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Abstract. Many object pose estimation algorithms rely on the analysis-
by-synthesis framework which requires explicit representations of individ-
ual object instances. In this paper we combine a gradient-based fitting
procedure with a parametric neural image synthesis module that is ca-
pable of implicitly representing the appearance, shape and pose of entire
object categories, thus rendering the need for explicit CAD models per
object instance unnecessary. The image synthesis network is designed to
efficiently span the pose configuration space so that model capacity can
be used to capture the shape and local appearance (i.e., texture) vari-
ations jointly. At inference time the synthesized images are compared
to the target via an appearance based loss and the error signal is back-
propagated through the network to the input parameters. Keeping the
network parameters fixed, this allows for iterative optimization of the
object pose, shape and appearance in a joint manner and we experimen-
tally show that the method can recover orientation of objects with high
accuracy from 2D images alone. When provided with depth measure-
ments, to overcome scale ambiguities, the method can accurately recover
the full 6DOF pose successfully.

Keywords: category-level object pose, 6DoF pose estimation

1 Introduction

Estimating the 3D pose of objects from 2D images alone is a long-standing
problem in computer vision and has many down-stream applications such as
in robotics, autonomous driving and human-computer interaction. One popular
class of solutions to this problem is based on the analysis-by-synthesis approach.
The key idea of analysis-by-synthesis is to leverage a forward model (e.g., graph-
ics pipeline) to generate different images corresponding to possible geometric
and semantic states of the world. Subsequently, the candidate that best agrees
with the measured visual evidence is selected. In the context of object pose
estimation, the visual evidence may comprise RGB images [24,29], depth mea-
surements [4,56] or features extracted using deep networks such as keypoints
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[29,49,33,17,39] or dense correspondence maps [25,38,55]. While such algorithms
can successfully recover the object pose, a major limiting factor is the require-
ment to i) know which object is processed and ii) to have access to an explicit
representation of the object for example, in the form of a 3D CAD model.

Embracing this challenge, in this paper we propose an algorithm that can be
categorized as analysis-by-synthesis but overcomes the requirement of a known,
explicit instance representation. At the core of our method lies a synthesis mod-
ule that is based on recent advancements in the area of deep learning based im-
age synthesis. More specifically, we train a pose-aware neural network to predict
2D images of objects with desired poses, shapes and appearances. In contrast
to traditional static object representations, neural representations are able to
jointly describe a large variety of instances, thereby extrapolating beyond the
training set and allowing for continuous manipulation of object appearance and
shape. In addition, our network is designed to efficiently span the space of 3D
transformations, thus enabling image synthesis of objects in unseen poses.

After training, the synthesis module is leveraged in a gradient-based model
fitting algorithm to jointly recover pose, shape and appearance of unseen object
instances from single RGB or RGB-D images. Since our neural image synthesis
module takes initial pose and latent codes (e.g., extracted from an image) as
input, it can be used as a drop-in replacement in existing optimization-based
model fitting frameworks. Given the initial pose and latent code, we generate an
image and compare it with the target RGB image via an appearance based loss.
The discrepancy in appearance produces error gradients which back-propagate
through the network to the pose parameters and the latent code. Note that
instead of updating the network parameters as during training time, we now
keep the network weights fixed and instead update the appearance, shape and
pose parameters. We repeat this procedure until convergence.

We evaluate our method on a publicly available real-world dataset on the
task of category-level object pose estimation. Using RGB images, our method
is able to estimate the 3D object orientation with an accuracy on par with and
sometimes even better than a state-of-the-art method which leverages RGB-D
input. As demonstrated in previous work [53], RGB-only methods suffer strongly
from inherent scale ambiguities. Therefore, we also investigate an RGB-D ver-
sion of our model which faithfully recovers both 3D translation and orientation.
We systematically study algorithmic design choices and the hyper-parameters
involved during both image generation and model fitting. In summary:

– We integrate a neural synthesis module into an optimization based model fit-
ting framework to simultaneously recover object pose, shape and appearance
from a single RGB or RGB-D image.

– This module is implemented as a deep network that can generate images of
objects with control over poses and variations in shapes and appearances.

– Experiments show that our generative model reaches parity with and some-
times outperforms a strong RGB-D baseline. Furthermore, it significantly
outperforms discriminative pose regression.‡

‡ Project homepage: ait.ethz.ch/projects/2020/neural-object-fitting

ait.ethz.ch/projects/2020/neural-object-fitting
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2 Related Work

2.1 Object Pose Estimation

Given its practical importance, there is a large body of work focusing on object
pose estimation. The state-of-the-art can be broadly categorized into template
matching and regression techniques. Template matching techniques align 3D
CAD models to observed 3D point clouds [4,56], images [24,29], learned keypoints
[29,49,33,17,39] or correspondence features [25,38,55]. In contrast, [41,22,53] tackle
object pose estimation as a classification or regression problem. However, to
achieve high accuracy, these methods typically require template-based refine-
ment, e.g., using ICP [4]. While yielding impressive results, all aforementioned
methods require access to an instance specific 3D CAD model of the object,
both during training and test time. This greatly limits their applicability since
storing and comparing to all possible 3D CAD models at test time is impractical
in many situations. Moreover, capturing high-fidelity and complete 3D models
is often difficult and for some applications even impossible.

Only recently, researchers started the attempt to address object pose esti-
mation without requiring access to instance-specific 3D object models at test
time. NOCS [50] proposes to tackle this problem by learning to reconstruct the
3D object model in a canonical coordinate frame from RGB images and then
align the reconstruction to depth measurements. They train their reconstruction
network using objects from the same categories, which is expected to generalize
to unseen instances within the same category at test time. While our method
also learns to solve the task from objects within the same category, our method
is a fully generative approach which simultaneously recovers object pose, shape
and appearance. Thus, it allows for directly synthesizing the object appearance,
eliminating the intermediate step of reconstructing the object in 3D. Latent-
Fusion [37] proposes a 3D latent space based object representation for unseen
object pose estimation. In contrast to ours, it requires multi-view imagery of the
test object to form the latent space and depth measurements at test time. In
contrast to both NOCS [50] and LatentFusion [37], our model enables 3D object
pose estimation from a single RGB image as input.

2.2 Pose Dependent Image Generation

Pose or viewpoint dependent image generation has been studied in two settings.
One line of work focuses on synthesizing novel views for a given source image
by directly generating pixels [23,48,34,44] or by warping pixels from source to
target view [57,40,35,46,9]. While such techniques can be used to render objects
in different poses, the object appearance and shape is controlled by the source
image which cannot be optimized.

Another line of work tackles the problem of disentangled image generation
[8,16,27,42,19], considering object pose as one factor among many. Recent works
[32] achieve appealing results on viewpoint/pose disentanglement using a 3D la-
tent space. While all mentioned methods are able to generate objects in different
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Fig. 1: Method overview. We leverage a learned pose-aware image generator
G for object pose estimation. Training: The generator is trained in the VAE
framework by leveraging multi-view images of synthetic objects. We minimize
the reconstruction loss between generated and ground-truth images of known
orientation together with the KL divergence. After training, the generator can
produce images that faithfully reflect the (latent) appearance and desired pose.
Inference: To estimate object pose from a segmented real image as input, our
method iteratively optimizes the object pose and shape, minimizing the percep-
tual loss between the input and the generated image while keeping the weights
of the trained networks fixed.

poses, shape and appearances, the pose cannot be controlled precisely (e.g., ro-
tation by a set amount of degrees), rendering their application to absolute object
pose estimation tasks difficult. Inspired by [32], our network also adopts a 3D
latent space. However, we utilize the model in a supervised fashion to integrate
precise absolute pose knowledge into the latent representation during training.
This is achieved by integrating the 3D latent space with a conditional VAE
framework. In contrast to [44] which also utilizes a 3D latent space, our model
can jointly represent multiple instances of an object category and to generalize
to unseen instances. Similar and concurrent to ours, [31] uses pose-aware image
generation for viewpoint estimation, but in a discriminative manner.

2.3 3D Representations for Objects

Several works have addressed the problem of generating 3D geometric represen-
tations including meshes [28,47,12], point sets [2,54,26], voxels [52,6] and implicit
functions [36,30,10,45]. While these generative models are also able to represent
objects at category level and could theoretically be used for category-level object
fitting in combination with a differential rendering algorithm, all aforementioned
techniques only consider geometry, but not the appearance. As a result depth
measurements are required and the rich information underlying in the object’s
appearance is discarded. In contrast, our method allows for leveraging appear-
ance information and does not require depth maps as input. While [58] is able
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to generate textured objects, it is limited by its reliance on 3D meshes. In con-
trast, we completely forego the intermediate geometry estimation task, instead
focusing on pose-conditioned appearance generation.

2.4 Latent Space Optimization

The idea of updating latent representations by iterative energy minimization has
been exploited for other tasks. CodeSLAM [5] learns a latent representation of
depth maps, optimizing the latent representation instead of per-pixel depth val-
ues during bundle adjustment. GANFit [13] represents texture maps with GANs
and jointly fits the latent code and 3DMM parameters to face images. [1,14,42,3]
embeds natural images into the latent space of GANs by iteratively minimizing
the image reconstruction error for image editing. Our method is inspired by
these works, but targets a different application where latent appearance codes
and geometric parameters such as poses must be optimized jointly.

3 Method

We propose a neural analysis-by-synthesis approach to category-level object pose
estimation. Leveraging a learned image synthesis module, our approach is able
to recover the 3D pose of an object from a single RGB or RGB-D image without
requiring access to instance-specific 3D CAD models.

Fig. 1 gives an overview of our approach. We first train a pose-aware image
generator G with multi-view images of synthetic objects from the ShapeNet [7]
dataset, which is able to generate object images Î = G(R, T, z) that faithfully re-
flect the input object pose (R, T ) and appearance code z. At inference time with
a segmented image I as input, our method estimates object pose by iteratively
optimizing the object pose and shape to minimize the discrepancy between the
input image and the synthesized image G(R, T, z).

3.1 Pose-aware Image Generator

To generate images of different instances of a given category, we seek to generate
images with significant but controllable shape and appearance variation. We
encode shape and appearance via latent variable z, and the desired 6 DoF object
pose, comprising 3D rotation R = RxRyRz and 3D translation T = [tx ty tz],
via (R, T ). The z-axis is defined to align with the principal axis of the camera
and the y-axis points upwards. For efficiency and to increase the capacity of our
model in terms of representing the large variability of shapes and appearances,
we decouple the image generation pipeline into two stages. First, we observe that
3D translations T and in-plane rotations Rz can be modeled using 2D operations
and thus do not need to be learned. Therefore, we constrain our network G3D

to generate only images with out-of-plane rotations Îrot = G3D(Rx, Ry, z), i.e.,
elevation Rx and azimuth Ry. The remaining transformations are modeled using
2D image warping operations W derived from 3D translations T and in-plane
rotation Rz. The full generation process is defined as G =W ◦G3D.
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Fig. 2: Pose-aware image generator. To generate an image in the desired pose
(R, T ), the out-of-plane rotation RxRy is first applied to the 3D feature volume,
and then the 2D projection of the feature volume is decoded into an image.
Subsequently, this image undergoes a 2D similarity transformation derived from
the translation T and in-plane rotation Rz to form the final output. The latent
code z is injected into the 3D feature volume generator Dec3D and the 2D
decoder Dec2D via adaIN to control the variation in shapes and appearances.

Appearance and 3D Rotation. In order to generate images of objects in
diverse appearances, shapes and poses, we adopt a 3D style-based image gener-
ation network similar to the one proposed in [32] as illustrated in Fig. 2. This
network combines a 3D feature volume which faithfully captures 3D rotations
with a style-based generator [21]. This enables our model to disentangle global
appearance variation from geometric factors such as pose and shape. The 3D
style-based image generation network consists of four main steps: i) generating
the 3D feature volume, ii) transforming the feature volume based on the pose,
iii) projecting the 3D volume into a 2D feature map, and iv) decoding the feature
map into the predicted image Î. Both, the 3D generator and the 2D generator
are conditioned on the latent code z via adaptive instance normalization [18] to
model the variance in shape and appearance respectively. The object orientation
R controls the transformation that is applied to the 3D feature volume.

Translation and 2D Rotation. While the 3D style-based decoder can in
principle cover the entire space of 6 DoF poses, the resulting model would require
a very large capacity and dataset to be trained on. We therefore constrain the
decoder to out-of-plane rotations and handle all remaining transformation using
a similarity 2D transformation. The warping field is given by:

W(T,Rz) :

[
u
v

]
7→ f

tz
·
(
Rz

[
u
v

]
+

[
tx
ty

])
(1)

We use W to warp the generated image, yielding the final image Î:

Î = G(R, T, z) =W(T,Rz) ◦G3D(Rx, Ry, z) (2)
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3.2 Training

We train our image generator in a conditional VAE framework as illustrated
in Fig. 1 in order to achieve precise pose control over the generated image. A
VAE is an auto-encoder trained by minimizing a reconstruction term and the
KL divergence between the latent space distribution and a normalized Gaussian.
We use our 3D style-based image generation network as decoder and a standard
CNN as encoder.

At each training iteration, the encoder first extracts the latent code from
an image of a randomly chosen training object. Then the 3D image generation
network takes this latent code together with the desired pose as input to generate
an image Î of the chosen object in the desired pose. The encoder and decoder
are jointly trained by minimizing the reconstruction loss between the generated
image and the ground-truth, regularized via the KL divergence:

L = ‖I − Î‖1 + λKL DKL (3)

where λKL weights the regularization term and is set to 1e−2 in our experiments.
The required training data, namely images of objects in difference poses and the
corresponding pose label, is obtained by rendering synthetic objects from the
ShapeNet dataset [7]. Since translation and 2D rotation is modelled by similar-
ity transformation which does not require training, we only generate training
samples with out-of-plane rotations for the sake of training efficiency.

3.3 Object Pose Estimation

The trained pose-aware image generator can render objects in various shapes,
appearances and poses. Since the forward process is differentiable, we can solve
the inverse problem of recovering its pose, shape and appearance by iteratively
refining the network inputs (i.e., the pose parameters and the latent code), so
that the discrepancy between the generated and the target image is minimized:

R∗, T ∗, z∗ = argmin
R,T,z

E(I,R, T, z) (4)

In the following sections, we will discuss the choice of energy function E, our
initialization strategy and the optimizer in detail. Note that we assume that the
object is segmented from the background which can be achieved using off-the-
shelf image segmentation networks such as Mask-RCNN [15].

Energy Function. We require a distance function d that measures the dis-
crepancy between two images. Common choices include the L1 and L2 per-pixel
differences, the Structural Similarity Index Metric (SSIM) [51] and the percep-
tual loss [20] which computes the L2 difference in deep feature space. To gain
robustness with respect to domain shifts we adopt the perceptual loss as distance
function and experimentally validate that it yields the best results.
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Without further regularization, we found that the model may converge to
degenerate solutions by pushing the latent code beyond the valid domain. To
avoid such undesirable solutions, we penalize the distance to the origin of the
latent space. Due to the KL divergence term used during training, codes near
the origin are more likely to be useful for the decoder. Our final energy function
is then given by:

E(I,R, T, z) = ‖Fvgg(I)− Fvgg(Î)‖2 + ‖z‖2, (5)

where Fvgg is a VGG network [43] pre-trained on ImageNet [11] for deep feature

extraction and Î is the image generated based on R, T and z according to Eq. 2.

Initialization Strategy. Since the above energy function is non-convex, gradient-
based optimization techniques are prone to local minima. Therefore, we start the
optimization process from multiple different initial states which we execute in
parallel for efficiency. The optimal solution results in an image that aligns with
the target image as well as possible, with any differences in pose or appear-
ance leading to an increase in the reconstruction error. We thus choose the best
solution by evaluating the optimization objective.

We sample the initial poses uniformly from the space of valid poses. As the
latent dimension is high, random sampling can be inefficient due to the curse
of dimensionality. We therefore leverage our (jointly trained) encoder to obtain
mean and variance for the conditional distribution of the latent code and sample
from the corresponding Gaussian distribution.

4 Evaluation

We first compare our approach with the state-of-the-art category-level object
pose estimation method NOCS [50]. To validate the effectiveness of our method,
we then also compare our method with several other baselines for category-level
object model fitting. Furthermore, we systematically vary the architecture and
hyper-parameters of our image generation network to analyze their influence
on the fitting result. We also study the influence of the hyper-parameters for
optimization. Finally, we evaluate the robustness of our generative model with
respect to domain shifts, comparing it to a discriminative model.

4.1 Comparison with state-of-the-art

Baseline. To the best of our knowledge, NOCS [50] is the only method for
category-level object pose estimation. It uses both synthetic data generated from
ShapeNet CAD models, and real data to train a network that is able to recon-
struct objects from a RGB image in a canonical coordinate frame. Subsequently,
the object pose is recovered by aligning the reconstruction to the depth map.
NOCS uses both simulated (CAMERA) and real data (REAL275) for training.
Their simulated data is generated by compositing synthetic images from [7] onto
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real-world tables. REAL275 contains real RGB-D images (4300 for training and
2750 for testing), capturing 42 real object instances of 6 categories (camera, can,
bottle, bowl, laptop and mug) in 18 different scenes.

Our method is trained with the same set of synthetic objects used in the
CAMERA dataset. However our method does not require superimposing the
objects onto real contexts. More importantly, in contrast to NOCS, our method
does not require real images and their pose annotations for training. Note that
we rely only on cheap to acquire 2D annotations of real images to fine-tune the
object segmentation network (we use the REAL275 dataset for this purpose).

Since there is no public method capable of category-level object pose esti-
mation from RGB images alone, we introduce a simple baseline consisting of a
VGG16 [43] network that regresses object orientations directly from 2D images,
trained on the same synthetic data as ours. Note that this is a fair comparison
since the baseline and our method use the same training and test data.

Metrics. We follow the evaluation protocol defined by NOCS [50]. NOCS re-
ports average precision which considers object detection, classification and pose
estimation accuracy. They set a detection threshold of 10% bounding box overlap
between prediction and ground truth to ensure that most objects are included
in the evaluation. Next, they compute the average precision for different thresh-
olds of rotation and translation error as performance indicator. Although our
method assumes that the target image does not contain background and we rely
on a off-the shelf 2D image segmentation network for object detection, we follow
the same protocol for a fair comparison with NOCS. To remove the influence of
varying detection accuracy from the comparison, we use the trained Mask-RCNN
network from the NOCS Github repository.

The error in rotation eR and translation et is defined by:

eR = arccos
Tr(R̃ ·RT )− 1

2
and et = ‖t̃− t‖2 (6)

where Tr represents the trace of the matrix. For symmetric object categories
(bottle, bowl, and can), we allow the predicted 3D bounding box to freely rotate
around the objects vertical axis with no penalty, as done in [50].

Results: Translation. We first evaluate the translation accuracy, summarized
in Fig. 3. When using depth as input, both models perform comparable. We
simply treat depth as an additional color channel during fitting and the trans-
lation parameter Tz is directly added to the generated depth map. This version
is trained on synthetic RGB-D data instead of RGB data. Without using depth
at training and test time, our RGB only version does not achieve the same ac-
curacy. This is however to be expected due to the inherent scale-ambiguity of
2D observations. We remark that similar observations have been made in the
instance-level pose estimation literature [53].
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Fig. 3: Comparison with NOCS: Translation. Average precision at differ-
ent translation thresholds. When using depth, our method achieves comparable
results to the RGB-D method. When using RGB only, our method yields higher
errors due to scale ambiguities.

Results: Orientation. The AP curve for our rotation estimation experiment is
shown in Fig. 4. Despite using only RGB inputs, on average we achieve results on
par or better than the privileged NOCS baseline which uses RGB and depth as
well as real-images with paired pose annotations during training. Taking a closer
look at each category, our method outperforms NOCS on the bottle, can and
camera categories. We hypothesize that the complex textures of cans and bottles
is problematic for the regression of the NOCS features, and the complex geometry
of cameras poses a challenge for ICP. Fig. 5 shows qualitative results. It can be
seen that our method produces more accurate results than NOCS, especially
for geometrically complex objects. This may also provide an explanation for the
narrow performance advantage of NOCS on bowl and laptop; both object types
have many planar regions which favor the point-to-plane metric used in ICP.

Finally, our method significantly outperforms the discriminative RGB-based
baseline which directly regresses 3D orientation from images. This large gap is
partially due to the sensitivity of discriminative methods towards distribution
shifts and domain gaps between the training and test data (e.g., instances, light-
ing, occlusion and segmentation imperfections) and proves the generalization
power of generative models for pose estimation.

4.2 Component Analysis

Image Generation. We evaluate the influence of our design choices in the im-
age generation network on both the image generation and the object pose fitting
task. First, we train a network in which the poses are directly concatenated to
the latent code and then decoded to images with 2D convolutions only, the lat-
ter essentially being a standard conditional VAE (denoted by w/o 3D). Tab. 1a
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Fig. 4: Comparison with NOCS: Orientation. Average precision at different
rotation error thresholds. Using only RGB as input, on average we achieve results
on par or better than the NOCS baseline which uses RGB-D input and real
training images with pose annotations. Our method can handle objects with
complex geometry (camera) and textures (can) better than NOCS. See Fig. 5.

and Fig. 6 clearly show that the lack of a 3D latent space leads to poor image
generation results and consequently the fitting fails.

We further train our network without the KL divergence term (denoted by
w/o VAE in Tab. 1a). While the image generation network achieves a lower
training objective without regularization, this results in a non-smooth latent
space, i.e. only few samples in the latent space are used for image generation.
In consequence, the fitting is negatively impacted since no informative gradient
can be produced to guide the updates of the latent code.

Finally, we study the influence of the dimension of the latent space. We
train several networks with different dimensions. Tab. 1b summarizes the results.
Low-dimensional latent spaces are not capable of representing a large variety of
objects, and inflect high image reconstruction errors and high pose fitting error.
On the other extreme, we find that higher dimensionality leads to better image
reconstruction quality, whereas it poses difficulty for fitting. We hypothesize that
this is due the more complex structure of the latent space which is required to
obtain high reconstruction fidelity. Empirically, we find that a 16-dimensional
latent space leads to a good trade-off between image quality and pose accuracy.

Optimization. We study the hyper-parameters for optimization. We plot the
error evolution of our energy function and the rotation error at different itera-
tions. As evident from Tab. 2b, with decreasing loss, the rotational error also
decreases, demonstrating that our energy function provides a meaningful signal
for pose estimation. In practice, our method converges in less than 50 iterations
in most cases. The fitting progress is also visualized qualitatively in the figure
in Tab. 2b. The initial pose is significantly different from the target as shown in
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Fig. 5: Qualitative comparison to NOCS. Our method can handle geomet-
rically complex objects such as cameras better. Objects in insets.

Table 1: Effect of network design choices on object pose estimation. (a)
demonstrates that both the VAE training scheme and the 3D feature volume
are benefical for object pose estimation. (b) shows that overly high- or low-
dimensional latent space can negatively influence the pose estimation.

(a) Network architectures.

L1 AP10 AP60

w/o 3D 0.109 1.8% 90.2%
w/o VAE 0.049 12.3% 92.7%

Ours 0.056 16.5% 97.1%

(b) Latent space dimension.

L1 AP10 AP60

4 0.082 9.1% 96.6%
16 0.056 16.5% 97.1%
128 0.041 11.4% 96.0%

the inset. The initial appearance, which is obtained via the encoder, is close to
the target appearance but still displays noticeable differences, e.g. the touchpad.
Our method jointly refines both the pose and appearance. During the first few
iterations, the method mainly focuses on adjusting the pose since the pose has a
larger influence on the error than the appearance. In the last few iterations the
method mainly focuses on fine-tuning the appearance to adapt to the image.

We also evaluate other potential choices for the energy function to minimize,
including the mean absolute error (L1), the mean squared error (L2) and the
Structural Similarity Index Metric (SSIM) [51]. These error functions do not
perform as well as the perceptual loss as shown in Tab. 2a. This is likely due
to the fact that the perceptual loss encourages semantic alignment rather than
pixel-wise alignment. Thus it produces results that are globally aligned instead
of focusing on local regions. We also conduct experiments in fitting without the
regularization term (w/o reg). This leads to unrealistic samples that minimizes
the loss in an undesired way, resulting in a performance decrease compared to
our full model.
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Fig. 6: Image generated with different network architectures. Our
method can generate novel images in diverse shape and appearances and in
desired poses. Without using KL divergence (w/o VAE) the network cannot
generate novel samples. Without using 3D structure, the network struggles to
faithfully reflect rotation and hence the image quality suffers.

Table 2: Ablation study of energy functions. As shown in (a), perceptual
loss outperforms other potential error functions. (b) shows that the rotational
error decreases with decreasing energy value.

(a) Effect of energy functions.

AP10 AP60

L1 14.3% 85.3%
L2 13.2% 88.3%

SSIM 15.8% 92.5%
w/o reg 16.2% 95.9%

Ours 16.5% 97.1%

(b) Loss and pose error along iterations.

4.3 Robustness

In order to study the robustness of our method to varying factors causing do-
main shift, we evaluate our method in a controlled simulation environment. We
train our network using the “laptop” category of the synthetic ShapeNet dataset
and test on unseen synthetic instances. We mainly study three factors that often
differ between real and simulated data, namely lighting, occlusion and offsets
in bounding box detection. At test time, we vary one of these factors at a time
and evaluate the average error in terms of orientation estimation. We modify
the brightness of the target image for lighting, remove certain areas of the image
to simulate occlusion and translate the image in 2D to emulate inaccurate 2D
detection. For comparison, we train a VGG16 network to regress rotation angles
from images using the same training data. It is well known that discriminative
approaches are more susceptible to overfitting which often results in worse gener-
alization performance compared to generative approaches. We verify this finding
for the category-level pose estimation task. We also randomly vary the three fac-
tors already when training the discriminative approach, but only to a limited
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Fig. 7: Study of robustness. We study the influence of object instances, occlu-
sion, brightness, and translation on the accuracy of rotation estimation. Com-
pared to the VGG-based regression baseline, ours retains low error under chal-
lenging conditions even without any data augmentation at training time.

degree (up to 20% for occlusion, 40% for lighting and 25% for translation). At
test time, we test the network on samples both within and beyond the training
variations. Note that our method never sees augmented images during training.

Fig. 7 illustrates the results of this experiment. First, we observe that our gen-
erative approach is less sensitive to the gap between training and test instances
which is a crucial design goal of our approach in order to deal with unseen
objects. When varying the three factors, the discriminative model exhibits sig-
nificant performance variations especially when the factor exceeds the variations
in the training distribution. In contrast, our method exhibits less performance
variation which demonstrates the robustness of our method.

5 Conclusion

In this paper, we propose a novel solution to category-level object pose estima-
tion. We combine a gradient-based fitting procedure with a parametric neural
image synthesis model that is capable of implicitly representing the appearance,
shape and pose of entire object categories, thus avoiding the need for instance-
specific 3D CAD models at test time. We show that this approach reaches perfor-
mance on par with and sometimes even outperforms a strong RGB-D baseline.
While our focus lies on rigid objects, extending our method to handle non-rigid
or partially rigid objects is an interesting direction for future work.
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