̃z}, where µ̃z are the informative
(nonzero) dimensions of µz that actually contribute to
the reconstruction of x. In the affine case, these are the
dimensions of z aligned with nonzero columns of B̃, but
in general these dimensions could more loosely refer to
the degrees-of-freedom in z that, when altered, lead to
changes in x̂. The remaining superfluous dimensions of
z are set to the uninformative prior p(z) = N (z|0, I)
and subsequently filtered out by the CVAE decoder
module parameterized by hθ(y, z). In this diminutive
role, they have no capacity for interfering with any
attempts to learn a bijection.

Even so, in non-affine cases it is impossible to guarantee
that all local minima correspond with the recovery of
hgt and h+gt, or that these functions are even identifiable.
Indeed it is not difficult to produce counterexamples
whereby recovery is formally impossible. However, if
hθ and h+θ are chosen with inductive biases reasonably
well-aligned with their ground-truth counterparts, up
to unidentifiable latent transformations of the unobserv-
able u, we may expect that an approximate bijection
between the true x and {y, µ̃z} can nonetheless be
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Dataset Example Base Model CycleCVAE (Sampled)

Figure 1: Left: example image from dataset. Middle: image produced
by baseline cycle training with y = 4. Right: a sample image generated
by CycleCVAE conditioned on y = 4. For the latter, the position of
yellow border is random. In contrast, the base model fails to learn the
random border distribution.

Figure 2: Cycle-consistent reconstruc-
tion errors of baseline and CycleC-
VAE models.

inferred via cycle-consistent training, at least provided
we can avoid suboptimal local minimizers that can be
introduced by more complex nonlinear decoder models.

5 Experiments

In this section we first consider a synthetic image ex-
periment that supports the theoretical motivation for
CycleCVAE. We then turn to practical real-world eval-
uations involving the conversion between knowledge
graphs and text sequences, a core ingredient of natural
language understanding/generation and the application
that initially motivated our work. We then conclude
with an enhanced pipeline involving the recent pre-
trained T5 model (Raffel et al., 2020).

5.1 Synthetic Image Experiment

We first conduct an experiment designed such that the
surjective conditions of Definition 1 in Section 4.2 are
loosely satisfied (see supplementary for reasons). As
shown in Figure 1 (left panel), each data sample has
three components: a digit, its image, and a decorative
yellow border. The digit takes value in {0, . . . , 9} and
is represented by a 10-dim one-hot vector y. The
corresponding image x involves 3 × 3 tiles, and each
tile contains the same image of digit y. One of the
9 tiles is decorated with a 1-pixel-wide yellow border,
and which tile will have this border is determined by u,
a 9-dim one-hot vector indicating the 9 possible tiles.

We train two models on this dataset, a base model
using standard cycle training, and our CycleCVAE
that incorporates the proposed CVAE into a baseline
cycle model (see supplementary for network descrip-
tion and details). After training, generated samples of
the two approaches when presented with the digit ‘4’
are shown in Figure 1 (middle and right panels). The
base model fails to learn the yellow border as it cannot
handle the one-to-many mapping from digits to images.

Meanwhile the random CycleCVAE sample correctly
places the border around one of the tiles (different Cy-
cleCVAE samples simply move the border to different
tiles as desired; see supplementary). Finally, consistent
with these generation results, the training curves from
Figure 2 reveal that the reconstruction error of the
base model, which assumes a bijection, plateaus at a
significantly higher value than the CycleCVAE model.

5.2 Knowledge Graph to Text Conversion

We now turn to more challenging real-world experi-
ments involving the surjective mapping between knowl-
edge graphs and text sequences. Here the ideal goal is
to generate diverse, natural text from a fixed knowl-
edge graph, or extract the knowledge graph from a
piece of text. To this end we compare CycleCVAE
against SOTA methods on the widely-used WebNLG
graph-to-text dataset (Gardent et al., 2017).

WebNLG Dataset and Test Setup WebNLG
data is extracted from DBPedia, where each graph
consists of 2–7 nodes and the corresponding text is de-
scriptions of these graphs collected by crowd-sourcing.
We follow the preprocessing of (Moryossef et al., 2019)
and obtain 13K training, 1.6K validation, and 5K test
text-graph pairs. Please see the supplementary for de-
tails of the CycleCVAE architecture explicitly designed
for handling text and graph data. Note that we did not
include any additional penalty function on the diver-
gence between ρygt and ρ

ŷ
θ ; the architecture inductive

biases were sufficient for good performance.

Metrics We measure performance using three met-
rics: (1) text generation quality with the standard
BLEU score (Papineni et al., 2002),5 (2) graph con-
struction accuracy via the F1 score of the edge predic-

5BLEU (%) counts the 1- to 4-gram overlap between
the generated sentence and ground truth.
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tions among given entity nodes, and (3) text diversity.
Text diversity is an increasingly important criterion for
NLP because the same meaning can be conveyed in
various expressions, and intelligent assistants should
master such variations. We evaluate diversity by report-
ing the number of distinct sentence variations obtained
after running the generation model 10 times.

Accuracy Results Since cycle training only requires
unsupervised data, we have to break the text-graph
pairs to evaluate unsupervised performance. In this
regard, there are two ways to process the data. First,
we can use 100% of the training data and just shuffle
the text and graphs so that the matching/supervision is
lost. This is the setting in Table 1, which allows for di-
rect head-to-head comparisons with SOTA supervised
methods (assuming no outside training data). The
supervised graph-to-text baselines include Melbourne
(introduced in Gardent et al., 2017), StrongNeural, Best-
Plan (Moryossef et al., 2019), Seg&Align (Shen et al.,
2020), and G2T (Koncel-Kedziorski et al., 2019). Su-
pervised text-to-graph models include OnePass (Wang
et al., 2019a), and T2G, a BiLSTM model we imple-
mented. Unsupervised methods include RuleBased
and GT-BT both by (Schmitt et al., 2020). Finally,
CycleBase is our deterministic cycle training model
with the architectural components borrowed from Cy-
cleCVAE. Notably, from Table 1 we observe that our
model outperforms other unsupervised methods, and
it is even competitive with SOTA supervised models
in both the graph-to-text (BLEU) and text-to-graph
(F1) directions.

Text(BLEU) Graph(F1) #Variations
Supervised (100%)
Melbourne 45.0 – 1
StrongNeural 46.5 – 1
BestPlan 47.4 – 1
Seg&Align 46.1 – 1
G2T 45.8 – 1
OnePass – 66.2 –
T2G – 60.6 –

Unsupervised (100%, Shuffled)
RuleBased 18.3 0 1
GT-BT 37.7 39.1 1
CycleBase (Ours) 46.2 61.2 1
CycleCVAE (Ours) 46.5 62.6 4.67

Table 1: Performance on the full WebNLG dataset.

Text(BLEU) Graph(F1) #Variations
Supervised (50%)
G2T 44.5 – 1
T2G – 59.7 –

Unsupervised (first 50% text, last 50% graph)
CycleBase (Ours) 43.1 59.8 1
CycleCVAE (Ours) 43.3 60.0 4.01

Table 2: Performance on WebNLG with 50% data.

In contrast, a second, stricter unsupervised protocol

involves splitting the dataset into two halves, extracting
text from the first half, and graphs from the second
half. This is the setting in Table 2, which avoids the
possibility of seeing any overlapping entities during
training. Although performance is slightly worse given
less training data, the basic trends are the same.

Diversity Results From Tables 1 and 2 we also
note that CycleCVAE can generate on average more
than 4 different sentence types for a given knowledge
graph; all other SOTA methods can only generate
a single sentence per graph. Additionally, we have
calculated that CycleCVAE generates more than two
textual paraphrases for 99% of test instances, and the
average edit distance between two paraphrases is 12.24
words (see supplementary). Moreover, CycleCVAE text
diversity does not harm fluency and semantic relevance
as the BLEU score is competitive with SOTA methods
as mentioned previously.

Diverse Text Output Generated by CycleCVAE
– The population density of Arlington, Texas is 1472.0.
– Arlington, Texas has a population density of 1472.0.
– Alan Bean, who was born in Wheeler, Texas, is now
“retired.”
– Alan Bean is a United States citizen who was born in
Wheeler, Texas. He is now “retired.”

Table 3: Every two variations are generated by CycleC-
VAE from the same knowledge graph.

We list text examples generated by our model in Table 3,
with more in the supplementary. The diverse generation
is a significant advantage for many real applications.
For example, it can make automated conversations less
boring and simulate different scenarios. And diversity
can push model generated samples closer to the real
data distribution because there exist different ways to
verbalize the same knowledge graph (although diversity
will not in general improve BLEU scores, and can
sometimes actually lower them).

5.3 Integrating CycleCVAE with T5

Previous graph-text results are all predicated on no out-
side training data beyond WebNLG. However, we now
consider an alternative testing scenario whereby out-
side training data can be incorporated by integrating
CycleCVAE with a large pretrained T5 sequence-to-
sequence model (Raffel et al., 2020). Such models have
revolutionized many NLP tasks and can potentially
improve the quality of the graph-to-text direction in
cycle training on WebNLG. To this end, we trained a
CycleCVAE model, with the function hθ(y, z) formed
from a pretrained T5 architecture (see supplementary
for details). Results are shown in Table 4, where un-
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supervised CycleCVAE+T5 produces a competitive
BLEU score relative to fully supervised T5 baselines.
It also maintains diversity of generated text sequences.

Model BLEU #Vars.
Supervised T5 (Kale, 2020) 57.1 1
Supervised T5 (Ribeiro et al., 2020) 57.4 1
Supervised T5 (Our Impl.) 56.4 1
Unsupervised CycleCVAE+T5 55.7 3.84

Table 4: Text generation results with T5 on WebNLG.

6 Conclusion

We have proposed CycleCVAE for explicitly handling
non-bijective surjections commonly encountered in real-
world applications of unsupervised cycle-consistent
training. Our framework has both a solid theoreti-
cal foundation and strong empirical performance on
practical knowledge graph-to-text conversion problems.
For future work we can consider extending CycleCVAE
to handle many-to-many (non-bijective, non-surjective)
mappings, or unsolved applications such as conversions
between scene graphs and realistic images (which re-
mains extremely difficult even with supervision).
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Supplementary Materials

The supplementary file includes additional content related to the following:

1. Synthetic Experiments (Section 5.1 in main paper): We explain why the synthetic data loosely align with
Definition 1, describe the network architectures of the CycleBase and CycleCVAE models, and include
additional generation results.

2. WebNLG Experiments (Section 5.2 in main paper): We describe the experimental setup for WebNLG,
including the task description, cycle-consistency model design, and all baseline and implementation details.
We also include an ablation study varying dim[z].

3. T5 Extension (Section 5.3 in main paper): We provide details of the CycleCVAE+T5 extension and include
additional generated samples showing textual diversity.

4. Proof of Proposition 2.

5. Proof of Corollary 3.

7 Synthetic Dataset Experimental Details and Additional Results

7.1 Dataset Description and Relation to Definition 1

To motivate how the synthetic data used in Section 5.1 from the main paper at least partially align with Definition
1, we let c and e be zero vectors and A ∈ Rd×10 be a d× 10 transformation matrix from images to digits, where
d is the total number of pixels in each image x. In other words, each column i ∈ {0, 1, . . . , 9} of A is a linearized
pixel sequence of the 2D image of digit i from top left to bottom right. Based on A, we construct an example
inverse matrix D so that DA = I. Specifically, D can be a 10× d matrix where each row i ∈ {0, 1, . . . , 9} is a
linearized pixel sequence of a masked version of the image of the digit i, and this image can have, for example,
only one non-zero pixel that is sufficient to distinguish the digit i from all other nine possibilities. We also
construct B, a d× 9 transformation matrix from the image to the border position, which surrounds one out of
the nine tiles in each image. Each column i ∈ {0, 1, . . . , 8} of B is a linearized pixel sequence of the 2D image of
the border surrounding the i-th tile. Since the patterns of the digit and border do not share any non-zero pixels,
we should have that DB = 0. Moreover, each digit’s image is distinct and cannot be produced by combining
other digit images, so rank[A] = ry and also ry ≤ rx because border patterns are orthogonal to digit patterns.
Hence, we also have rank[B] ≤ rx − ry. Note however that the synthetic data do not guarantee that Wy + V u
is equivalent to ρygt iff W = I and V = 0.

7.2 Network Architectures

We train two models on this dataset, a base model CycleBase using standard cycle training, and our CycleCVAE
that incorporates the proposed CVAE into a baseline cycle model.

CycleBase The base model uses multilayer perceptrons (MLPs) for both the image(x)-to-digit(y) mapping
h+θ (x) (shared with CycleCVAE), and the digit(y)-to-image(x) mapping denoted hBase

θ (y). Each MLP hidden
layer (two total) has 50 units with the tanh activation function. The last layer of h+θ (x) uses a softmax function
to output a vector of probabilities α over the ten digits, and therefore we can apply pθ(y|x) = Cat(y|α), a
categorical distribution conditioned on α, for training purposes. The last layer of digit-to-image hBase

θ (y) adopts
a per-pixel sigmoid function (since the value of each pixel is between 0 and 1), and we assume pθ(x|y) is based
on the binary cross entropy loss.
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CycleCVAE Our CycleCVAE uses the same function h+θ (x) as the base model. However, for the digit-to-image
generation direction, CycleCVAE includes a 1-dimensional latent variable z sampled from N (µx,Σx), where µx
and Σx are both learned by 50-dimensional, 3-layer MLPs (including output layer) with input x. Then hθ(y, z)
takes the digit y and latent variable z as inputs to another 3-layer MLP with 50 hidden units and the same
activation function as the base model.

7.3 Generation Results

In addition to Figure 1 in the main paper, we list more example images generated by our model in the figure
below. As we can see, the base model fails to learn the diverse border which should randomly surround only
one of the nine tiles. However, CycleCVAE learns the border in its latent variable z and by random sampling,
CycleCVAE can generate an arbitrary border around one of the nine digits as expected.

Base Model CycleCVAE (Multiple Samples):

Figure 3: Example images generated by CycleCVAE.

8 WebNLG Experimental Setup and Ablation Study

The WebNLG dataset6 is widely used for conversions between graph and text. Note that WebNLG is the most
appropriate dataset for our purposes because in other candidates (e.g., relation extraction datasets (Walker et al.,
2006)) the graphs only contain a very small subset of the information in the text.

8.1 Task Description

The WebNLG experiment includes two directions: text-to-graph (T2G) and graph-to-text (G2T) generation. The
G2T task aims to produce descriptive text that verbalizes the graphical data. For example, the knowledge graph
triplets “(Allen Forest, genre, hip hop), (Allen Forest, birth year, 1981)” can be verbalized as “Allen Forest, a hip
hop musician, was born in 1981.” This has wide real-world applications, for instance, when a digital assistant
needs to translate some structured information (e.g., the properties of the restaurant) to the human user. The
other task, T2G is also important, as it extracts structures in the form of knowledge graphs from the text, so that

6It can be downloaded from https://webnlg-challenge.loria.fr/challenge_2017/.

https://webnlg-challenge.loria.fr/challenge_2017/
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Allen Forest, a hip hop musician,
was born in the year 1981. The
music genre hip hop gets its
origins from disco and funk
music, and it is also which drum
and bass is derived from.

Allen Forest

hip hop

1981

drum and
bass

birth year

genre
stylistic origin derivative

stylistic origin

disco

funk

Text Corpus Graph Dataset

G2T

T2G──────────

───────

──────────
──────────

Large Corpus
(No Parallel Graphs)

Many Graphs 
(No Parallel Text)CycleGT

Figure 4: The graph-to-text generation task aims to verbalize a knowledge graph, while the text-to-graph task
extracts the information of text into the form of a knowledge graph.

all entities become nodes, and the relationships among entities form edges. It can help many downstream tasks,
such as information retrieval and reasoning. The two tasks can be seen as a dual problem, as shown in Figure 4.

Specifically, for unsupervised graph-to-text and text-to-graph generation, we have two non-parallel datasets:

• A text corpus X = {xi}Ni=1 consisting of N text sequences, and

• A graph dataset Y = {yj}Mj=1 consisting of M graphs.

The constraint is that the graphs and text contain the same distribution of latent content, but are different forms
of surface realizations, i.e., there is no alignment providing matched pairs. Our goal is to train two models in an
unsupervised manner: hθ that generates text based on the graph, and h+θ that produces a graph based on text.

8.2 Cycle Training Models

CycleBase Similar to the synthetic experiments mentioned above, we first propose the base cycle training
model CycleBase that jointly learns graph-to-text and text-to-graph generation. To be consistent with our main
paper, we denote text as x and graphs as y, and the graph-to-text generation is a one-to-many mapping. The
graph cycle, y → x̂→ ŷ is as follows: Given a graph y, the cycle-consistent training first generates synthetic text
x̂ = hBase

θ (y), and then uses it to reconstruct the original graph ŷ = h+θ (x̂). The loss function is imposed to align
the generated graph ŷ with the original graph y. Similarly, the text cycle, x → ŷ → x̂, is to align x and the
generated x̂. Both loss functions adopt the cross entropy loss.

Specifically, we instantiate the graph-to-text module hBase
θ (y) with the GAT-LSTM model proposed by (Koncel-

Kedziorski et al., 2019), and the text-to-graph module h+θ (x) with a simple BiLSTM model we implemented. The
GAT-LSTM module has two layers of graph attention networks (GATs) with 512 hidden units, and two layers
of a LSTM text decoder with multi-head attention over the graph node embeddings produced by GAT. This
attention mechanism uses four attention heads, each with 128 dimensions for self-attention and 128 dimension for
cross-attention between the decoder and node features. The BiLSTM for text-to-graph construction uses 2-layer
bidirectional LSTMs with 512 hidden units.

CycleCVAE Our CycleCVAE uses the same h+θ (x) as the base model. As for hθ(y, z) (the CycleCVAE
extension of CycleBase), we first generate a 10-dimensional latent variable z sampled from qφ(z|x) = N (µx,Σx),
where µx and Σx are both learned by bidirectional LSTMs plus a fully connected feedforward layer. We form
p(z|y) as a Gaussian distribution whose mean and variance are learned from a fully connected feedforward layer
which takes in the feature of the root node of the GAT to represent the graph. Note that applying this p(z|y) as
the CycleCVAE prior is functionally equivalent to using a more complicated encoder, as mentioned in the main
paper.

Implementation Details For both cycle models, we adopt the Adam optimizer with a learning rate of 5e−5
for the text-to-graph modules, and learning rate of 2e−4 for graph-to-text modules. For the graph-to-text module,
we re-implement the GAT-LSTM model (Koncel-Kedziorski et al., 2019) using the DGL library (Wang et al.,
2019b). Our code is available https://github.com/QipengGuo/CycleGT.

https://github.com/QipengGuo/CycleGT
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8.3 Details of Competing Methods

Unsupervised Baselines As cycle training models are unsupervised learning methods, we first compare with
unsupervised baselines. RuleBased is a heuristic baseline proposed by (Schmitt et al., 2020) which simply iterates
through the graph and concatenates the text of each triplet. For example, the triplet “(AlanShepard, occupation,
TestPilot)” will be verbalized as “Alan Shepard occupation test pilot.” If there are multiple triplets, their text
expressions will be concatenated by “and.” The other baseline, UMT (Schmitt et al., 2020), formulates the graph
and text conversion as a sequence-to-sequence task and applies a standard unsupervised machine translation
(UMT) approach. It serializes each triplet of the graph in the same way as RuleBased, and concatenates the
serialization of all triplets in a random order, using special symbols as separators.

Supervised Baselines We also compare with supervised systems using the original supervised training data.
Since there is no existing work that jointly learns graph-to-text and text-to-graph in a supervised way, we can
only use models that address one of the two tasks. For graph-to-text generation, we list the performance of
state-of-the-art supervised models including (1) Melbourne, the best supervised system submitted to the WebNLG
challenge 2017 (Gardent et al., 2017), which uses an encoder-decoder architecture with attention, (2) StrongNeural
(Moryossef et al., 2019) which improves the common encoder-decoder model, (3) BestPlan (Moryossef et al.,
2019) which uses a special entity ordering algorithm before neural text generation, (4) G2T (Koncel-Kedziorski
et al., 2019) which is the same as the GAT-LSTM architecture adopted in our cycle training models, and (5)
Seg&Align (Shen et al., 2020), which segments the text into small units, and learns the alignment between data
and target text segments. The generation process uses the attention mechanism over the corresponding data
piece to generate the corresponding text. For text-to-graph generation, we compare with state-of-the-art models
including OnePass (Wang et al., 2019a), a BERT-based relation extraction model, and T2G, the BiLSTM model
that we adopt as the text-to-graph component in the cycle training of CycleBase and CycleCVAE.

8.4 Ablation Study

We conduct an ablation study using the 50%:50% unsupervised data of WebNLG. Note that our models do
not use an adversarial term, so we only tune the CVAE latent dimension to test robustness to this factor. The
hyperparameter tuning of the size of the latent dimension is shown in Table 5, where we observe that our
CycleCVAE is robust against different z dimensions. Note that because z is continuous while generated text is
discrete, just a single dimension turns out to be adequate for good performance for these experiments. Even so,
the encoder variance can be turned up to avoid ‘overusing’ any continuous latent dimension to roughly maintain
a bijection.

Text (BLEU) Diversity (# Variations)
Latent Dimension
z = 1 46.3 4.62
z = 10 46.5 4.67
z = 50 46.2 4.65

Table 5: Text quality (by BLEU scores) and diversity (by the number of variations) under different dimensions of
z.

9 T5 Model Details and More Generated Samples

9.1 CycleCVAE+T5 Implementational Details

We adopted the pretrained T5 model (Raffel et al., 2020) to replace the GAT-LSTM architecture that we
previously used for the graph-to-text module within the cycle training. T5 is a sequence-to-sequence model that
takes as input a serialized graph (see the serialization practice in Schmitt et al., 2020; Ribeiro et al., 2020; Kale,
2020) and generates a text sequence accordingly. We finetune the T5 during training with the Adam optimizer
using a learning rate of 5e−5.
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9.2 Additional Text Diversity Examples

We list the text diversity examples generated by CycleCVAE+T5 in Table 6.

No. Variations

1

– Batagor, a variation of Siomay and Shumai, can be found in Indonesia, where the leader is Joko
Widodo and Peanut sauce is an ingredient.
– Batagor is a dish from Indonesia, where the leader is Joko Widodo and the main ingredient is Peanut
sauce. It can also be served as a variation of Shumai and Siomay.

2

– The AMC Matador, also known as “American Motors Matador”, is a Mid-size car with an AMC V8
engine and is assembled in Thames, New Zealand.
– AMC Matador, also known as “American Motors Matador”, is a Mid-size car. It is made in Thames,
New Zealand and has an AMC V8 engine.

3
– Aleksandr Chumakov was born in Moscow and died in Russia. The leader of Moscow is Sergey
Sobyanin.
– Aleksandr Chumakov, who was born in Moscow, was a leader in Moscow where Sergey Sobyanin is a
leader. He died in Russia.

4

– A Wizard of Mars is written in English language spoken in Great Britain. It was published in the
United States, where Barack Obama is the president.
– A Wizard of Mars comes from the United States where Barack Obama is the leader and English
language spoken in Great Britain.

5
– The Addiction (journal), abbreviated to “Addiction”, has the ISSN number “1360-0443” and is part of
the academic discipline of Addiction.
– Addiction (journal), abbreviated to “Addiction”, has the ISSN number “1360-0443”.

6
– Atlantic City, New Jersey is part of Atlantic County, New Jersey Atlantic County, New Jersey, in the
United States.
– Atlantic City, New Jersey is part of Atlantic County, New Jersey, United States.

7

– Albuquerque, New Mexico, United States, is lead by the New Mexico Senate, led by John Sanchez and
Asian Americans.
– Albuquerque, New Mexico, in the United States, is lead by the New Mexico Senate, where John
Sanchez is a leader and Asian Americans are an ethnic group.

8

– Aaron Turner plays the Electric guitar and plays Black metal, Death metal and Black metal. He also
plays in the Twilight (band) and Old Man Gloom.
– Aaron Turner plays the Electric guitar and plays Black metal. He is associated with the Twilight
(band) and Old Man Gloom. He also plays Death metal.

Table 6: Examples of diverse text generated by CycleCVAE based on the same input knowledge graph.

10 Proof of Proposition 2

The high-level proof proceeds in several steps. First we consider optimization of `x(θ, φ) over φ to show that no
suboptimal local minima need be encountered. We then separately consider optimizing `x(θ, φ) and `y(θ) over
the subset of θ unique to each respective loss. Next we consider jointly optimizing the remaining parameters
residing between both terms. After assimilating the results, we arrive at the stated result of Proposition 2. Note
that with some abuse of notation, we reuse several loss function names to simplify the exposition; however, the
meaning should be clear from context.
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10.1 Optimization over encoder parameters φ in `x(θ, φ)

The energy term from the x→ ŷ → x̂ cycle can be modified as

`x(θ, φ) =

∫ {
Eqφ(z|x)

[
1
γ ‖x− µx‖

2
2

]
+ d log γ +

rz∑
k=1

(
s2k − log s2k

)
+ ‖µz‖

2
2

}
ρxgt(dx)

=

∫ {
Eqφ(z|x)

[
1
γ ‖(I −W xW y)x− V xz −W xby − bx‖22

]
+ d log γ +

rz∑
k=1

(
s2k − log s2k

)
+ ‖W zx+ bz‖22

}
ρxgt(dx) (13)

=

∫ {
1
γ ‖(I −W xW y)x− V x (W zx+ bz)−W xby − bx‖22

+ d log γ +

κ∑
k=1

(
s2k − log s2k + 1

γ s
2
k‖vx,k‖22

)
+ ‖W zx+ bz‖22

}
ρxgt(dx),

where vx,k denotes the k-th column of V x. Although this expression is non-convex in each s2k, by taking derivatives
and setting them equal to zero, it is easily shown that there is a single stationary point that operates as the

unique minimum. Achieving the optimum requires only that s2k =
[
1
γ ‖vx,k‖

2
2 + 1

]−1
for all k. Plugging this value

into (13) then leads to the revised objective

`x(θ, φ) ≡
∫ {

1
γ ‖(I −W xW y)x− V x (W zx+ bz)−W xby − bx‖22 (14)

+

κ∑
k=1

log
(

1
γ ‖vx,k‖

2
2 + 1

)
+ d log γ + ‖W zx+ bz‖22

}
ρxgt(dx)

ignoring constant terms. Similarly we can optimize over µz = W zx+ bz in terms of the other variables. This is
just a convex, ridge regression problem, with the optimum uniquely satisfying

W zx+ bz = V >x

(
γI + V xV

>
x

)−1
[(I −W xW y)x−W xby − bx] , (15)

which is naturally an affine function of x as required. After plugging (15) into (14), defining εx , (I −W xW y)x−
W xby − bx, and applying some linear algebra manipulations, we arrive at

¯̀
x(θ) , min

φ
`x(θ, φ) (16)

=

∫ {
ε>x

(
V xV

>
x + γI

)−1
εx

}
ρxgt(dx) +

κ∑
k=1

log
(
‖vx,k‖22 + γ

)
+ (d− κ) log γ,

noting that this minimization was accomplished without encountering any suboptimal local minima.

10.2 Optimization over parameters θ that are unique to ¯̀
x(θ)

The optimal bx is just the convex maximum likelihood estimator given by the mean

bx =

∫
(I −W xW y)xρxgt(dx)−W xby = (I −W xW y) c−W xby, (17)

where the second equality follows from Definition 1 in the main text. Plugging this value into (16) and applying a
standard trace identity, we arrive at

¯̀
x(θ) ≡ tr

[
Sεx

(
V xV

>
x + γI

)−1]
+

κ∑
k=1

log
(
‖vx,k‖22 + γ

)
+ (d− κ) log γ, (18)
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where
Sεx , Covρxgt [εx] = (I −W xW y)Covρxgt [x] (I −W xW y)

>
. (19)

The remaining parameters {W x,W y,V x} are all shared with the y → x̂ → ŷ cycle loss `y(θ), so ostensibly
we must include the full loss ¯̀

x(θ) + `y(θ) when investigating local minima with respect to these parameters.
However, there is one subtle exception that warrants further attention here. More specifically, the loss `y(θ)
depends on V x only via the outer product V xV

>
x . Consequently, if V x = ŪΛ̄V̄

> denotes the singular value
decomposition of V x, then `y(θ) is independent of V̄ since V xV

>
x = ŪΛ̄Λ̄

>
Ū
>, noting that Λ̄Λ̄

> is just a
square matrix with squared singular values along the diagonal. It then follows that we can optimize ¯̀

x(θ) over V̄
without influencing `y(θ).

To this end we have the following:

Lemma 1 At any minimizer (local or global) of ¯̀
x(θ) with respect to V̄ , it follows that V̄ = P for some

permutation matrix P and the corresponding loss satisfies

¯̀
x(θ) = tr

[
SεxΣ

−1
εx

]
+ log |Σεx | , where Σεx , V xV

>
x + γI. (20)

This result follows (with minor modification) from (Dai et al., 2019)[Corollary 3]. A related result also appears in
(Lucas et al., 2019).

10.3 Optimization over parameters θ that are unique to `y(θ)

Since y has zero mean per Definition 1, the optimal by is the convex maximum likelihood estimator satisfying
by = −W ybx (this assumes thatW ybx has not been absorbed into y as mentioned in the main text for notational
simplicity). This leads to

`y(θ) ≡ tr
[
SεyΣ

−1
εy

]
+ log

∣∣Σεy

∣∣ , where Sεy , (I −W yW x) (I −W yW x)
> (21)

and Σεy is defined in the main text.

10.4 Optimizing the combined loss ¯̀
cycle(θ)

The above results imply that we may now consider jointly optimizing the combined loss

¯̀
cycle(θ) , ¯̀

x(θ) + `y(θ) (22)

over {W x,W y,V xV
>
x }; all other terms have already been optimized out of the model without encountering any

suboptimal local minima. To proceed, consider the distribution ρŷgt of

ŷ = W yx+ by = W yAy +W yBu+W yc+ by. (23)

To satisfy the constraint the stipulated constraint ρŷgt = ρygt subject to the conditions of Definition 1, it must be
that W yA = I and B ∈ null[W y] (it will also be the case that by = −W yc to ensure that ŷ has zero mean).
From this we may conclude that

Sεx = (I −W xW y)Covρxgt [x] (I −W xW y)
>

= (I −W xW y)
[
AA> +BB>

]
(I −W xW y)

> (24)

= (A−W x) (A−W x)
>

+BB>,

where the middle equality follows because y and u are uncorrelated with identity covariance. Furthermore, let
D̃ ∈ Rry×rx denote any matrix such that D̃A = I and B ∈ null[D̃]. It then follows that W y must equal some
such D̃ and optimization of (22) over W x will involve simply minimizing

¯̀
cycle(θ) ≡ tr

[
(A−W x) (A−W x)

>
Σ−1εx

]
+ tr

[(
I − D̃W x

)(
I − D̃W x

)>
Σ−1εy

]
+ C (25)
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overW x, where C denotes all terms that are independent ofW x. This is a convex problem with unique minimum
at W x = A. Note that this choice sets the respective W x-dependent terms to zero, the minimum possible value.
Plugging W x = A into (25) and expanding the terms in C, we then arrive at the updated loss

¯̀
cycle(θ) ≡ tr

[
BB>Σ−1εx

]
+ log |Σεx |+ log

∣∣Σεy

∣∣ (26)

= tr
[
BB>

(
V xV

>
x + γI

)−1]
+ log

∣∣∣V xV
>
x + γI

∣∣∣+ log
∣∣∣D̃V xV

>
x D̃

>
+ γI

∣∣∣ .
Minimization of this expression over V x as γ becomes arbitrarily small can be handled as follows. If any V x and
γ are a local minima of (26), then {α = 1, β = 0} must also be a local minimum of

¯̀
cycle(α, β) , (27)

tr
[
BB>

(
αΣεx + βBB>

)−1]
+ log

∣∣∣αΣεx + βBB>
∣∣∣+ log

∣∣∣αΣεy + βD̃BB>D̃
>∣∣∣

= tr
[
BB>

(
αΣεx + βBB>

)−1]
+ log

∣∣∣αΣεx + βBB>
∣∣∣+ log

∣∣αΣεy

∣∣ .
If we exclude the second log-det term, then it has been shown in (Wipf and Nagarajan, 2007) that loss functions
in the form of (27) have a monotonically decreasing path to a unique minimum as β → 1 and α→ 0 . However,
given that the second log-det term is a monotonically decreasing function of α, it follows that the entire loss
from (27) has a unique minimum as β → 1 and α→ 0. Consequently, it must be that at any local minimum of
(26) V xV

>
x = BB> in the limit as γ → 0. Moreover, the feasibility of this limiting equality is guaranteed by

our assumption that rz ≥ rc − ry (i.e., if rz < rc − ry, then V x would not have sufficient dimensionality to allow
V xV

>
x = BB>).

10.5 Final Pieces

We have already established that at any local minimizer {θ∗, φ∗} it must be the case thatW ∗
x = A andW ∗

y = D̃.
Moreover, we also can infer from (17) and Section 10.3 that at any local minimum we have

b∗x =
(
I −W ∗

xW
∗
y

)
c−W ∗

xb
∗
y =

(
I −W ∗

xW
∗
y

)
c+W ∗

xW
∗
yb
∗
x =

(
I −AD̃

)
c+AD̃b∗x (28)

from which it follows that
(
I −AD̃

)
c =

(
I −AD̃

)
b∗x. This along is not sufficient to guarantee that b∗x = c is

the unique solution; however, once we include the additional constraint ρygt = ρŷθ per the Proposition 2 statement,
then b∗x = c is uniquely determined (otherwise it would imply that ŷ has a nonzero mean). It then follows that
b∗y = −W ∗

yb
∗
x = −D̃c.

And finally, regarding V ∗x, from Section 10.4 we have that V ∗x (V ∗x)
>

= BB>. Although this does not ensure
that V ∗x = B, we can conclude that span[Ū ] = span[B]. Furthermore, we know from Lemma 1 and the attendant
singular value decomposition that V ∗x = ŪΛ̄P> and (V ∗x)

>
V ∗x = P>Λ̄

>
Λ̄P . Therefore, up to an arbitrary

permutation, each column of V ∗x satisfies

‖v∗x,k‖22 =

{
λ̄2k, ∀ k = 1, . . . , rank[B]
0, ∀ k = rank[B] + 1, . . . , rz

(29)

where λ̄k is an eigenvalue of Λ̄. Collectively then, these results imply that V ∗x =
[
B̃,0

]
P>, where B̃ ∈

Rrx×rank[B] satisfies span[B̃] = span[U ] = span[B].

11 Proof of Corollary 3

From (15) in the proof of Proposition 2 and the derivations above, we have that at any optimal encoder solution
φ∗ = {W ∗

z, b
∗
z}, both W

∗
z and b∗z are formed by left multiplication by (V ∗x)

>. Then based on Proposition 2 and
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the stated structure of V ∗x, it follows that W
∗
z = P

[
W̃
∗
z

0

]
and b∗z = P

[
b̃
∗
z

0

]
, where W̃

∗
z has rank[B] rows

and b̃
∗
z ∈ Rrank[B]. Finally, there exists a bijection between x and {y, µ̃z} given that

y = W ∗
yx+ b∗y and µ̃z = W̃

∗
zx+ b̃

∗
z (for x→ {y, µ̃z} direction)

x = W ∗
xy + V ∗xP

[
µ̃z
0

]
+ c (for {y, µ̃z} → x direction) , (30)

completing the proof.
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