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Overview

Problem setup:

• Learn action-conditioned dynamics of a physical system given images as observations

•Use the learned dynamics to solve a control problem with image feedback (model-based RL)

Our approach:

• Convolutional neural networks for mapping between image space and latent space

•Gaussian process posteriors to model rewards and transitions in the latent space

•MPC with Cross-Entropy Method (CEM) for planning in latent space

Main advantage:
Quick adaptation to changes in environment dynamics without additional training

Contributions
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PILCO [4] GP Identity Analytic Policy search
Kalman-VAE [3] Blended linear VAE - -
PlaNet [2] RSSM (GRU) VAE MLP MPC/CEM
DLGPD (ours) GP VAE GP MPC/CEM

•Gaussian process models were shown to be sample efficient for learning control and were
sucessfully applied to real-world systems [4]

•Our work joins the two fields of Gaussian processes for sequence modelling and learning control
with representation learning techniques to map between image observations and a latent space
(Variational Auto-Encoder)

•We show that our model can learn the dynamics of an inverted pendulum from image obser-
vations and swing the pendulum up with a model-predictive control algorithm (CEM)

•We demonstrate that the latent Gaussian process dynamics model allows the agent to adapt
to environments with modified system dynamics from only a few rollouts and without addi-
tional training. Our approach compares favorably to the purely deep-learning based baseline
PlaNet [2] in transfer learning experiments

Problem Setup

Dynamical systems:
Stochastic dynamics given by

st+1 = f (st, at) + εs,

rt+1 = h(st, at) + εr,

ot = g(st) + εo,

with latent states s ∈ RD, actions a ∈ RK, re-
wards rt ∈ R, and observations o ∈ RM .
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Goals:

• Learn low-dimensional, action-conditioned dynamics in a latent space given high-dimensional
observations (images)

• Implement a policy p(at|o≤t, a<t) that maximizes the expected sum of rewards
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•Transition model: f ∼ GP(µf(·), kf(·, ·)), with mean function µf : (st, at) 7→ st and radial basis
function (RBF) kernel kf

•Reward model: h ∼ GP(rmin, kh(·, ·)) where rmin is the minimal reward observed in the collected
training data and kh the RBF kernel

•Observation model (Decoder): p(ot | st) an approximate Bernoulli with mean
Ep(ot | st) [ot] = g(st), where g(·) is parametrized by a transposed-convolutional network

•Encoder: q(st | ot) ∼ N
(
st | µ(ot), σ(ot)2 · I

)
with vector-valued µ(·) and σ(·) parametrized by a

convolutional neural network

Training Objective

•Notation: Given data D = {(ot, at, ot+1, rt+1)}Tt=1, consisting of transitions in observation space,
we define O = {o1, . . . , oT−1}, A = {a1, . . . , aT−1}, O′ = {o2, . . . , oT}, and R′ = {r2, . . . , rT}, to-
gether with latent states S = {s1, . . . , sT−1} and S ′ = {s2, . . . , sT}.
•Training objective: Our joint training objective is to maximize a lower bound on the data

log-likelihood:

log p(O′, R′ |O,A) ≥ Eq(S′ |O′) [log p(O
′ | S ′)]︸ ︷︷ ︸

(I): Reconstruction

+Eq(S′ |O′) [− log q(S ′ |O′)]︸ ︷︷ ︸
(II): Encoder regularization

+ Eq(S′ |O′)q(S |O) [log p(S
′ | S,A)]︸ ︷︷ ︸

(III): State transitions

+Eq(S |O) [log p(R
′ | S,A)]︸ ︷︷ ︸

(IV): Reward

Experiment Setup

•Task: Inverted pendulum swingup
(OpenAI Gym Pendulum-v0 )

•Training Data: Rollouts obtained by applying random actions, 500 for training and 200 for
evidence; we choose rollouts from the latter to condition the GPs on.

•Transfer Learning: Evaluate model performance on unmodified environment (a) and for the
following modifications:
(b) Inverted actions, (c) Reduced pole mass (m = 0.2), (d) Increased pole mass (m = 1.5)
We condition the model (more precisely the GPs) on data from these environments
No additional training is required!

•Comparison: PlaNet [2] trained on the training and evidence data (500+200 rollouts; sufficient
to achieve good performance on the standard task). For the transfer learning evaluation the
model is fully or partially retrained.

Results

Latent space and planned trajectories
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Cumulative rewards
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Evaluation:

• Structured latent space that allows for good planning

•Good performance on the unmodified environment (a)

•Data-efficient transfer to modified environments (b)-(d):

– 20 rollouts are enough for (nearly) 100% success rate in all tasks

– In comparison, PlaNet [2] requires significantly more data to achieve comparable success
rates and reaches lower cumulative rewards

Paper and supplementary material available at:
https://dlgpd.is.tue.mpg.de
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