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Abstract—In many robotic applications, it is crucial to main-
tain a belief about the state of a system. These state estimates
serve as input for planning and decision making and provide
feedback during task execution. Recursive Bayesian Filtering
algorithms address the state estimation problem, but they require
models of process dynamics and sensory observations as well as
noise characteristics of these models. Recently, multiple works
have demonstrated that these models can be learned by end-
to-end training through differentiable versions of Recursive
Filtering algorithms. The aim of this work is to improve under-
standing and applicability of such differentiable filters (DF). We
implement DFs with four different underlying filtering algorithms
and compare them in extensive experiments. We find that long
enough training sequences are crucial for DF performance and
that modelling heteroscedastic observation noise significantly
improves results. And while the different DFs perform similarly
on our example task, we recommend the differentiable Extended
Kalman Filter for getting started due to its simplicity.

I. INTRODUCTION

In many robotic applications, it is crucial to maintain a belief
about the state of the system, like tracking the location of a
mobile robot or the pose of a manipulated object. These state
estimates serve as input for planning and decision making and
provide feedback during task execution.

Recursive Bayesian filters are a class of algorithms that
combine perception and prediction for state estimation in a
principled way. To do so, they require an observation model
that relates the estimated state to the sensory observations and
a process model that predicts how the state develops over time.
Both have associated noise models that reflect the stochasticity
of the underlying system and determine how much trust the
filter places in perception and prediction.

Formulating good observation and process models for the
filters can however be difficult for many problems, especially
when the sensory observations are high-dimensional and com-
plex, like camera images. Over the last years, deep learning
has become the method of choice for processing such data.
While (recurrent) neural networks can be trained to address
the state estimation problem directly, recent work [9, 7, 10, 13]
showed that it is also possible to include data-driven models
into Bayesian filters and train them end-to-end through the
filtering algorithm. For Histogram Filters [9], Kalman Filters
[7] and Particle Filters [10, 13], the respective authors showed
that such differentiable filters (DF) systematically outperform
unstructured neural networks like LSTMs. In addition, the end-
to-end training of the models also improved the filtering per-
formance compared to using observation and process models
that had been trained separately.

1 Max Planck Institute for Intelligent Systems, <akloss,
gmartius>@tue.mpg.de

2 Stanford University, bohg@stanford.edu

A further interesting aspect of differentiable filters is that
they allow for learning sophisticated models of the observation
and process noise. This is useful as finding appropriate values
for the process and observation noise is often difficult. Despite
much research on identification methods (e.g. [4, 19]) the noise
models are often tuned manually in practice. To reduce the
tedious tuning effort, the noise is then typically assumed to
be uncorrelated Gaussian noise with zero mean and constant
covariance. Many real systems are, however, better described
by heteroscedastic noise models, where the level of uncertainty
depends on the state of the system and/or possible control
inputs. Taking heterostochasticity of the dynamics into account
has been demonstrated to improve filtering performance in
many robotic tasks [3, 15].

The main goal of this paper is to provide practical guidance
to researchers interested in applying differentiable filtering
to their problem. To this end, we review and implement
existing work on differentiable Kalman and Particle Filters
and introduce two variants of differentiable Unscented Kalman
Filters. We will also release our tensorflow [1] implementation.

In extensive experiments, we compare the DFs and evaluate
different design choices for implementation and training, in-
cluding loss functions and training sequence length. We also
investigate how well the different filters can learn complex
heteroscedastic noise models and compare the DFs to unstruc-
tured LSTM [8] models.

We find that long enough training sequences are crucial
for DF performance and that modelling heteroscedastic noise,
especially on the observations, improves results significantly.
While all DFs perform similarly on our example task, some
require more implementation choices and parameter tuning.
For getting started, we thus recommend the differentiable
Extended Kalman Filter as the most simple of our DFs.

II. BACKGROUND: BAYESIAN FILTERING

Filtering refers to the problem of estimating the latent state
x of a stochastic dynamic system at time step t given an
initial belief x0, a sequence of observations z0...t and control
inputs u0...t−1. Formally, we seek the posterior distribution
p(xt|x0...t−1,u0...t−1, z0...t). The dynamics of the system is
modelled by a process model f that describes how the state
changes over time and an observation model h that generates
observations given the current state:

xt = f(xt−1,ut−1,qt−1) zt = h(xt, rt)

The random variables q ∼ N(0,Q) and r ∼ N(0,R) are the
process and observation noise and represent the stochasticity
of the system.

Bayesian Filters make the Markov assumption, i.e. that
the distribution of the future states and observations is con-



ditionally independent from the history of past states and
observations given the current state. This assumption makes it
possible to compute p(xt|x0...t−1,u0...t−1, z0...t) recursively
from p(xt−1|x0...t−2,u0...t−2, z0...t−1) and so forth.

In this paper, we investigate differentiable versions of
four different nonlinear Bayesian filtering algorithms: The
Extended Kalman Filter (EKF), the Unscented Kalman Filter
(UKF), a sampling-based variant of the UKF that we call
Monte Carlo Unscented Kalman Filter (MCUKF) and the
Particle Filter (PF). We briefly review these algorithms in
Appendix VII-A. For more details on EKF, UKF and PF, we
refer to Thrun et al. [18]. We denote the differentiable filters
as dEKF, dUKF, dMCUKF and dPF.

III. RELATED WORK

Haarnoja et al. [7] proposed the BackpropKF, a differ-
entiable implementation of the Kalman Filter. Jonschkowski
and Brock [9] presented a differentiable Histogram Filter
for discrete localization tasks in one or two dimensions and
Jonschkowski et al. [10], Karkus et al. [13] both implemented
differentiable Particle Filters for localization and tracking of
a mobile robot. In the following, we focus our discussion
on [7, 10, 13], since Histogram Filters are rarely applied in
practice, due to the need for discretizing the state space.

All three works have in common that the raw observations
are processed by a neural network that can be trained end-to-
end through the filter. Haarnoja et al. [7] showed that this
network can also learn to predict the observation noise R
conditioned on the raw images. This drastically improves filter
performance when facing heavy occlusions. For predicting the
next state, all three works use an analytical instead of a learned
process model. While [7] and [13] also assume known process
noise, [10] predicts Q.

Jonschkowski et al. [10] compared the results of an end-to-
end trained filter with one where the observation model and
process noise were trained separately. The end-to-end trained
variant performed better, presumably because it learned to
overestimate the process noise. All works also compared their
differentiable filters to unstructured LSTMs and found that
including the structural priors of the filter algorithm and the
known process models improved performance.

A second line of research closely related to differentiable
filters is variational inference in temporal state space mod-
els [14, 21, 5, 2]. Recent results in this field showed that
structuring the variational models similarly to Bayesian filters
improves their performance [14, 5].

IV. DIFFERENTIABLE BAYESIAN FILTERS

We now describe how we implement the Bayesian filters
presented in Sec. II as differentiable neural networks.

A. Observation Model

In Bayesian filtering, the observation model h is a gener-
ative model that predicts observations from the state zt =
h(xt). In practice, it is, however, often hard to find such

models that directly predict the potentially high-dimensional
raw sensory signals without making strong assumptions.

We therefore use the method first proposed by Haarnoja
et al. [7] and train a discriminative neural network ns with
parameters ws to preprocess the raw sensory data D and
create a more compact representation of the observations
z = ns(D,ws). This network can be seen as a virtual sensor,
and we thus call it sensor network. In addition to zt, the sensor
network can also predict the heteroscedastic observation noise
covariance matrix Rt (see Sec. IV-C) for the current input Dt.

In our experiment, z contains a subset of the state vector x.
The observation model h(x) is thus a simple linear selection
matrix of the observable components.

B. Process Model

Depending on the user’s knowledge about the system, the
process model f can be implemented using a known analytical
model or a neural network np with weights wp. When using
neural networks, np outputs the change from the last state
np(xt,ut,wp) = ∆xt such that xt+1 = xt + ∆xt. This form
ensures stable gradients between time steps and provides a
reasonable initialization of the process model close to identity.

C. Noise Models

For learning the observation and process noise, we consider
two different conditions: constant and heteroscedastic. In both
cases, we assume that the process and observation noise at
time t can be described by zero-mean Gaussian distributions
with diagonal covariance matrices Qt and Rt.

For constant noise, the filters directly learn the diagonal
elements of Q and R. In the heteroscedastic case, Qt is
predicted from the current state xt and (if available) the control
input ut by a neural network nq(xt,ut,wq) with weights wq .
In dUKF, dMCUKF and dPF, nq outputs separate Qi for each
sigma point/particle and Qt is computed as their weighted
mean. The heteroscedastic observation noise covariance matrix
Rt is an additional output of the sensor model ns(Dt,ws).

D. Training

For training the filters we always assume that we have
access to the ground truth trajectory of the state xlt=0...T .

In our experiments, we test the two different loss functions
used in related work: The first [13] is simply the mean squared
error (MSE) between the mean of the belief and true state at
each timestep:

Lmse =
1

T

T∑
t=0

(xlt − µt)
T (xlt − µt) (1)

The second loss function [7, 10] is the negative log likeli-
hood of the true state under the predicted distribution of the
belief. In dEKF, dUKF and dMCUKF, the belief is represented
by a Gaussian distribution with mean µt and covariance Σt

and the negative log likelihood is

Lnll =
1

2T

T∑
t=0

log(|Σt|) + (xlt − µt)
TΣ−1t (xlt − µt) (2)



The dPF represents its belief using the particles χi ∈ X and
their weights πi. We consider two alternative ways of using
Lnll for training dPF: The first is to fit a single Gaussian to
the particles, with µ =

∑N
i=0 πiχi and Σ =

∑N
i=0 πi(χi −

µ)(χi−µ)T and then apply Eq. 2. We refer to this as dPF-G.
To better reflect the multimodality of the particle distribu-

tion, the belief can also be represented with a Gaussian Mix-
ture Model (GMM) as in [10]: Every particle gets a separate
Gaussian Ni(χi,Σ) in the GMM and the mixture weights are
the particle weights. The drawback of this approach is that
the fixed covariance Σ of the individual distributions is an
additional tuning parameter. We call this version dPF-M and
calculate the negative log likelihood with

Lnll =
1

T

T∑
t=0

log

|X|∑
i=0

πi√
|Σ|

exp(xlt−χit)TΣ−1(xlt−χit) (3)

V. EXPERIMENTS

A. Simulated Task

We evaluate the DFs in a simulated environment similar to
the one in [7]: The task is to track a red disc moving amongst
varying numbers of distractor discs, as shown in Fig. 3. The
state consists of the position p and velocity v of the red disc.

The sensor network receives the current image at each step,
from which it can estimate the position but not the velocity of
the target. As we do not model collisions, the red disc can be
occluded by the distractors or leave the image temporarily.

For details on the system dynamics and training data, please
refer to the Appendix VII-B. General information on the
training process can be found in Appendix VII-C.

B. Implementation and Hyperparameters

We evaluate different design choices and hyperparameters
for the DFs to find settings that perform well and increase the
stability of the filters during training. We only summarize the
results here, more details can be found in Appendix VII-D.

Summary of Results: The dEKF is the only DF without
any parameters or design choices. For the dUKF, we use
λ = 0.5. In contrast to the dUKF, the dMCUKF samples
pseudo sigma points around the belief. We use 100 samples
for training and 1000 for testing.

This also applies to the number of particles for the dPF. The
dPF has the highest number of design choices: In contrast to
[13, 10], we use an analytical Gaussian likelihood function
for the observation update. We resample at every step and use
soft resampling with a very small coefficient α = 0.05. For
the dPF-M, we use Σ = I to compute Lnll (Eq. 3).

C. Loss Function

In this experiment we compare the two loss functions
introduced in Sec. IV-D, and a combination of the two
Lmix = 0.5(Lmse+Lnll). Our hypothesis is that Lnll is better
suited for learning noise models, while Lmse only optimizes
the tracking performance.

We also compare the two alternative belief representations
for the dPF (dPF-G and dPF-M). As our test scenario does not
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Fig. 1: Tracking error, observation error and negative log likelihood of dEKF
dPF-G and dPF-M trained with loss functions Lmse, Lnll or Lmix.
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Fig. 2: Tracking error and negative log likelihood of dEKF and dPF-M trained
with different sequence lengths.

require tracking multiple hypotheses, the representation by a
single Gaussian in dPF-G should be accurate. More details on
the experiment and results can be found in Appendix VII-E.

Summary of Results: For judging the quality of a DF, both
likelihood and tracking error should be taken into account:
While a low RMSE is important for all tasks that use the
state estimate, a good likelihood score means that uncertainty
about the state is communicated correctly, which enables e.g.
risk-aware planning.

As expected, training on Lnll leads to better likelihood
scores than training on Lmse, see Fig. 1. The best tracking
errors on the other hand are reached with Lmse, as well as
better sensor models. The combined loss Lmix trades off the
two objectives, but does not outperform the single losses in
their respective scores. In contrast to dPF-M, the dPF-G gives
overall bad results when trained with Lnll.

In summary, we recommend using Lnll to ensure learning
accurate noise models. If learning the process and sensor
model does not work well, Lnll can be combined with Lmse
or the models can be pretrained.

D. Training Sequence Length

Karkus et al. [13] found that using longer training sequences
improved results for their dPF. Here we aim to find a sequence
length with a good trade off between training speed and model
performance. More details can be found in Appendix VII-F.

Summary of Results: The results in Fig. 2 show that
longer sequences are beneficial for training DFs, because
they demonstrate error accumulation during filtering and allow
for convergence of the state estimate when the initial state
was noisy. However, performance eventually saturates and
increasing l also increased our training times. We therefore
chose l = 10 for all experiments, which provides a good trade-
off between training speed and performance.

E. Learning Noise Models

The following experiments analyse if and how well complex
models of the process and observation noise can be learned



const. R hetero. R
RMSE nll DQ RMSE nll corr DQ

dEKF 23.2 32.3 0.08 16.4 30.1 -0.63 0.002
dUKF 24.0 32.3 0.238 16.6 30.1 -0.65 0.01
dMCUKF 22.5 32.4 0.354 16.7 30.3 -0.67 0.009
dPF-M 14.0 30.3 0.054 12.8 30.1 -0.12 0.032

TABLE I: Results for learning constant or heteroscedastic observation noise
R and constant process noise Q on a dataset with σqp = 3 and 30 distractors.
Corr. is the correlation coefficient between R and visible target pixels. DQ

denotes the Bhattacharyya distance between true and learned process noise.

through the filters.
To isolate the effect of the noise models, we use a fixed,

pretrained sensor model and the analytical process model, such
that only the noise models are trained. More details on the
experiments and results can be found in Appendix VII-G.

1) Heteroscedastic Observation Noise: We compare DFs
that learn constant or heteroscedastic observation noise on dif-
ferent datasets to see if learning more complex, heteroscedastic
observation noise models improves performance. The process
noise models are constant, but we test if the DFs can learn
different magnitudes of the positional process noise qp.

We evaluate the process noise model using the Bhat-
tacharyya distance. To test if higher observation noise is
predicted when the red disc is not visible, we compute the
correlation coefficient between predicted R and the number
of visible target pixels.

Summary of Results: Table I shows results for one
dataset. With constant observation noise models, all DFs
except for the dPF-M perform poorly: To avoid wrong updates
of the state estimate when the disc is occluded, they learned
to ignore all observations by predicting a high R.

Like [7], we find that learning heteroscedastic observation
noise solves this problem and increases the tracking perfor-
mance significantly.The strong negative correlation between
R and the visible disc pixels shows that the DFs correctly
predict higher uncertainty when the target is occluded.

Learning the process noise model Q works better when the
tracking performance is good. All DFs have more difficulties
when the ground truth noise has a low magnitude.

2) Heteroscedastic Process Noise: The effect of het-
eroscedastic process noise has not yet been evaluated in related
work. We create datasets with heteroscedastic noise, where the
magnitude of qv increases in three steps the closer to the origin
the disc is. The positional process noise qp remains constant.

We compare the performance of DFs that learn constant
and heteroscedastic process noise. The observation noise is
heteroscedastic in all cases.

Summary of Results: Table II shows that learning het-
eroscedastic noise models for the dynamics is more difficult
than for the observations. This is not surprising, as the input
values for predicting the Q are the noisy state estimates.

Plotting the predictions for Q (see Appendix Fig. 4) reveals
that all DFs learn to follow the true values for the velocity
noise qv relatively well, but also predict state dependent
values for qp, which is actually constant. Despite not being
completely accurate, learning heteroscedastic process noise
models still reliably improves the performance of all DFs.

const. Q hetero. Q
RMSE nll DQ RMSE nll DQ

dEKF 12.2 29.7 0.864 11.6 29.0 0.351
dUKF 12.3 29.6 0.867 11.9 29.1 0.4
dMCUKF 12.3 29.7 0.882 11.8 29.1 0.42
dPF-M 12.6 30.4 0.936 11.9 29.9 0.589

TABLE II: Results for learning constant or heteroscedastic process noise Q
on a dataset with heteroscedastic qp, σqp = 3.0 and 30 distractors. DQ is
the Bhattacharyya distance between true and learned process noise.

σqp = 0.1 σqp = 3.0 σqp = 9.0
RMSE nll RMSE nll RMSE nll

dEKF 9.0 27.1 10.9 28.0 17.6 29.5
dUKF 9.1 27.1 12.3 28.7 18.7 29.5
dMCUKF 8.7 27.0 11.4 28.2 18.2 27.3
dPF-M 9.2 28.4 10.1 29.0 20.0 34.7
LSTM-1 11.0 27.7 14.2 29.0 22.9 30.4
LSTM-2 9.0 27.2 11.9 28.4 19.5 29.9

TABLE III: Comparison between the DFs and LSTM models with one or two
LSTM layers on three different datasets with 30 distractors and process noise
with increasing magnitude.

F. Benchmarking

In the final experiment, we compare the performance of
the DFs to two LSTM models. We use an LSTM architecture
similar to [10], with one or two layers of LSTM cells (512
units each). The LSTM state is decoded into mean and
covariance of a Gaussian state estimate.

Experiment: All models are trained for 30 epochs. The
DFs learn the sensor and process models with heteroscedastic
noise models. We compare their performance on datasets with
30 distractors and different levels of constant process noise.

Summary of Results: The results in Table III show that all
models track target disc well and make reasonable uncertainty
predictions. While there is no significant difference between
the different DF variants, the LSTM model, however, needs
two layers of LSTM cells to reach the performance of the DFs.

Unstructured models like LSTM can thus learn to perform
similar to differentiable filters, but they require a much higher
number of trainable parameters than the DFs. They are also
harder to analyse since they do not use explicit models of the
dynamics, the observation or the process noise.

VI. CONCLUSIONS & FUTURE WORK

Our experiments have shown that all DFs we evaluated are
well suited for learning both, sensor and process model, as
well as the associated noise models. Only the dPF behaved
differently from the other DFs in some experiments when its
belief was represented by a GMM. LSTMs can reach the same
performance, but need significantly more trainable weights.

The system we used here has relatively simple dynamics
without strong nonlinearities. In future work, we will thus test
the DFs on more challenging, real-world problems. We will
also try using even more complex, correlated noise models.

The main challenge in working with differentiable filters is
keeping the training stable and finding good values for the
numerous hyperparameters of the filters. While we hope that
our work provides some orientation, we still recommend the
dEKF for getting started. It is not only the most simple of our
DFs, but also the most numerically stable during training.
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VII. APPENDIX

A. Bayesian Filter Algorithms

1) Kalman Filter: The Kalman Filter [12] is a closed-form
solution to the filtering problem for systems with a linear
process and observation model and Gaussian additive noise.
The belief about x is represented by the mean µ and covariance
matrix Σ. At each timestep, the filter predicts µ̂ and Σ̂ using
the process model. The innovation it is the difference between
the predicted and actual observation and is used to correct the
prediction. The Kalman Gain K trades-off the process noise
Q and the observation noise R to determine the magnitude of
the update.

Prediction Step:

µ̂t = Aµt−1 + But (4) Σ̂t = AΣt−1A
T + Qt−1 (5)

Update Step:

St = HΣ̂tH
T + Rt (6)

Kt = Σ̂tH
TS−1t (7)

it = zt −Hµ̂t (8)
µt = µ̂t + Ktit (9)

Σt = (In −KtH)Σ̂t (10)

2) Extended Kalman Filter (EKF): The EKF [17] extends
the Kalman Filter to systems with non-linear process and
observation models. It replaces the linear models for predicting
µ̂ in Eq. 4 and the corresponding observations ẑ in Eq. 8 with
non-linear models f and h . For predicting the state covariance
Σ and computing the Kalman Gain K, these non-linear models
are linearized around the current mean of the belief. The
Jacobians F|µt

and H|µt
replace A and H in Equations 5

- 7 and 10. This first-order approximation can be problematic
for systems with strong non-linearity, as it does not take the
uncertainty about the mean into account [20].

3) Uncentered Kalman Filter (UKF): The UKF [16, 20]
was proposed to address the aforementioned problem of the
EKF. Its core idea, the Unscented Transform [16], is to rep-
resent a Gaussian random variable that undergoes a nonlinear
transformation by a set of specifically chosen points in state
space, the so called sigma points χ ∈ X. The statistics of the
transformed random variable can be then be calculated from
the transformed sigma points. For example, in the prediction
step of the UKF, the non-linear transform is the process model
(Equation 13) and the new mean and covariance of the belief
are computed in Equations 14 and 15.

χ0 = µ χi = µ± (
√

(n+ λ)Σ)i ∀i ∈ {1...n} (11)

w0 =
λ

λ+ n
wi =

0.5

λ+ n
∀i ∈ {1...2n} (12)

X̂t = f(Xt−1,ut) (13) µ̂t =
∑
i

wiχ̂it (14)

Σ̂t =
∑
i

wi(χ̂it − µ̂t)(χ̂
i
t − µ̂t)

T + Qt (15)

The parameter λ controls the spread of the sigma points and
how strongly the original mean χ0 is weighted in comparison
to the other sigma points.

In theory, the UKF conveys the nonlinear transformation of
the covariance more faithfully than the EKF and is thus better
suited for strongly non-linear problems [18]. In contrast to the
EKF, it also dos not require computing the Jacobian of the
process and observation models, which can be advantageous
when those models are learned.

In practice, tuning λ can be difficult since placing the sigma
points too far from the mean increases prediction uncertainty
and can even destabilize the filter. [16] suggested to chose λ
such that λ+ n = 3. This however results in negative values
of λ if n > 3, for which the estimated covariance matrix is not
guaranteed to be positive semidefinite any more. This problem
can be solved by changing the way in which Σ is computed
[11]. However, for −n < λ < 0, the sigma point χ0, which
represents the original mean, is also weighted negatively. This
not only seems counter-intuitive but strongly negative w0 can
also cause divergence of the estimated mean.

Besides from the parametrization we use here, there also
exists a scaled variant of the UKF that was introduced in [11]
and is frequently used, e.g. in [20, 18]. It sets λ = α2(κ +
n)−n and suggests using κ = 0 and small positive values for
α, like 1e − 3. In addition, this formulation uses a different
w0 when calculating Σ: w0 = λ

λ+n + (1 − α2 + β), where
β = 2 is recommended if the true distribution of the system is
Gaussian. The suggested parameters however again result in
large negative weights for χ0 and thus destabilized the filter
in our experiments. While the filter becomes stable for larger
values of α, we chose to keep the simpler parametrization
introduced above.

4) Monte Carlo Unscented Kalman Filter (MCUKF):
The UKF represents the belief over the state with as few
sigma points as possible. However, finding the correct scaling
parameter λ can be difficult, especially if the state is high
dimensional. Instead of relying on the unscented transform to
calculate the mean and covariance of the next belief, we can
also resort to Monte Carlo methods, as proposed by [22]. In
practice, this means replacing the carefully constructed sigma
points and their weights in Equations 11, 12 with uniformly
weighted samples from the current belief. The rest of the UKF
algorithm stays the same, but more samples are necessary to
represent the distribution of the belief accurately.

5) Particle Filter (PF): In contrast to the different variants
of the Kalman Filter explained before, the Particle Filter
[6] does not assume a parametric representation of the state
distribution. Instead, it represents the belief with a set of
particles. This allows the filter to track multiple hypotheses
about the state at the same time and makes it a popular choice
for tasks like localization or visual object tracking [18].

An initial set of particles χ ∈ X0 is drawn from some
prior belief and initialized with uniform weights π. At each
timestep, new particles are generated by applying the process
model to the previous particles and sampling additive process
noise:

Xt = f(Xt−1,ut,qt) (16)

Given an observation zt, the weight of each particle χit



Fig. 3: Two sequential observations from our simulated task. The filters need
to track the red disc, which can be occluded by the other discs or leave the
image temporarily.

is updated based on the likelihood p(zt|χit) by χi: πit =
πit−1p(zt|χit).

A potential problem of the PF is particle deprivation:
Over time, many particles will receive a very low likelihood
p(zt|χit), and eventually the state would be represented by
too few particles with high weights. To prevent this, a new
set of particles with uniform weights can be drawn (with
replacement) from the old set according to the weights. This
resampling step focuses the particle set on regions of high
likelihood and is usually applied after each timestep.

B. Simulated Environment

The dynamics model that we used for generating the training
data is

pt+1 = pt + vt + qp,t

vt+1 = vt − fppt − fdv2
t sign(vt) + qv,t

The velocity update contains a force that pulls the discs
towards the origin (fp = 0.05) and a drag force that prevents
too high velocities (fd = 0.0075). q represents the Gaussian
process noise.

Figure 3 shows two example images from the recorded data.
We create multiple datasets with varying numbers of distrac-

tors, different levels of process noise for the disc position and
constant or heteroscedastic process noise. All datasets contain
2400 sequences for training, 300 validation sequences and 303
sequences for testing. The sequences have 50 steps and the
colours and sizes of the distractors are drawn randomly for
each sequence.

C. Training

Unless stated otherwise, we train the DFs end-to-end on
subsequences of length 10 for 15 epochs. Testing is done
on the full sequences (50 steps). During training, the initial
state is perturbed with noise sampled from a Gaussian with
σ = 5. For testing, we evaluate all DFs with five different,
fixed perturbations (sampled from the same distribution) and
average the results. The initial covariance for dEKF, dUKF
and dMCUKF are set accordingly. For the dPF variants, we
sample the initial particles around the perturbed state using
the same Gaussian distribution. When training from scratch,
we initialize Q and R with Q = 100 ∗ I4 and R = 900 ∗ I2,
reflecting the high uncertainty of the untrained models.

D. Implementation and Hyperparameters
In the first set of experiments, we evaluate different imple-

mentation choices and hyper parameters for the four filters.
We seek settings for the DFs that not only perform well but
also increase the stability of the filter during training.

Experiments: We evaluate the DFS on a dataset with 15
distractor discs and constant process noise with σqp = 0.1 and
σqv = 2. All DFs are trained end-to-end and learn both the
observation and the process model as well as heteroscedastic
observation noise and constant process noise. We train on
sequences of length 10 for 15 epochs using the likelihood
loss (Eq. 2 or 3). Testing is done on the full sequences (50
timesteps).

dEKF: Of all DFs discussed here, the dEKF is the
only one without hyperparameters or relevant implementation
choices. It however requires the Jacobian of the process
model F. Tensorflow implements auto differentiation, but has
(as of now) no native support for computing Jacobians in
graph mode. While it can be done, it requires looping over
the dimensions of the differentiated variable one by one,
which we found to be relatively slow especially during graph
construction. We therefore recommend to manually derive the
Jacobians where applicable.

dUKF: The only hyperparameter of the dUKF, λ, deter-
mines how far from the mean of the belief the sigma points
are placed and how the mean is weighted in comparison to
the other sigma points.

We tested different values in [−10, 10] for λ, but found
no significant differences between results. The choice of λ is
presumably more important for problems with strongly non-
linear dynamics. We generally recommend using small λ but
avoiding values for which the sigma point at the mean is
weighted negatively (−n < λ < 0), since large negative
weights can destabilize the filter (see Sec. VII-A3).

dMCUKF: In contrast to the dUKF, the dMCUKF simply
samples pseudo sigma points around the current belief. Its only
hyperparameter thus is the number of sampled points during
training and testing. We train and evaluate the dMCUKF
with different numbers of pseudo sigma points. The results
show that as few as five points are enough for training the
filter successfully and that using more than 100 points during
training does not reliably improve the performance of the
trained filters. The test performance saturates at around 500
evaluated points. These numbers can of course change when
the state has fewer or more dimensions. In the following, we
use 100 points during training and 1000 for testing.

dPF: The differentiable Particle Filter has the highest
number of different implementation choices. The likelihood
for the observation update can be implemented with a trained
neural network as in [13, 10] or with an analytical Gaussian
likelihood function. Learning the likelihood did not improve
results in our setting and even decreased performance on more
difficult datasets. We thus use the analytical likelihood function
in all following experiments.

We also have to chose how to represent the belief of the filter
for computing likelihoods (see Section IV-D). We investigate



using a single Gaussian (dPF-G) or a Gaussian Mixture Model
(dPF-M). For the dPF-M, the covariance Σ of the single
Gaussians in the mixture is an additional hyperparameter. We
evaluated values between Σ = I and Σ = 100 ∗ I and found
that Σ = I gave the best results. Overall, dPF-M performed
better than dPF-G, as can be seen in the next experiment
(Sec. VII-E).

The resampling step of the Particle Filter discards particles
with low weights and prevents particle depletion. It may
however be disadvantageous during training since it is not
fully differentiable[13, 10, 23]. Karkus et al. [13] proposed
soft resampling, where the resampling distribution is traded off
with a uniform distribution to enable gradient flow between the
weights of the old and new particles. This tradeoff is controlled
by a parameter α ∈ [0, 1]. The higher α, the more weight is put
on the uniform distribution. An alternative to soft resampling
is not resampling at every timestep. We test different values
for α with resampling every 1, 2 or 5 steps or not resampling
at all.

Our results show that resampling frequently improves the
filter performance, especially for both dPF-G and dPF-M.
This is in contrast to the results in [13], where resampling
every second step improved performance in comparison to
resampling every step. Soft-resampling also did not have a
positive effect in our experiments, since higher values of α
decrease the effectiveness of the resampling step. We still
chose to use soft resampling, but with a very small value of
α = 0.05

Finally, the user also has to decide how many particles to
use during training and testing. We did the same experiment
as for the dMCUKF with the dPF-M and got similar results.
In the following, we thus use 100 particles during training and
1000 for testing.

E. Loss Function

In this experiment we compare the different loss functions
introduced in Sec. IV-D, as well as a combination of the two
Lmix = 0.5(Lmse+Lnll). Our hypothesis is that Lnll is better
suited for learning noise models, since it requires predicting
the uncertainty about the state, while Lmse only optimizes the
tracking performance.

We also compare the two alternative ways for representing
the belief in a dPF (dPF-G and dPF-M). As our test scenario
does not require tracking multiple hypotheses, the representa-
tion by a single Gaussian in dPF-G should be accurate.

Experiment: Here, we only evaluate the dPF variants and
the dEKF, since dUKF and dMCUKF behave very similar to
the dEKF. We use a dataset with 15 distractors and constant
process noise (σqp = 0.1, σqv = 2). The filters learn the sen-
sor and process model as well as heteroscedastic observation
noise and constant process noise models.

Results: As expected, training on Lnll leads to better
likelihoods scores than training on Lmse, see Fig. 1. The best
tracking errors on the other hand are reached with Lmse, as
well as more precise sensor models.

The only exception is the dPF-G, where training on Lnll
gives overall bad results. This could either mean that Eq.
3 facilitates training or that approximating the belief with a
single Gaussian removes useful information even when the
task does not obviously require tracking multiple hypothesis.

For judging the quality of a DF, both likelihood and tracking
error should be taken into account: While a low RMSE is
important for all tasks that use the state estimate, a good
likelihood means that the uncertainty about the state is com-
municated correctly, which enables e.g. risk-aware planning.

The combined loss Lmix trades off these two objectives
during training. It does, however, not outperform the single
losses in their respective objective. A possible explanation is
that they can result in opposite gradients: Both dEKF and
dPF overestimate the process noise when trained on Lmse.
This lowers the tracking error by giving more weight to the
observations in the dEKF and allowing more exploration in
the dPFs. But it also results in a higher uncertainty about the
state, which is undesirable when optimizing the likelihood.

We generally found training the dPFs on the Lnll more diffi-
cult, since the likelihood computation can become numerically
unstable when the weights are small or the particle set is not
diverse. However, we still recommend using Lnll to ensure
learning accurate noise models. If learning the process and
sensor model does not work well , Lnll can be combined with
Lmse or the models can be pretrained.

F. Training Sequence Length

Karkus et al. [13] tested training their dPF on sequences of
length l ∈ [1, 2, 4] and found that using more steps improved
results. We want to test if increasing the sequence length even
further is beneficial. However, longer training sequences also
mean longer training times (or more memory consumption).
We thus aim to find a value for l with a good trade off between
training speed and model performance.

Experiment: We evaluate only dPF-M and dEKF on a
dataset with 15 distractors and constant process noise (σqp =
0.1, σqv = 2). The filters learn the sensor and process model as
well as heteroscedastic observation noise and constant process
noise models. We train using Lnll on sequence lengths l ∈
[1, 2, 5, 10, 25, 50] while keeping the total number of examples
per batch (steps × batch size) constant.

Results: Our results in Figure 2 show that both filters
benefit from longer training sequences much more than the
results in [13] indicated. However, while only one time step
is clearly too little, returns diminish after around ten steps.

Why are longer training sequences helpful? One issue with
short sequences is that we use noisy initial states during
training. This reflects real-world conditions, but the noisy
inputs hinder learning the process model. On longer sequences,
the observation updates can improve the state estimate and thus
provide more accurate input values.

We repeated the experiment without corrupting the initial
state, but the results with l ∈ [1, 2] got even worse: Since
the DFs could now learn accurate process models, they did
not need the observations to achieve a low training loss and



thus did not learn a proper sensor model. On the longer
test sequences, however, even small errors from the noisy
dynamics accumulate over time if they are not corrected by
the observations.

To summarize, longer sequences are beneficial for training
DFs, because they demonstrate error accumulation during
filtering and allow for convergence of the state estimate when
the initial state was noisy. However, performance eventually
saturates and increasing l also increased our training times. We
therefore chose l = 10 for all experiments, which provides a
good trade-off between training speed and performance.

G. Learning Noise Models

The following experiments analyse if and how well complex
models of the process and observation noise can be learned
through the filters.

To isolate the effect of the noise models, we use a fixed,
pretrained sensor model and the analytical process model, such
that only the noise models are trained. We initialize Q and R
with Q = I4 and R = 100 ∗ I2. All DFs are trained with Lnll
on different datasets with increasing numbers of distractors as
well as increasing positional process noise.

1) Heteroscedastic Observation Noise: We start with
datasets with constant process noise and increasing numbers
of distractors as well as the positional process noise qp. We
want to see if the DFs can adapt to the different Q and
if learning more complex, heteroscedastic observation noise
models improves the performance of the filters. For this, we
compare DFs that learn constant or heteroscedastic observation
noise, while the process noise is restricted to be constant.

We evaluate the process noise model using the Bhat-
tacharyya distance. To measure how well the predicted ob-
servation noise reflects the visibility of the target disc, we
compute the correlation coefficient between the predicted R
and the number of visible target pixels.

Results: Full results are shown in Table IV. When
learning constant observation noise, the dPF-M is the only
filter that performs well in terms of tracking error: All other
filters, (including the dPF-G) learn a very high R and thus
mostly rely on the process model for their prediction. This
is expected, since trusting the observations would result in
wrong updates to the mean state estimate when the target disc
is occluded. The PF-M does not use the mean of the particles
in the likelihood computation, which makes it less sensitive to
wrong observations and allows it to learn a lower R.

Like [7], we find that heteroscedastic observation noise
significantly improves the tracking performance of all DFs
except for the dPF-M. The strong negative correlation between
R and the visible disc pixels shows that the DFs correctly
predict higher uncertainty when the target is occluded. Only
the dPF-M sometimes fails to learn this correlation well: Since
it already performs well with constant observation noise, it has
less incentive to use state-dependent observation noise.

Finally, all DFs learn values of qv that are close to the
ground truth. For the position noise qp, however, we see
a difference between learning constant or heteroscedastic
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Fig. 4: Predicted and true process noise from the dEKF over one test sequence.
The ground truth process noise has the same σ for both coordinates.

observation noise: On the datasets with lower ground truth
process noise, qp is overestimated by all DFs. Results are
especially bad when the learned observation noise model is
constant. This could be because the bad tracking performance
with constant observation noise prevents learning an accurate
process model. The results for learning qp indeed improve if
we enable learning a better process model by using the true
initial state instead of a noisy one.

2) Heteroscedastic Process Noise: The effect of het-
eroscedastic process noise has not yet been evaluated in related
work. We create datasets with heteroscedastic noise, where the
magnitude of qv increases in three steps the closer to the origin
the disc is. The positional process noise qp remains constant.

We compare the performance of DFs that learn constant
and heteroscedastic process noise. The observation noise is
heteroscedastic in all cases.

Results: As shown in Table V, learning heteroscedastic
models of the process noise is a bit more difficult than for the
observation noise. This is not surprising, as the input values
for predicting the process noise are the noisy state estimates.

Plotting the predicted values for Q (see Fig. 4 for an
example from the dEKF) reveals that all DFs learn to follow
the real values for the velocity noise relatively well, but
also predict state dependent values for qp, which is actually
constant. This could mean that the models have difficulties
distinguishing between qp and qv as sources of uncertainty
about the disc position. However, we can see the same
behaviour also on dataset with constant qv. We thus assume
that the models rather pick up an unintentional pattern in our
data: The probability of the disc being occluded indeed turned
out to be higher in the middle of the image. The filters react
to this by overestimating qp in the center, which results in
an overall higher uncertainty about the state in regions where
occlusions are more likely.

Despite not being completely accurate, learning het-
eroscedastic noise models still increases performance of all
DFs by a small but reliable value. Even when the ground-
truth process noise model is constant, the DFs were able to
improve their likelihood scores slightly by learning “wrongly”
heteroscedastic noise models.



σqp = 0.1 σqp = 3.0 σqp = 9.0
R RMSE nll corr. DQ RMSE nll corr. DQ RMSE nll corr. DQ

5
di

st
ra

ct
or

s

dEKF const. 22.0 32.1 - 2.776 24.6 32.6 - 0.088 44.3 34.1 - 0.016
hetero. 15.5 30.2 -0.71 0.66 14.9 29.7 -0.75 0.002 30.5 33.0 -0.61 0.003

dUKF const. 22.7 32.1 - 2.892 25.1 32.7 - 0.085 44.7 34.2 - 0.035
hetero. 15.7 30.3 -0.7 1.216 15.3 29.8 -0.75 0.005 29.9 31.9 -0.66 0.005

dMCUKF const. 22.2 32.1 - 3.138 25.6 32.6 - 0.152 45.3 34.2 - 0.03
hetero. 15.6 30.4 -0.71 0.031 15.1 29.8 -0.75 0.006 30.0 31.9 -0.68 0.005

dPF-G const. 23.1 32.1 - 3.167 26.1 32.6 - 0.161 43.1 34.2 - 0.033
hetero. 17.7 30.9 -0.61 3.007 19.0 31.2 -0.52 0.179 33.5 33.1 -0.63 0.088

dPF-M const. 13.8 30.4 - 2.694 15.1 30.7 - 0.045 33.0 37.9 - 0.001
hetero. 14.7 30.8 -0.42 2.48 14.0 30.5 -0.29 0.029 29.4 37.3 -0.78 0.031

30
di

st
ra

ct
or

s

dEKF const. 21.0 32.2 - 2.89 25.6 32.4 - 0.067 44.4 34.1 - 0.024
hetero. 13.4 29.5 -0.67 0.96 18.7 31.2 -0.89 0.003 33.6 34.8 -0.75 0.006

dUKF const. 21.6 32.4 0 2.812 26.0 32.5 - 0.138 44.7 34.2 - 0.04
hetero. 12.1 28.7 -0.57 0.756 19.0 31.3 -0.9 0.003 34.3 35.0 -0.82 0.016

dMCUKF const. 22.0 32.2 - 3.253 26.1 32.5 - 0.155 45.3 34.2 - 0.03
hetero. 11.3 28.5 -0.6 1.423 18.8 31.1 -0.89 0.004 36.0 34.0 -0.78 0.02

dPF-G const. 22.7 32.2 - 3.151 26.6 32.4 - 0.148 43.5 34.1 - 0.041
hetero. 16.2 30.6 -0.54 3.106 19.6 31.5 -0.59 0.13 39.3 33.8 -0.52 0.038

dPF-M const. 14.1 30.6 - 2.684 18.1 32.5 - 0.045 35.9 38.9 - 0.005
hetero. 15.2 30.8 -0.53 2.666 18.5 33.2 -0.65 0.08 33.6 39.5 -0.68 0.202

TABLE IV: Results for learning only the noise models through the DFs. While Q is always constant, we evaluate learning constant (const.) or heteroscedastic
(hetero) observation noise R. We show the tracking error (RMSE), negative log likelihood (nll), the correlation coefficient between predicted R and the
number of visible pixels of the target disc (corr.) and the Bhattacharyya distance between true and the learned process noise model (DQ).

σqp = 0.1 σqp = 3.0 σqp = 3.0, σqv = 2.0 σqp = 9.0
Q RMSE nll DQ RMSE nll DQ RMSE nll DQ RMSE nll DQ

dEKF const. 9.5 28.4 2.268 12.2 29.7 0.864 18.7 31.2 0.003 29.1 32.5 1.119
hetero. 8.4 27.4 1.705 11.6 29.0 0.351 17.9 31.1 0.097 27.6 32.1 0.892

dUKF const. 9.4 28.2 2.819 12.3 29.6 0.867 19.0 31.3 0.003 30.5 32.8 1.056
hetero. 8.6 27.4 1.679 11.9 29.1 0.4 18.3 31.2 0.075 30.2 32.3 0.968

dMCUKF const. 9.5 28.2 2.972 12.3 29.7 0.882 18.8 31.1 0.004 30.7 32.6 1.186
hetero. 8.6 27.5 1.915 11.8 29.1 0.42 18.5 31.0 0.053 29.9 32.4 1.043

dPF-G const. 12.4 29.7 3.984 14.1 30.3 1.126 19.6 31.3 0.130 31.5 32.6 1.216
hetero. 12.1 29.4 3.695 13.8 29.8 0.755 20.0 31.2 0.216 31.0 32.4 1.055

dPF-M const. 11.3 29.6 3.744 12.6 30.4 0.936 18.5 33.2 0.08 30.1 37.6 0.995
hetero. 9.6 28.7 3.327 11.9 29.9 0.589 18.8 32.6 0.118 28.7 37.4 0.722

TABLE V: Results for learning constant or heteroscedastic process noise Q on datasets with 30 distractors and different heteroscedastic or constant (σqp = 3.0,
σqv = 2.0) process noise. DQ is the Bhattacharyya distance between true and learned process noise.


	Introduction
	Background: Bayesian Filtering
	Related Work
	Differentiable Bayesian Filters
	Observation Model
	Process Model
	Noise Models
	Training

	Experiments
	Simulated Task
	Implementation and Hyperparameters
	Loss Function
	Training Sequence Length
	Learning Noise Models
	Heteroscedastic Observation Noise
	Heteroscedastic Process Noise

	Benchmarking

	Conclusions & Future Work
	Appendix
	Bayesian Filter Algorithms
	Kalman Filter
	Extended Kalman Filter (EKF)
	Uncentered Kalman Filter (UKF)
	Monte Carlo Unscented Kalman Filter (MCUKF)
	Particle Filter (PF)

	Simulated Environment
	Training
	Implementation and Hyperparameters
	Loss Function
	Training Sequence Length
	Learning Noise Models
	Heteroscedastic Observation Noise
	Heteroscedastic Process Noise



