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Abstract

Goal-directed behaviour is a deeply important part of human psychology. People constantly set goals

for themselves and pursue them in many domains of life. In this paper, we develop computational

models that characterize how humans pursue goals in a complex dynamic environment and test how

well they describe human behaviour in an experiment. Our models are motivated by the principle of

resource rationality and draw upon psychological insights about people’s limited attention and planning

capacities. We found that human goal pursuit is qualitatively different and substantially less efficient

than optimal goal pursuit. Models of goal pursuit based on the principle of resource rationality captured

human behavior better than both a model of optimal goal pursuit and heuristics that are not resource-

rational. We conclude that human goal pursuit is jointly shaped by its function, the structure of the

environment, and cognitive costs and constraints on human planning and attention. Our findings are an

important step toward understanding humans goal pursuit, as cognitive limitations play a crucial role in

shaping people’s goal-directed behaviour.

1 Introduction

Human behavior is fundamentally goal-directed (Carver and Scheier, 2001). People are often unaware of

some of their goals and the ways in which they pursue them (Custers and Aarts, 2010). But their behavior

is constantly driven by the pursuit of one or more goals nevertheless. The central role that goals occupy in

human cognition and behavior raises the question of why people have goals in the first place. This question

poses a serious challenge to classical notions of rationality (Lieder and Griffiths, 2020). In fact, from the

perspective of rational decision theory (Morgenstern and Von Neumann, 1953), goals appear unnecessary

because one should simply choose the series of actions that maximizes one’s expected utility in the long

run. To cope with the intractability of large decision problems, the mind breaks complex problems down

into simpler, more tractable, sub-problems. For instance, the problem of living a good life can be broken

down into first quenching one’s thirst (a short-term goal) and then thinking about what to do next. Once

this goal has been set, deciding what to do becomes much easier. Knowing the goal allows people to focus

their limited attention on the most relevant aspects of their environment (e.g., the location of the closest

drinking fountain relative to where they are now) and eschew having to plan many steps ahead by using

simple heuristics (e.g., walk straight in the direction of the drinking fountain until you encounter an obstacle,

then navigate around the obstacle). Goals simplify sequential decision problems because they allow people

to use efficient representations and clever heuristics. Although this may appear intuitively clear and there

has been some work on heuristics that people use to pursue goals (Newell and Simon, 1972), there is still

no formal unified theory of which heuristics and representations people employ to pursue goals efficiently in
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the light of their bounded cognitive resources.

In particular, it is still unclear which strategies people use to pursue their goals in complex dynamic

environments, how they represent those environments depending on their goal, which cognitive resources

most strongly constrain their strategies, and how well people perform relative to their cognitive constraints.

To address these questions, we propose that the principle that people make optimal use of their finite time and

bounded cognitive resources (resource rationality ; Lieder and Griffiths, 2020), can be used to elucidate how

people pursue their goals and why they pursue their goals in this way. We apply this principle to develop a

series of resource-rational models that express the implications of limited attention, limited planning, or both

on people’s representations and heuristics. We test the predictions of these models against the predictions of

a model of unboundedly rational goal pursuit and two baseline models in a simulated micro-world paradigm

in which participants manage a farm.

The resource-rational approach allowed us to develop computational models that predict human goal

pursuit substantially better than either the unboundedly rational model or the baseline models. Our experi-

ment further revealed that the representations and heuristics people use to pursue goals are shaped by both

their limited attentional resources and their short planning horizons. Given the central role of goal pursuit

in human cognition and behavior these findings are an important step towards understanding how people

navigate their lives.

The outline of this article is as follows. We start by summarizing previous approaches to studying how

people pursue their goals and our resource-rational modeling paradigm. We then formulate an optimal model

of goal pursuit, a series of resource-rational models, and two alternative models. Having formulated these

models we then test their predictions in a behavioral experiment and discuss the implications of our findings.

2 Background

In this section, we present related work and ideas upon which we draw in developing our models of goal

pursuit and designing the task for our experiment.

2.1 Theories of human goal pursuit

Various previous theories have construed goal pursuit in terms of feedback control (Carver and Scheier, 2001),

planning (Gabaix, 2016; Newell and Simon, 1972; Botvinick and Toussaint, 2012), reinforcement learning

(Juechems and Summerfield, 2019), and active inference (Pezzulo et al., 2015, 2018; Botvinick and Toussaint,

2012). Before presenting our own perspective, we briefly review these existing theories, emphasizing their

commonalities and differences.
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According to feedback control theories, the perceived discrepancy between a system’s current state and the

goal serves as a feedback signal that drives goal-directed behavior (Wiener, 1948; Miller et al., 1960; Powers,

W and Clark, R K and MacFarland, R L, 1960; Carver and Scheier, 2001). This perspective pervades theories

in computational models in neuroscience and psychology. The psychological perspective (Carver and Scheier,

2001) views human goal pursuit as a form of feedback control. According to this view, people select their

actions so as to reduce the perceived discrepancy between what they perceive to be the case and what should

be the case according to the goal(s) they are currently pursuing. According to Carver and Scheier (2001),

people’s goals are organized in hierarchies. The goals at the top of the hierarchy are abstract long-term

goals (e.g., “Make the world a better place.”). The goals at the bottom of the hierarchy are very concrete

short-term goals (e.g., “Drink a sip of water.”). Each goal’s subgoals serve to facilitate its attainment or

maintenance by making it more actionable. Consistent with this view, the theory of active inference posits

that goal-directed behaviour relies on inverting a hierarchical generative model of the relationships between

action and perception (Botvinick et al., 2009; Friston, 2010; Pezzulo et al., 2015, 2018).

Goal pursuit has also been studied in the reinforcement learning framework. Supporting this perspective,

it has been found that the achievement of subgoals triggers the same dopaminergic reward signals as receiving

external rewards (Ribas-Fernandes et al., 2019, 2011; Mas-Herrero et al., 2019). Juechems and Summerfield

(2019) have explicitly integrated the cybernetic perspective on goal pursuit into the reinforcement learning

framework. Concretely, they present the idea of homeostatically regulated reinforcement learning as a

possible explanation for how humans derive value from internal states and external stimuli. In their theory,

goals are “cognitive setpoints” and the positive and negative rewards that people experience communicate the

perceived reduction and increase in the discrepancy between the current state and the goal state, respectively.

The principles of feedback control and reinforcement learning often lead to simple reactive control laws

that specify the system’s output as a function of its input. These control laws enable agents to swiftly

respond to changes in the environment or their internal state. However, human goal pursuit can also involve

planning, wherein a person may deliberate to find a sequence of actions that will likely bring them closer to

their goal. Formally, planning can be modelled as search (Newell and Simon, 1972), dynamic programming

(Gabaix, 2016), or inference (Botvinick and Toussaint, 2012). Empirical research on planning has generally

found that people’s capacity for planning is rather limited (Callaway et al., 2018; Newell and Simon, 1972;

Gabaix, 2016). For instance, Newell and Simon (1972) ask people to think aloud about how to achieve the

goals that they had been asked to achieved in various problem solving tasks. Their data suggested that

while people did engage in planning, they were generally unable to plan more than a few steps ahead and to

consider more than a few alternatives.
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2.2 Resource rationality

To characterize humans’ goal-directed behavior, we develop computational models which are motivated by

the principle of resource rationality (Lieder and Griffiths, 2020), which assumes that the human mind makes

optimal use of limited cognitive resources. This theory can be applied to model the way in which people

decide in a given environment E by the resource-rational heuristic

(1)h? = argmax
h∈HB

E [RR(h,E,B)] ,

where HB is the set of heuristics that the person’s brain can implement and the resource-rationality

RR(h,E,B) of the heuristic h given the cognitive constraints of the brain B is

(2)RR(h,E,B) = EP (result|s0,h,E,B) [u(result)]− E [cost(th, ρ) | h, s0, B,E] ,

where u(result) is the person’s subjective utility u of the outcomes (result) of the choices made by the

heuristic h, s0 = (o, b0) comprises the observed information about the initial state of the external world

(o) and the agent’s initial internal state b0, and cost(th, ρ) denotes the total opportunity cost of investing

the cognitive resources ρ used or blocked by the heuristic h for the duration th of its execution. Both the

result of applying the heuristic and its execution time depend on the situation in which it is applied. The

expected values (E) weigh the utility and cost for each possible situation by their posterior probability given

the environment E and the observed characteristics of the current situation (o). The brain’s computational

limitations and uncertainty about the environment limit how effective people’s decision strategies can be. In

developing resource-rational models of human goal pursuit, we make assumptions about the ways in which

human decision-making capacity is limited, then develop models which account for these constraints and

reflect optimal behavior subject to them. The principle of resource rationality has been successfully applied

to model cognitive processes such as planning (Callaway et al., 2018) as well as explain traditional biases

such as the anchoring bias (Lieder et al., 2018b) and availability biases (Lieder et al., 2018a).

The principle of resource-rational applies not only to heuristics but also the representations. One of the

first instances of resource-resource rational representations is the idea behind sparse dynamic programming

(Gabaix, 2016). Sparse dynamic programming is a method for modelling decision-making which accounts

for the cognitive costs of paying attention. Rather than using all available information, the sparse dynamic

programming model assumes that people represent the subset of their environment that is most relevant to

their decision, then plan the future effects of their action in this subset and choose the best options based

on the limited information they attend to. The sparse-max operator is a special case of sparse dynamic

programming which does not model planning several steps ahead (Gabaix, 2014).
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2.3 Simulated Micro-worlds

Simulated micro-worlds (SMWs) are a common paradigm used to study problem solving in complex envi-

ronments (Brehmer and Dörner, 1993). SMWs are generally designed to model some real-world task, such

as running a fictional airline company or being the mayor of a village. A SMW consists of a set of variables

which are related to each other and a number of discrete time steps. The person interacting with the SMW

can change some variables, but might only be able to influence other variables indirectly. For instance,

participants might manipulate the ticket price of the fictional airline company directly but not customer

satisfaction. This makes SMWs suitable for studying how people might pursue goals in the real world. So

far, SMWs have only rarely been used to study goal pursuit directly (Rohe et al., 2016). Rather, participants

were usually just presented with the simulated environment without any explicit goals (Brehmer and Dörner,

1993). In this article, we develop a simulated micro-world paradigm for studying human goal pursuit where

people must select inputs to steer a dynamical system toward a target state.

3 Models of Human Goal Pursuit

There are three distinct types of questions that one can ask about goal pursuit (Marr, 1982). First, one can

ask “What is the purpose of goal pursuit? Which problem does it solve?”. Second, one can ask “What are

the cognitive strategies and representations that people employ to pursue their goals?”. Third, one can ask

“Where and how are these processes and representations realized in the brain?” In this article, we focus on

the second question. David Marr referred to investigating cognitive systems through the lens of these three

questions as the computational level, algorithmic level, and implementation level, respectively (Marr, 1982).

We develop three types of model: a model of optimal goal pursuit, resource-rational models of goal

pursuit, and heuristic models of goal pursuit. The optimal model and the resource-rational models require

a theory of the function of goal pursuit (i.e., an answer to the first question). We therefore first present our

theory of the function of goal pursuit and then introduce the three types of models in turn.

3.1 Computational level theory of goal pursuit

In the following, we assume that the function of goal pursuit is to select actions that minimize the discrepancy

between the state of the environment (s) and a given goal (g) by a given deadline (N) while minimizing the

cost of the efforts that are exerted to achieve it, that is

arg min
π
C(π) with C(π) =

√√√√||sN − g||22+c ·
N−1∑
i=0

cost(π(si))2, (3)
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where the goal pursuit policy π : S 7→ A selects actions, such as how much money to invest or many hours to

work on given project on a given day, based on the current state, cost(π(si)) is the cost of those investments,

and c controls its relative importance.

Concretely, we modelled goal pursuit in the context of a simulated micro-world (SMW) that models the

task of managing a farm (see Figure 1). The dynamics the system we use to model goal pursuit correspond

to a system of linear equations (Funke, 1993) with the following transition function:

st+1 = f(st,at) = Ast + Bat, (4)

where the vectors st and at contain the current values of the endogenous and exogenous variables, respectively.

Matrix A ∈ RDs×Ds determines both the effect of endogenous variables both on themselves and each other

from time t to t+ 1, while matrix B ∈ RDs×De determines how the exogenous variables set by the agent at

time t affect the endogenous variables at time t+ 1. Participants pursuing a goal must bring the endogenous

variables close to a goal state g ∈ RDs . In each round participants could take action to either increase or

decrease the levels of various nutrients, herbicides, and pesticides on the fields. We therefore model the cost

of the participant’s action π(s) as the Euclidean norm of the selected changes, that is cost(π(s)) = ||π(s)||2.

We set the relative importance of these costs to c=0.01 to emphasize reaching the goal as relatively more

important than keeping inputs small while still approaching the goal state. It is also ideal to distribute the

weight of inputs across exogenous variables and time steps as much as possible.

3.2 Optimal goal pursuit: the linear-quadratic regulator

We use a linear-quadratic regulator (Kirk, 2004) to model optimal goal pursuit. This model computes the

sequence of actions that minimizes the cost function specified in Equation 3. A more detailed description of

the linear-quadratic regulator can be found in the Supplementary Material.

3.3 Resource-rational models of goal-pursuit

In pursuing a goal in a real or artificial environment, there are often many possible variables and relationships

to keep track of. For instance, the goal of learning course material in a class requires keeping track of one’s

current grade, estimates of confidence in various course concepts, and how those concepts relate to each other

in order to plan what to study and how. We might expect human goal pursuit to be sub-optimal in cases where

cognitive limitations interfere with the ability to pursue a goal. For instance, limited working memory likely

constrains humans’ ability to plan multiple steps ahead when solving the Tower of Hanoi problem (Kotovsky

et al., 1985). To characterize how resource constraints might shape goal-directed behaviour, we develop
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resource-rational models of goal pursuit that account for limited attention and limited planning capacity

factorially. These models account for limited attention, limited planning, or both. The Supplementary

Material contains more detailed descriptions of how these models choose actions.

3.3.1 Limited planning: hill-climbing

We use an optimal hill-climbing model to account for limited planning ability. This strategy has been used in

the past to model human problem solving (Simon and Newell, 1971). Our model assumes that while people’s

limited resources do not allow them to look more than a single step into the future, people make rational

use of those resources by taking a step that is near-optimal in the short-run in terms of its direction and its

length. Concretely, at each time step, it moves in the direction of the negative gradient of its distance to

the goal state by just the right amount (λopt) to maximally reduce the distance to the goal after the current

step, that is

∆ = λopt · ∇a||f(st,a)− g||2 (5)

where the gradient is evaluated at a = 0. To capture that a person’s steps might be systematically too small

or too large, a free parameter λ maps the optimal step onto the chosen action, that is at = λ ·∆.

3.3.2 Limited attention: sparse LQR

We incorporate attention costs into a model of goal pursuit using a modified version of the sparse-max

operator that Gabaix (2014) introduced as a psychologically plausible version of maximization. The sparse

LQR model assumes that (1) attention is a limited and costly resource and (2) people allocate their limited

attention in a near-optimal manner. This model selects an attention vector m? that specifies which variables

and which effects are attended to and which are ignored. This attention vector is chosen so as to minimize

the weighted sum of the score achieved by planning with this simplified representation and the cognitive cost

of attending to it, that is

m? = argmin
m

C(πm) + k ·
∑
i

mi (6)

where C is the cost function (Equation 3), πm is the plan that the LQR selects when applied to the simplified

representation of the environment specified by m, and k is the cost per attended element of the environment.

3.3.3 Limited planning and limited attention: sparse hill-climbing

Finally, we use a sparse hill-climbing model to account for planning costs and attention costs simultaneously.

This model applies the hill-climbing heuristic (Equation 5) within a simplified mental representation of
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the environment. This representation is constructed by selecting an attention vector that maximizes the

performance attained by applying the hill-climbing heuristic to the resulting representation while minimizing

the cost of attention. We developed two versions of this model. In the discrete version, each relationship

between variables is either attended to (mi = 1) or not (mi = 0). In the continuous version, each relationship

between variables is partially attended (0 ≤mi ≤ 1), where 1 represents full attention and smaller numbers

lead the model to perceive the relationships to be weaker than they truly are. These models have two free

parameters: the step size and the attention cost.

3.4 Baseline models

We propose two null models which serve as baselines against which we can compare the fit of our resource-

rational models. Null model 1 is based on an intuitive process that people might follow: First, n endogenous

variables are selected at random. Then, for each chosen endogenous variable s, the agent randomly selects

one exogenous variable a that affects s. Next, a is set in the direction that brings s toward its target value.

Its magnitude is sampled from a uniform distribution between 0 and b. n and b are both free parameters of

this model.

Null model 2 simply never uses any resources. In each time step, it takes the default action of leaving

all the exogenous variables at zero. Therefore, the trajectory of this model is governed entirely by the

endogenous transition matrix A. This model has no free parameters, other than the parameters of the

observation model.

3.5 Observation model

To model how the idealized cognitive processes in each model give rise to concrete goal-directed actions, we

model two independent types of noise. Length noise describes people taking either larger or smaller steps

than the model predicts, while angular noise describes people moving in different directions than the model

predicts. The details of how we decompose the differences between human and model actions are included

in the Supplementary Material.

3.6 Qualitative predictions of goal pursuit models

Our resource-rational models make two qualitative predictions about how humans pursue goals. First,

the limited-attention models represent only a subset of the relationships between variables, leaving some

exogenous variables disconnected from the environment. Our models predict that people will usually leave

some the variables unchanged. In contrast, the optimal model always manipulates all of the exogenous
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Figure 1: Screenshot of the simulated micro-world task shown to participants in Experiment 1.

variables. Second, our limited planning models predict that the magnitude of inputs will vary significantly

over time. The limited planning models always minimize the immediate costs of their input in the current

step only. They therefore take larger steps when they are farther from the goal and smaller steps when they

are closer to the goal. This variability contrasts with the optimal model, which balances its inputs roughly

evenly across rounds. Importantly, these predictions are inherent to the general structure of our models and

do not depend on the specific settings of their free parameters.

4 Experiment: Which model best explains human goal pursuit?

We had two goals for our experiment. First, we wanted to test which of our models best explains human

goal pursuit and which parameter values best fit the data. Second, we wanted to test whether a model of

unboundedly-optimal goal pursuit ever explained humans’ actions better than bounded models. To achieve

these goals, we designed an experiment in which participants were asked to pursue a goal in a SMW. Each

action they took was recorded along with the total cost they achieved. Each model was then fit to each

participant’s data individually and Bayesian model selection (Stephan et al., 2009) was applied to identify

the model that best explains the data from each individual participant.
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4.1 Methods

We recruited 180 participants via Positly, an online participant recruitment service which interfaces with

Amazon Mechanical Turk. 111 of the participants passed the attention checks and did not report a lack of

understanding of the task in the experiment feedback, so their data was used in subsequent analysis. On

average, participants took 34.6 minutes to complete the experiment. We paid them a base payment of $2.70

if they watched the video instructions and completed (either passed or failed) the quiz. If they passed the

quiz and completed the full experiment, they received another $1.50 in addition to a bonus of up to $1 based

on the score they achieved. We believe the rate of passing the attention check was relatively low due to the

complexity of the task.

Before attempting the task, participants watched three instructional videos explaining the dynamics of

the SMW, the objective function, and how to manipulate the endogenous variables. The task was presented

as managing a farm on an alien planet. Participants were tasked to wisely invest costly “resources” to

efficiently achieve a target within ten rounds. The target was defined in terms of a combination of five

“farming measures”. Causal relationships between inputs and variables were represented as weighted edges.

A screenshot of the experiment can be seen in Figure 1.

In between videos, participants were given the opportunity to try the functionality for four rounds.

Participants then took a quiz consisting of two questions which tested their understanding of the task and

completed a training season consisting of 6 rounds. If they achieved a goal distance of at 30 or less during

the training round, they could move on to the final task, where they were assigned a situation and asked to

pursue a goal over 10 rounds.

Participants were randomly assigned to one of 30 situations. A situation in this experiment is defined by

the initial values of the endogenous variables. We selected situations for the experiment by first generating

3000 situations whose endogenous values were each sampled uniformly from the interval [−250, 250]. From

these, we selected 30 situations using two criteria reflecting the two goals of the experiment. To discover which

model describes human goal-directed actions best, we designed an informative condition which maximizes

the probability of finding strong evidence in favour of one model over the others. To test whether our models

of goal pursuit can accurately predict which situations humans do well on and which situations they find

hard, we designed an easy condition, where the situations where the bounded models performed best relative

to the optimal model were selected. The goal of distinguishing between models is ultimately more important,

so we chose 20 informative situations and 10 easy situations.

We applied a Bayesian optimal experimental design approach (Chaloner and Verdinelli, 1995) to create

20 situations that maximize the probability that the model generating the data can be correctly inferred
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Model Expected model prob. Exceedance prob.
optimal 0.01 0.00
limited attention 0.27 0.11
limited planning 0.36 0.89
limited attention and planning (discrete) 0.17 0.00
limited attention and planning (continuous) 0.12 0.00
null model 1 0.05 0.00
null model 2 0.02 0.00

Table 1: Results of mixed-effects Bayesian model selection applied to the data from the experiment. Expected
model probabilities denote the expected proportion of participants who are best explained by the model.
Exceedance probabilities denote the probability that the proportion of people whose data is best explained
by a given model is larger than for any other model.
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(a) Scores for the human participants.
Each bin contains a score range of 25.
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(b) Scores for the optimal model.
Each bin contains a score range of 25.
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(c) Scores for the optimal model.
Each bin contains a score range of 2.

Figure 2: Histograms of the scores achieved by participants in the experiment (left), the optimal model
(centre), and the optimal model on a finer scale (right). 6 of the 111 participants were excluded from the
human histogram due to their scores being above 500.

from the resulting state-action sequences (informativeness). To achieve this we generated simulated noisy

data from the LQR, sparse hill-climbing model, and null model 2, then fit each model to the simulated

data and computed its posterior probability. We chose the parameters for generating the data by fitting the

models to data from a small pilot experiment. We then chose the situations which maximize the sum of the

posterior probability of each model given the data it generated. The remaining 10 situations were in the

easy condition; they were the situations where the sparse hill-climbing model achieved a score closest to the

optimal model. Of the included participants, 37 (33%) were assigned to the easy condition and 74 (67%)

were in the informative condition.

4.2 Results

We find four main results from this experiment. First, human goal pursuit is highly sub-optimal. Second,

resource-rational models capture deviations from optimality much better than simpler alternative models.

Third, considering limitations on both attention and planning is important to capture human goal pursuit.

Finally, people differ in which of these resource constraints best explains how their goal pursuit deviates
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from optimal goal pursuit.

Human goal pursuit was far from optimal in this experiment. Figure 2 shows a histogram of the scores

achieved by participants. They were mostly clustered around 100, with a few participants who did much

worse. The median score achieved by humans was 116.0. In contrast, the LQR achieved a median score of

4.7, outperforming the median human participant by a factor of over 24, which is highly significant according

to a Kruskal-Wallis H test (H(111) = 180, p < 0.0001).

The resource-rational models achieved scores much closer to the human median, as shown in Table 2. To

compare the fit of each model to the participant data more precisely, we fit the free parameters and noise

parameters of all the models to each participant’s data individually using Bayesian optimization (Snoek

et al., 2012) as implemented by Nogueira (2014) with 500 initial evaluation points and 500 iterations. We

then performed mixed-effects Bayesian model selection at the group level (Stephan et al., 2009) to estimate

the proportion of people whose behavior is best explained by each model (expected model probability ŵ) and

the probability that it best explains a larger proportion of the population than any other model (exceedance

probability φ). To do so, we used Akaike’s Information Criterion (AIC) (Akaike, 1998) as an estimate of each

model’s marginal likelihood at the participant level. Table 1 summarizes the results of this analysis. The

LQR was least compatible with our the data by far. It did not fit any participant’s data best it and appears

to be appropriate for less than 1% of the population (ŵ < .01). The four resource-rational models, which

accounted for limited attention, limited planning, or both, explained the experimental data better than both

the optimal model and the baseline models which do not rely on the theory of resource-rationality. According

to family-level Bayesian model selection (Penny et al., 2010), more than 97% of all people appear to be best

described by one of our resource-rational models, indicating very strong evidence in favour of those models

(φ > 0.9999). We also include the parameter estimates that best fit human data in the Supplementary

Material.

The resource-rational models made three qualitative predictions, two of which were confirmed by the

experimental data. First, as predicted by the models with a limited planning horizon, the magnitude of

humans’ inputs varied across rounds much more than the LQR’s inputs (14.68 vs. 1.10, H(141) = 70.1,

p < 0.0001). The discrete sparse hill-climbing model captures this variability much better than the LQR

model (see Figure 3). A notable exception is that in some environments the discrete sparse hill-climbing

model sets all inputs to zero in all rounds, leading to a standard deviation of 0. Second, as predicted by the

resource-rational models with bounded attention,people manipulated significantly fewer variables at a time

than the would have been optimal (2 vs. 4, H(141) = 84.2, p < 0.0001). As Figure 4 shows, the continuous

sparse hill-climbing model captures the number of variables manipulated by people much more accurately

than the LQR. Plots of input norm standard deviation and number of variables manipulated for all models
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Model Median Score Median # Vars Manipulated Input Norm Stdev
optimal 4.7 ( 4.0) 4 (0) 1.10 ( 0.88)
limited attention 94.4 ( 96.1) 1 (2) 9.33 (13.40)
limited planning 126.7 (104.5) 4 (0) 2.63 ( 3.02)
limited both (discrete) 164.6 (167.6) 0 (1) 9.28 (10.83)
limited both (continuous) 263.0 (299.6) 2 (1) 7.95 (25.45)
null model 1 459.9 (488.3) 1 (0) 0.48 ( 1.10)
null model 2 514.8 (541.6) 0 (0) 0.00 ( 0.00)

Table 2: Comparison of the scores and numbers of variables manipulated by each model. These values were
computed by running each model on each situation 60 times for each participant whose data that model fit
best, using the set of parameters that best fit that participant. We then computed medians across all of
those runs. Inter-quartile ranges appear in parentheses next to numbers. Scores vary both due to noise and
due to the models being run on different situations.

are available in the Supplementary Material. Third, the prediction that participants in the easy condition

would do better than those in the hard condition (median scores of 137.9 vs. 169.8 (H(120)=6.28, p = 0.012)

according to the sparse hill climbing model) was not confirmed in the experiment. The median scores were

117.3 in the easy condition and 116.4 in the informative condition. A Kruskal-Wallis H test did not reveal

a significant difference between median scores (H(111)=0.0006, p=0.98).

As Table 1 shows, individual participants varied notably in which model explained their actions best. The

expected proportion of people described best by the limited attention model (ŵ) was 27%, compared with

36% for the limited planning model and 17% and 12% for the discrete and continuous sparse hill-climbing

model. Null models 1 and 2 explained an expected 4.6% and 2.3% of participants best, respectively. This

indicates that different people might allocate their cognitive resources differently. Participants best described

by the hill-climbing model might allocate their resources to representing the problem in full detail instead

of planning, while those best described by the limited attention model might represent only a subset of

the system, but plan several steps ahead. Participants whose actions were best explained by the limited

attention model achieved a better median score (112.0) than participants whose actions were best explained

by the hill-climbing model (161.6; H(72)=4.69, p=0.030). This suggests that the most effective allocation of

people’s limited cognitive resources might be to create a simplified mental model that makes it tractable to

plan several steps ahead. Table 2 shows the median score of each model, along with qualitative aspects of

models’ performance. Overall, models with a limited planning horizon were best for a larger proportion of

people than models that do not (67% vs. 33%, φ = 0.999) and models accounting for bounded attention best

explained the data from a larger proportion of participants than models that do not (57% vs. 43%, φ = 0.90).

This suggests that bounded attention and limits on planning should both be considered in modeling human

goal pursuit, even though their relative importance may differ from person to person.
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Figure 3: Comparison of the standard deviation of input norms (i.e. how much the magnitude of inputs
varied between rounds on a particular task) between the optimal model (LQR), the sparse LQR, and humans.
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Figure 4: Comparison of the number of variables manipulated (i.e. the number of non-zero input variables)
between the optimal model (LQR), the continuous sparse hill-climbing model, and humans.

5 Discussion

In this paper, we introduced resource-rational models of human goal pursuit which incorporate planning

and attention costs to pursue a goal within a simulated micro-world. We then tested these models in a

behavioural experiment. We found that the resource-rational models explained participants’ actions better

than both the optimal model and our two baseline models. One interesting aspect of our resource-rational

models of goal pursuit under limited attentional resources is that they adapt which information they use to

the structure of the environment and the goal. The success of our resource-rational models therefore suggests

that people did not act optimally, but made rational use of their finite cognitive resources.

The LQR was an extremely poor fit to the human data, which suggests that bounded planning and

attention abilities are significant constraints on human goal pursuit. One possible explanation for the high

degree of individual variation in which model fit best is that people have a finite pool of cognitive resources

which they can allocate between planning and attention. The difference between the scores achieved by

participants best described by the limited attention model and those best described by the limited planning

model might reflect differences in the relative cognitive costs of paying attention and planning for different

participants. Alternatively, some participants might simply be better at allocating limited resources than

others.
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5.1 Relationship to other models and frameworks

Our experimental task was motivated by theories of feedback control in psychology, where goal pursuit is

framed as an attempt to bring multiple variables close to a goal state (Carver and Scheier, 2001). We

have expanded upon these ideas by developing computational models of how resource constraints can affect

macroscopic goal pursuit. While optimal control theory accurately describes how people achieve small-scale

goals such as in motor control (Christopoulos and Schrater, 2011), we have shown that the same model does

not provide a plausible account of goal pursuit in a larger-scale simulated micro-world task.

Several of our models draw heavily on the work of Gabaix (2016) on sparse dynamic programming as an

account of decision making and planning under resource constraints. However, while sparse dynamic pro-

gramming only accounts for attention constraints, we combine sparse attention with planning constraints in

our sparse hill-climbing model. This enables us to understand more closely how different cognitive constraints

interact with each other and model some humans’ behavior more accurately.

Quantum probability theory has previously been applied to explain deviations from rationality, such as

people making decisions which seem to violate the It has traditionally been applied to decision-making under

uncertainty and errors in probabilistic judgement (i.e. Busemeyer et al., 2011). The task we gave participants

was deterministic, so the differences between classical and quantum probability theory likely do not play a

role in our experiment. In future work, quantum probability theory could be applied to model how people

represent their uncertainty about the state and the dynamics of the environment. Quantum probability

theory is consistent with the general principle of resource-rationality in that it can be seen as an account of

how people use limited representational resources to perform complex probabilistic computations.

The Probabilistic Language of Thought framework posits that mental representations rely on both struc-

ture and probabilistic uncertainty. One idea from this framework that might be relevant to modeling how

people manipulated our task is that of clustering. It has been proposed that people form meaningful cate-

gories by identifying clusters of related objects (Kemp et al., 2012). This idea could be incorporated into

future models of goal pursuit. Those models might postulate that people’s mental representations cluster

variables or the relationships between variables into categories based on features like magnitude and direc-

tion. Such a model might plan over a mental representation where the weight of each edge has been replaced

by the mean edge weight of its cluster’s centroid. This fits into the theory of resource rationality as an

alternative formulation of how people optimally allocate limited attention, since it reduces the number of

unique relationships between variables that have to be considered. The Probabilistic Language of Thought

framework also emphasizes that representations are situated in the larger context of the mind’s causal models

(Krynski and Tenenbaum, 2007). This could be used to model how people’s representations of elements of
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our experimental task were influenced by both the narrow context of their overall causal model of the task

and the broader context of being given a problem-solving task for an online experiment.

Our resource-rational modelling framework (Lieder and Griffiths, 2020) is consistent with the adaptive

heuristics framework (Payne et al., 1988; Gigerenzer and Todd, 1999; Simon, 1956; Hertwig et al., 2019)

which postulates that the mind relies on heuristics that are fast, frugal, and adapted to the structure of the

environment. The goal pursuit strategies entailed by our resource-rational models are heuristics because they

are much simpler than the optimal solution method of the LQR. They are fast in that they only perform

a limited amount of planning. They are frugal in that they attend to only a small subset of all causal

relationships in the environment. And they are adaptive in that they are optimized for the structure of the

environment. The latter is accomplished by selecting the representation that leads to highest performance in

the given environment. While research on fast-and-frugal heuristics typically focuses on one-shot decisions,

we use resource-rational analysis to have modelled the strategies people use to solve the sequential decision

problems entailed by goal pursuit. Future work should therefore strive to extract and characterize the goal-

pursuit heuristics that our resource-rational models entail for different environments as it is currently being

done for risky choice (Lieder et al., 2017; Gul et al., 2018; Krueger et al., 2021).

While our model can capture goal pursuit in continuous domains, most goal-based agent models are rely

on symbolic search-based methods that only work in discrete environments (Russell and Norvig, 2002). In

a recent instance of this approach, Correa et al. (2020) used breadth-first search and A* search as models

of goal pursuit in a grid-world environment. These algorithms have been used extensively, but are difficult

to scale up to continuous environments. They computed optimal subgoals using a differentiable form of

value iteration which can compute subgoals efficiently, but which does not easily extend to continuous state

spaces. Callaway et al. (2018) gave participants a task which required them to balance costly exploration

of a state space with taking a path through that space and used meta-level Markov decision processes to

model uncertainty about the true rewards attained at different states. The authors found that the resource-

rational model for this task described participants’ behavior the best, which aligns with our finding that the

resource-rational models fit humans’ actions better than the optimal model and baseline models in our task.

5.2 Limitations

While the task used for our experiment was designed to be a more realistic environment to study goal pursuit

than many discrete puzzles used in past research, it is still much simpler than the real-world environments in

which human goal pursuit takes place. For instance, people often have incomplete information in real-world

goal pursuit. In our task, we showed participants the exact values of all relevant variables and the complete
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dynamics of the system in which they pursued the goal. However, in many real world environments the

effects of one’s actions are not perfectly predictable, even with unbounded attention and planning abilities.

In trying to find a good restaurant to eat dinner at, one must make decisions without perfect knowledge

of the quality of the food or how crowded the restaurant is. This additional layer of uncertainty is not

represented in our deterministic experiment but it likely plays an important goal in real-world goal pursuit.

While our models of goal pursuit did not set any subgoals in the experimental situations, it is possible

that some participants implicitly set their own subgoals in completing this task (Newell and Simon, 1972).

People might have intuitively decomposed the task into smaller tasks and solved those one-by-one, while our

models treat the entire goal as one task. Furthermore, while our models either looked one step ahead or 10

steps ahead, people may often use an intermediate planning horizon (Keramati et al., 2016).

5.3 Directions for future work

Future work should improve upon our models of goal pursuit by adding adaptive planning horizons. It is

possible that people are somewhere between these two extremes, either planning only a few steps ahead or

decomposing the task into smaller sub-tasks. Drawing upon other models of planning to develop a model

that plans a variable number of steps ahead could be a fruitful direction of development. For example,

Callaway et al. (2018) developed a resource-rational model of human planning that balances the benefits of

learning about possible future states against the costs of tracing the effects of actions far into the future.

Furthermore, developing models that can account for incomplete information would be a crucial step

to developing models that can describe goal pursuit in a wider variety of situations. Stochastic optimal

control (Todorov, 2005) is an extension of optimal control theory that deals with these additional challenges.

Normative models of planning under uncertainty have been developed in organizational an financial decision-

making (i.e. Friedman and Segev, 1976) and the method of stochastic programming has been used to find

optimal solutions to such problems (Huang and Ahmed, 2010).

Future work should also investigate how the amount of effort that people invest in planning how to pursue

their goals depends on their self-efficacy and the predictability and controllability of their environment (Lieder

et al., 2013).

6 Conclusion

Through our experiment and modelling, we have shown that human goal pursuit is far from optimal. Extend-

ing the notion of rational goal pursuit with assumptions about humans’ cognitive constraints was necessary

to accurately predict people’s goal-directed actions, even in a simplified environment with a goal that is
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much simpler to pursue than real-world goals. Our results suggest that these deviations can, at least partly,

be understood as a consequence of people’s limited attentional resources and limited planning horizon. Our

resource-rational models not only out-performed the optimal model and baseline models in terms of ex-

ceedance probability, they also captured qualitative aspects of goal pursuit such as the number of variables

participants manipulated and the variability in the magnitude of actions.

These findings illustrate that extending standard notions of rationality into the principle of resource ra-

tionality can be immensely beneficial in modelling cognitive functions such as goal pursuit. Taking cognitive

constraints into account allowed our resource rational models to predict human goal pursuit significantly

better than both the unboundedly rational model and baseline models. This finding has important implica-

tions for understanding how people pursue goals. This is an important step forward because goal pursuit is a

central organizing principle of all aspects of psychology and human behavior, ranging from motor control to

decision-making, problem solving, work, social interaction, and pursuing one’s dreams (Carver and Scheier,

2001).

Overall, the success of our resource-rational models of goal pursuit further strengthens the view that

incorporating cognitive constraints into rational models of cognition is a promising approach to explaining

human behavior.
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1 Mathematical Descriptions of Models of Goal Pursuit

1.1 Optimal goal pursuit: the linear-quadratic regulator

The optimal model for our task, which originates in optimal control theory (Kirk, 2004), finds the sequence

of actions which minimizes a quadratic cost function of both the states and inputs in a linear dynamical

system. Optimal control theory is a branch of mathematics focused on optimizing objective functions in

dynamical systems over time and has previously been applied to modelling human motor control (e.g. Harris

and Wolpert, 1998; Christopoulos and Schrater, 2011; Todorov, 2005). It is plausible that it also describes

behavior on more macroscopic tasks such as goal pursuit. Since our cost function is the square root of

a quadratic and minimizing the square root of a non-negative function is equivalent to minimizing that

function, we can use the LQR to minimize our cost function. It uses backward induction to compute this

solution, and thus relies on long-term planning along with full attention to the system’s dynamics.

Given some discrete linear dynamical system, where st+1 = Ast + Bat, and time horizon N , the LQR

computes the action sequence a that minimizes the cost function

C(a) = sTNQfsN +

N−1∑
i=0

(sTi Qsi + aTi Rai), (1)

where sTN is the transposed version of the vector sN reporting the values of all state variables in the final
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time step (N), Qf is the cost matrix for the final endogenous state, ai is the action taken at time step i,

si is the endogenous state at time step i, Q is the cost matrix that determines the penalty for endogenous

states being away from 0, and R is the cost matrix for actions. If we choose Qf = I, T = c · I, and let Q be

the zero matrix, this cost function becomes the squared cost function in the task for humans.

1.2 Resource-rational models of goal-pursuit

1.2.1 Limited planning: hill-climbing

We use a hill-climbing model to account for limited planning ability. This strategy has been used in the past

to model human problem solving (Simon and Newell, 1971). The hill-climbing model plans only one step

ahead at each round. At each time step, it moves in the direction of the negative gradient of its distance to

the goal state. This model has one free parameter, which is the step size. This determines what multiple of

the optimal step size the model takes.

To determine how large of a step the model takes, we can compute the multiple of the gradient λopt which

minimizes the cost (Equation 1) that would be achieved if the task ended in the next round. However, people

might not always take the optimal step size. They might take smaller steps than the ”optimal” size for the

hill-climbing model because they know that they can get closer to the goal in subsequent time steps even

though they do not explicitly plan actions for those time steps. Therefore, we introduce one free parameter

to this model: the step size λ. The step size determines which multiple of the optimal step size the agent

takes. Formally, the hill-climbing model selects an action at via the following equation:

at = −λ · λopt · ∇at
(||f(st,at)− g||2) , (2)

where λopt is the optimal step size, λ is a free parameter, and the gradient is evaluated at at = 0.

1.2.2 Limited attention: sparse LQR

As mentioned in the main paper, we model attention costs by jointly minimizing the cost resulting from

planning in the simplified representation of the environment defined by attention vector m and the cost of

paying attention the elements of the environment represented by m. Here, we describe the details of how

this is accomplished in our goal pursuit environment.

First, we define an edge in the SMW as a causal relationship between two variables. Each green or red

arrow in Figure 1 in the main text is an edge. These correspond to the non-zero elements of either transition

matrix A or B, except for the diagonal of ones in A. Each edge determines how one variable influences one
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other variable from one round to the next. An agent with limited attention might only focus on a subset of

the edges, based on how important those edges are in deciding how much of each resource to use. Attention

could be discrete, where each edge is either fully attended to or fully ignored, or continuous, where edges can

be attended to partially. We can represent the subset of edges which a sparse-max model attends to with

the attention vector m. The discrete-attention version uses an attention vector m ∈ {0, 1}|E|, where |E|

is the set of edges of the SMW, while the continuous-attention version uses attention vectors m ∈ [0, 1]|E|.

We only present the discrete-attention version of the sparse LQR. The continuous-attention version is much

more complicated as it would require computing derivatives of entire action sequences which the LQR plans

via backward induction.

This model selects the optimal attention vector m which minimizes the cost it achieves by planning in the

reduced version of the microworld plus a cost of attention which scales with the number of edges attended to.

The fewer edges the model pays attention to, the worse its ability to plan and minimize the cost function in

Equation 1. In minimizing the weighted sum of its cost function and cognitive cost of attention, the model

balances the cognitive cost of paying attention with the improvement resulting from additional attention.

Formally, this means the model selects the attention vector m that minimizes the following function:

m = argmin
m∈{0,1}|E|

√√√√||st − g||2+c

t−1∑
i=0

||ai||2 + k ·
|E|∑
i=1

mi (3)

Where k is the only free parameter of the model, representing the cost of attention. When k = 0, the sparse

LQR behaves equivalently to the standard LQR. As k increases, the model attends to fewer edges.

1.2.3 Limited planning and limited attention: sparse hill-climbing

The sparse hill-climbing model combines the attention constraints of the sparse LQR with the planning

constraints of the hill-climbing model. Furthermore, it can have either discrete or continuous attention.

The discrete version of the model chooses the optimal attention vector m ∈ {0, 1}|E| which minimizes

the sum of its distance to the goal in the next round after taking a step in the attention-reduced SMW and

the cost of paying attention to the edges used to determine that step. It then uses the hill-climbing action

in the simplified representation to take a step in the real SMW.

The optimal discrete attention vector is defined as follows:

m = argmin
m∈{0,1}|E|

||f(st,am)− g||2+k ·
|E|∑
i=1

mi, (4)

where am is the hill-climbing action taken when only the edges that the model attends to are taken into
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account.

In the continuous version, the choice of m is performed as follows,

m = argmin
m∈[0,1]|E|

1

2

∑
ei∈E

(1−mi)
2Λi + k ·

|E|∑
i=1

mi (5)

Where mi is the attention paid to edge ei, c is the cost of attention, and Λi is the cost of inattention for

edge ei. The cost of inattention is a proxy for the loss of goal pursuit effectiveness resulting from imperfect

attention based on the first term of the Taylor expansion. It is defined as −|ei| ∂at

∂mi

∂2C
∂a2

∂at

∂mi
, with u denoting

the utility function that the model of human goal pursuit is optimizing and at denoting the action taken by

the model. (Gabaix, 2014).

An attention vector m defines a new reduced SMW where the weight of each edge wei is replaced with

weimi. This reduces the perceived weight of edges that the model pays limited attention to.

After choosing attention vector m, both the discrete and continuous sparse hill-climbing models choose

the hill-climbing action defined in Equation 2 in the simplified representation of the SMW defined by m.

Both sparse hill-climbing models have two free parameters: the step size λ and the attention cost k.

1.3 Observation Model

To model how the idealized cognitive processes in each model give rise to concrete goal-directed actions, we

model two independent types of noise. Length noise describes people taking either larger or smaller steps

than the model predicts, while angular noise describes people moving in different directions than the model

predicts. To measure this noise, we first convert each Ds-dimensional endogenous state at time t to spherical

coordinates, where we have one radial coordinate φt,1 and Ds−1 angular coordinates φt,2, . . . φt,Ds
. We then

model the error in the radial component as following an exponential distribution with parameter γ. This is

length noise. The errors in the angular components can be modelled as following a von Mises distribution,

which is essentially a Normal distribution over a circle. This von Mises distribution is centered at 0 and has

concentration parameter κ, which is analogous to 1
σ2 in a Normal distribution. We refer to this type of noise

as angular noise.

Therefore, the likelihood of a participant’s dataD under modelM over T time steps with noise parameters

γ, κ is

p(D|M, γ, κ) =

T∏
t=1

pex(∆t,1|γ) ·
[ |φt|∏
j=2

pvm(∆t,j |0, κ)
]

(6)

Here, T denotes the number of time-steps in the participant data, pex(·|γ) denotes the likelihood under

an exponential distribution with parameter γ and pvm(·|0, κ) denotes the likelihood under a Von Mises

4



Model Expected Model Prob. Exceedance Probability
optimal 0.0088 0

resource-rational 0.93 > 0.9999
null models 0.0580 0

Table 1: Family-level Bayesian model selection results, where the optimal model, all resource-rational models,
and the null models are each families.

Model Expected Model Prob. Exceedance Prob.
no attention constraints 0.43 0.10

attention constraints 0.57 0.90

Table 2: Family-level Bayesian model selection results where the families are models with and without limited
attention.

distribution centred at 0 with concentration parameter κ.

2 Family-level Bayesian model comparison

In addition to the Bayesian model selection included in the main paper, we perform family-level Bayesian

model selection for each constraint individually in order to assess the importance of each type of constraint

(Penny et al., 2010). we group together models into families based on whether or not they incorporate each

type of constraint. This means we compare models with no attention constraints (optimal, hill-climbing, and

null models) against those with attention constraints (sparse LQR, sparse hill-climbing) and models with

no planning constraints (optimal, sparse LQR, null model 1, null model 2). Results of these comparisons

are reported in Table 2 and Table 3. In both cases, the models that incorporate constraints have a higher

family-level model probability (i.e. the expected probability that any given participant is best explained by

that model). The models with attention constraints have an expected model probability of 0.57 while the

models with planning constraints have an expected proability of 0.67. The exceedance probability, which

is the probability that that family describes participants best overall, is 0.90 for the version with attention

constraints and 0.999 for the version with planning constraints.

We also report family-level model selection results where we simply group the discrete and continuous-

attention sparse hill-climbing models into a family and leave the other models in families of their own in

Table 4. Finally, we report the group-level AIC and number of participants best described by each model in

Model Expected Model Prob. Exceedance Prob.
no planning constraints 0.33 0.001

planning constraints 0.67 0.999

Table 3: Family-level Bayesian model selection results where the families are models with and without limited
planning.
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Model Expected Model Prob. Exceedance Prob.
optimal 0.0085 0

limited attention 0.2822 0.11
limited planning 0.3784 0.75

limited attention and planning 0.28 0.14
null model 1 0.046 0
null model 2 0.025 0

Table 4: Family-level Bayesian model selection results, where the discrete and continuous versions of the
limited attention and planning models are collapsed into a single family. All other families consist of just
one model.

Model # participants best fit AIC Expected model prob. Exceedance prob.
optimal 0 27,600 0.0085 0
limited attention 35 18,763 0.27 0.11
limited planning 33 18,042 0.36 0.89
limited attention and
planning (discrete)

19 18,434 0.17 0.0008

limited attention and
planning (continuous)

14 18,595 0.12 0

null model 1 5 21,101 0.046 0
null model 2 5 18,966 0.023 0

Table 5: Results of mixed-effects Bayesian model selection applied to the data from the experiment. Expected
model probabilities denote the expected proportion of participants who are best explained by the model.
Exceedance probabilities denote the probability that the proportion of people whose data is best explained
by a given model is larger than for any other model. We also include the number of participants best fit and
group-level AIC, which is the sum of the AICs achieved by each participant.
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Best-fitting parameters
Model Length Noise Angle Noise Attention Cost Step Size
limited attention 0.050 4.01 116.5
limited planning 0.065 6.10 0.468
limited both, discrete 0.105 3.67 17.4 0.568
limited both, continuous 0.031 5.22 11.0 0.295

Table 6: Average parameter estimates for each resource-rational model, taken across participants best ex-
plained by that model. Higher noise parameters indicate less noisy actions.

Best-fitting parameters
Model Length Noise Angle Noise n b
optimal 0.0093 1.46
null model 1 0.077 5.89 1 5.06
null model 2 0.039 7.21

Table 7: Average parameter estimates for each non-resource-rational model, taken across participants best
explained by that model. For the optimal model, the best-fitting parameters were averaged across all
participants because nobody was best explained by the optimal model. Higher noise parameters indicate
less noisy actions.

Table 5.

3 Interpretation of Model Parameters

The average parameter values which optimize the model fit to each participant’s actions are shown in Table 6

(resource-rational models) and Table 7 (other models). Higher angle and length noise parameters correspond

to less noise. This means that the discrete limited attention and limited planning model seems to capture

the sizes of steps people took best, with the highest average length noise parameter of 0.105. The limited

planning model captured the direction of people’s movement well with the highest angular noise parameter

among the resource rational models (6.10). Null model 2 had the highest angular noise parameter of all (7.21),

indicating that it was good at capturing the the direction of movement for people who did not manipulate

the exogenous variables much. Step sizes tended to be close to half of the optimal step size, with 0.468 for

the limited planning model, and 0.568 for the discrete limited attention and limited planning model. The

step size was somewhat lower for the continuous limited attention and limited planning model than for the

other two models with step sizes. Finally, note that the attention cost was an order of magnitude higher for

the limited attention models compared to the limited attention and limited planning models (116.5 vs. 17.4

and 11.0). This is because the limited attention model plans all 10 actions in one simplified representation of

the environment, meaning the attention cost has to balance out the benefits to planning all 10 actions with

additional information. In contrast, the limited attention and limited planning models create new simplified

representations on each time step, so the attention cost only needs to balance out the benefit for one round.
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Figure 1: Standard deviation of input norms and number of variables manipulated for the optimal model
(LQR).
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Figure 2: Standard deviation of input norms and number of variables manipulated for the limited attention
model (sparse LQR).

4 Qualitative aspects of goal pursuit models

Figures 1-8 show histograms of two qualitative aspects of goal pursuit: the standard deviation of the norms

of the input vectors and the number of variables manipulated. To generate this data, each model was run

ten times on each situation for every participant best fit by that model. The parameters that best fit that

participant’s data were used in those runs of the model, with the exception of the noise parameters. we used

a length noise of parameter of 0.1 and an angular noise parameter of 40 for all models and participants in

order to capture the model’s behaviour more accurately.
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Figure 3: Standard deviation of input norms and number of variables manipulated for the limited planning
model (hill-climbing).
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Figure 4: Standard deviation of input norms and number of variables manipulated for the discrete limited
attention and limited planning model (discrete sparse hill-climbing).
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Figure 5: Standard deviation of input norms and number of variables manipulated for the continuous limited
attention and limited planning model (continuous sparse hill-climbing).
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Figure 6: Standard deviation of input norms and number of variables manipulated for null model 1.
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Figure 7: Standard deviation of input norms and number of variables manipulated for null model 2.
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Figure 8: Standard deviation of input norms and number of variables manipulated for humans.
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