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Abstract— In the context of model-based reinforcement learn-
ing and control, a large number of methods for learning system
dynamics have been proposed in recent years. The purpose
of these learned models is to synthesize new control policies.
An important open question is how robust current dynamics-
learning methods are to shifts in the data distribution due
to changes in the control policy. We present a real-robot
dataset which allows to systematically investigate this question.
This dataset contains trajectories of a 3 degrees-of-freedom
(DOF) robot being controlled by a diverse set of policies. For
comparison, we also provide a simulated version of the dataset.
Finally, we benchmark a few widely-used dynamics-learning
methods using the proposed dataset. Our results show that the
iid test error of a learned model is not necessarily a good
indicator of its accuracy under control policies different from
the one which generated the training data. This suggests that
it may be important to evaluate dynamics-learning methods in
terms of their transfer performance, rather than only their iid
error.

I. INTRODUCTION

Model-based reinforcement learning and optimal control
methods synthesize controllers using dynamics models. There
is a broad spectrum of methods for acquiring dynamics
models, ranging from physics-based modeling combined with
parameter identification to black-box methods based on e.g.
neural networks. Naturally, such models would be of little
use if they were only valid for the controller under which the
training data was collected. Hence, the model learned under
a certain source distribution must be valid for a different
target distribution. This is an instance of a problem known
as transfer learning in the machine learning community [1],
we will also refer to it as extrapolation throughout the paper.
Theoretical analysis is very difficult in our case for two
main reasons: i) It is hard to quantify the shift in the data
distribution implied by a shift in the control policy, and
ii) many current methods are very complex. Therefore, it
is necessary to empirically evaluate algorithms in terms of
their extrapolation performance. The main contribution of
this article is to propose a dataset for this purpose.

The benefit of benchmarks in the research community
has lately been demonstrated in image classification [2], [3]
and autonomous driving [4], [5]. In the context of robotic
learning, a significant push has been made in this direction
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Fig. 1: The data was recorded on a 3 DOF real-robotic system
using a number of widely different controllers. Left: view of
the entire setup. Right: close-up of the 3 DOF arm.

through simulation-based benchmarking suits for continuous
control [6], [7]. Since it is unclear how well simulation results
generalize to real-world scenarios, these simulators must be
complemented by real-world datasets. Such datasets have been
released for drone racing [8], [9], grasping and manipulation
[10], [11] and identifying the dynamics of robotic arms [12],
[13], which is the problem we consider here. In contrast to
the aforementioned datasets, we design the learning problem
such that the main difficulty lies in extrapolation. Specifically,

1) the system (3 DOF arm, see Figure 1) is simple, such
that achieving low iid test error is relatively easy,

2) yet transfer is challenging because we record data from
a number of widely different controllers.

We provide both real and simulated data (including simulation
code) of the same setup1.

We evaluate a few widely-used dynamics-learning methods
on this dataset and release the code of all implementations
and evaluations1. The main insights we gained can be
summarized as follows: The iid test error of a model (i.e. its
accuracy under the controller from which the training data
was generated) can be a poor indicator of its transfer error
(i.e. the accuracy under a different controller). This effect
appears to be more pronounced for very flexible models, e.g.
neural networks (NNs) and Gaussian processes (GPs), than
for more constrained models, e.g. linear. This suggests that
it may be important to evaluate dynamics-learning methods
in terms of their transfer performance, rather than only their
iid error.

1https://github.com/rr-learning/transferable_
dynamics_dataset



II. RELATED WORK

Identifying dynamical systems is a fundamental problem
encountered in many areas of research and engineering, which
is reflected by an accordingly large body of literature. Most
of the early work on this problem was published in the
control community under the name of system identification.
Work on system identification started in the 1960s and was
initially mainly concerned with linear systems, see [14], [15],
[16] for an overview. Greater interest in nonlinear system
identification started in the 1990s (e.g. [17], [18]), with a
particular focus on neural networks (e.g. [19]). Nonlinear
dynamics-learning methods were also proposed in the robotics
community (e.g. locally linear models [20]) and the machine
learning community (e.g. using radial basis functions [21]),
see [22] for an overview.

Currently, the most widely used families of methods for
fitting nonlinear dynamical systems are Gaussian processes
(GP) and neural networks (NN). Another promising direction
is taken by methods attempting to discover the underlying
physical equations of the system. In our experiments we
compare methods from each of these three families, and in
the following we give a brief overview of the literature.

A. Gaussian Processes

GP-based methods are the most widely-used approaches
for Bayesian non-parametric regression [23]. They have been
successfully applied to dynamics-learning problems, leading
to data-efficient reinforcement learning algorithms such as
PILCO [24]. However, the computational complexity (cubic
in the number of training points) has hampered application to
big-data settings, which are ubiquitous in robotics applications.
To address this computational constraint, approaches based
on local models [13] and sparse approximations [25], [26]
have been proposed. More recently, sparse methods have
been extended to incorporate stochastic variational inference,
which enables mini-batch learning [27]. This algorithm is
called the sparse variational GP (SVGP), and we evaluate it
our experiments.

B. Neural Networks

Early work on NN-based dynamics used feedforward
NNs to fit discrete-time dynamics [19]. More recently,
NN dynamics models using high-dimensional observations,
such as images, have been proposed (e.g., [28], [29], [30],
[31]). These methods find a low-dimensional latent state
representation, typically using variational auto encoders [32].
The dynamics in the latent representation are then usually
represented by a feedforward NN. Alternative formulations
based on recursive NNs [34] and Bayesian NNs [35] have
been recently used to model dynamics as well.

C. Discovering Physical Equations

In [36], the authors propose a method based on evolutionary
search for discovering physical equations from data. In
contrast, the authors of [37] propose to use sparse regression
for identifying the governing equation from a dictionary of
possible terms. Yet another approach is taken in [38], [39],

where the authors endow a neural network with a set of
nonlinearities typically occurring in mechanics. Appropriate
regularization encourages solutions with few terms. This
method is called the equation learner (EQL), and we evaluate
it in the experimental section.

III. PROBLEM FORMULATION

Our goal here is to find an autoregressive model f which
takes as input a history of observations Y and controls U ,
and predicts some future observation. Formally, we have

Ŷt+p = f(Yt−h+1:t, Ut−h+1:t, Ut+1:t+p−1) (1)

where p ≥ 1 denotes the prediction horizon and h ≥ 1 the
history length.

The inputs in (1) can be quite high-dimensional, since they
consist of time series (history and horizon). This can be prob-
lematic for some methods (e.g. GPs). Therefore, we consider a
second setting, where we average the inputs over time: Instead
of (1) we predict according to Ŷt+p = f(Ȳt, Ūt, Ū

future
t ), with

Ȳt = 1
h

∑h
i=1 Yt−i+1, Ūt = 1

h

∑h
i=1 Ut−i+1 and Ū future

t =
1
p

∑p
i=1 Ut+i−1.

A. Loss function L
Given an observed trajectory (Y1:T , U1:T ), we compute the

loss of a dynamics model f as the absolute prediction error
averaged over dimensions and time steps:

L(Y1:T ,U1:T ; f) =
1

(T − p− h+ 1)Ny
· (2)

T−p∑
t=h

‖Yt+p − f(Yt−h+1:t, Ut−h+1:t, Ut+1:t+p−1)‖1,

where Ny is the dimension of the observation.

B. Transferability

In model-based reinforcement learning, we typically collect
training trajectories (Y1:T , U1:T ) using some initial policy π
(or a sequence of policies). Based on this data, we learn a
dynamics model f̂ . This model is then used to synthesize a
new policy π′. However, π′ induces a different distribution
over (Y1:T , U1:T ) than π. Hence, it is not clear that the
model learned under π will also be accurate under π′. This
motivates our experimental setup, in which we learn dynamics
models using trajectories sampled from a policy π and test
performance (as given by (2)) on trajectories sampled from
an unseen policy π′.

IV. DATASET

The proposed dataset contains data recorded from our
robotic platform (see Figure 1) using a diverse set of
controllers, which allows to test the non-iid generalization
case in addition to the iid case. In this dynamical system
• the control and observation rate is 1000 Hz, meaning that

the time elapsed between t and t+ 1 is 0.001 seconds,
• we run the system for multiple rollouts, each of which

lasts 14 seconds, hence T = 14000,



Fig. 2: Recorded angle and desired-torque trajectories for the 3 DOF in the closed-loop dataset (Section IV-B). In the left half
angle trajectories for 4 different controllers are shown (each controller uses a particular configuration of angular frequency
{low, high} and reachable joint space {left, full}). The corresponding trajectories of desired torques are shown in the right
half of the figure. Note that the inputs (torques) and outputs (angles) look significantly different for different controller
settings.

• the control input Ut corresponds to the three (Nu = 3)
desired torques [in Newton meters] sent to the motors
of each joint at time index t,

• the observation Yt is nine-dimensional (Ny = 9)
and contains measured angles [in radians], measured
velocities [in radians / seconds] and measured torques
[in Newton meters] at each joint.

We generate two real-world datasets, one using open-loop
controllers and one using closed-loop controllers. In the
non-feedback case (Section IV-A) we sample trajectories of
desired torques from Gaussian processes (GPs). In contrast,
for feedback policies (Section IV-B), we use PD control to
track trajectories in joint space which are generated as a
random superposition of sine waves.

For each of the two datasets, we sample controllers from
four different distributions (e.g. one distribution generating
slow controllers, one generating aggressive controllers etc.).
This will then allow us to evaluate whether a model learned
under one distribution of controllers generalizes to a different
controller distribution.

We generated 50 rollouts for each controller distribution,
each consisting of a control trajectory U along with an
observation trajectory Y , both of length T = 14000. These
rollouts are grouped into different categories: training (38
rollouts), validation (3 rollouts) and testing (9 rollouts). In
Section V we use these datasets to test dynamics learning
algorithms in both the iid and non-iid setting.

Moreover, we record simulated versions of the described
real-world datasets to investigate to what extent our findings
change in simulation scenarios.

A. Open-loop dataset
We use random GP samples directly as torque inputs to

explore the platform dynamics in the open-loop setting. More
precisely, we have

(
U i
1, .., U

i
T

)
∼ N (0,K) with

Kmn = s2 exp

(
− (m− n)2

2l2

)
, (3)

where l is the trajectory lengthscale and s2 its output
variance. We draw torque trajectories from 4 different
distributions, one for each combination of length scales
B = {low, high} and standard deviations S = {low, high}.
Low length-scales are sampled uniformly from [16, 64) and
high ones from [64, 255). Similarly, standard deviations are
sampled from either [0.015, 0.06) (low) or [0.06, 0.24) (high).
Hence our open-loop dataset Dopen is a family of smaller
datasets indexed by the length scale and the standard deviation
regimes Dopen =

(
Dopen

b,s

)
b∈B,s∈S

.

a) Safe Execution of Controls: Without any safety
measure, execution of such torque trajectories would lead
the robot to enter into self-collision or to hit its joint limits
at high velocities. To avoid this, a safety feature is always
running which overrides the desired torques when necessary,
such as to maintain the robot always inside a safe zone.

B. Closed-loop dataset

This dataset is recorded while the platform tracks sine
trajectories Xt in joint space (refer to Figure 2 for a set of
recorded trajectories) which are generated according to

Xt = C +A�

(
k∑

i=1

Bi � sin(ωit+ ϕi)

)
, (4)

where C,A,Bi, ωi, ϕi are all three-dimensional vectors, k
denotes the number of sine components that are superimposed
(we chose k=3 for the released dataset) and � denotes the
element-wise product. In order to have a diverse set of
trajectories, Bi, ωi and ϕi are randomly chosen. In particular,
the angular frequencies ωi are sampled from one of two
uniform distributions in F = {low, high}, which correspond
to a low [0, 7.5π) and a high [7.5π, 15π) frequency setting.
The amplitudes [B1, B2, . . . , Bk] ∈ R3×k are jointly sampled
as a stochastic matrix (i.e., each row is a probability mass
vector that sums up to one). C and A determine the joint-range
reachable by the manipulator, which allows us to consider
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Fig. 3: Transfer settings: Each arrow goes from the training
data to the test data and denotes a particular transfer setting.

two scenarios R = {left, full} — left means that the joint
angles are constrained in such a way that the finger only
moves in the left part of the task space, whereas full denotes
the entire range of safe movements. The closed-loop data set
is split accordingly as Dclosed =

(
Dclosed

r,f

)
r∈R,f∈F

.

C. Simulated datasets

We also record a simulated version of the datasets described
in Sections IV-A and IV-B in order to analyze the difference
in transfer performance with respect to the real world setting.
We use the Articulated-Body algorithm implementation
available in the Pinocchio library [40] to forward simulate
the manipulator dynamics using its CAD specification. We
use the measured torque trajectories in the real world datasets
as control inputs for the simulation. In addition, we make
the simulation code publicly available.

V. EXPERIMENTS

We implemented and evaluated a number of dynamics
learning algorithms. Each of these algorithms was trained on
data recorded using a particular distribution over controllers
and then tested on iid data and three different transfer settings
in order to evaluate the generalization ability for the iid (on
policy) and the transfer (off policy) scenario respectively.

A. Setup

As training set Dtrain we use the training set (38 rollouts)
of the data set Dclosed

left,low (i.e. the data recorded under a closed-
loop controller tracking sine waves of low angular frequency,
in the left part of the task space, see Section IV-B).

We use the testing set (9 rollouts) of Dclosed
left,low to evaluate

performance under the same controller distribution (iid
setting). To evaluate transfer under inputs shift we use the
testing sets of Dclosed

left,high, D
closed
full,low and Dclosed

full,high (the transfer
settings are depicted graphically in Figure 3).

The validation set of Dclosed
left,low is used to perform hyperpa-

rameter optimization if required by the learning algorithm.
We normalize each input dimension to have zero mean

and unit variance, according to common practice.

B. Algorithms

For experimental evaluation, we selected a diverse set of
algorithms, each representing a different family of methods.
All the algorithms are implemented in the open-source code
repository introduced in Section I.

a) Neural Network: We use fully-connected NNs with
ReLU activations. For training we use l2-regularization and
Adam as optimizer with batch-size 512. The hyperpararmeters
are obtained using grid search with search space: learning
rate α ∈ [0.01, 0.001, 0.0001], regularization coefficient λ ∈
[0, 0.01, 0.0001], number of hidden layers h ∈ [2, 3, 4] and
number of units per hidden layer m ∈ [64, 128, 256, 512].

b) Gaussian Process: We use the SVGP [27] implemen-
tation available in GPflow [42] with a squared exponential
kernel and automatic relevance determination (ARD). We
assume independent GP models for each output dimension
with a shared set of 1000 pseudo-inputs. The kernel hyperpa-
rameters are learned by optimizing the evidence lower bound
(ELBO) using Adam with batch-size 1000.

c) Discovering Physical Equations: The EQL baseline
used in our experiments implements the architecture described
in [41]. The learning procedure consists of two phases: the
unregularized phase (i.e., 20 epochs of MSE loss minimiza-
tion) and sparsity phase (i.e., 20 epochs of minimization
of the sum of MSE loss and l0-regularization loss). The
hyperparameters are optimized using grid search as follows:
learning rate α ∈ [0.01, 0.001, 0.0001], number of hidden
layers h ∈ [2, 3], number of units groups in hidden layer
m ∈ [10, 20] and for the l0-regularization coefficient λ we
sample 20 values in log-scale from the interval [10−4, 10−1].

d) Linear Model: We also consider a linear baseline.
For computational reasons we optimize the parameters using
stochastic gradient descent (SGD), instead of solving the
resulting least-squares problem in closed form.

e) System Identification: The system identification meth-
ods rely on a kinematic model of the robot and estimate the
inertial and friction parameters. We considered three variations
of this method:

• (cad) we set all the parameters according to the manip-
ulator’s CAD model,

• (ls) we optimize the parameters (inertia and friction) to
fit the data using least squares,

• (ls-lmi) we use the least squares objective subject to
linear matrix inequality constraints, which ensure the
physical consistency of the identified parameters [43].

C. Experimental Results

In Figure 4 we report the experimental results. Each of the
methods is evaluated for the following settings:

• Prediction horizons p ∈ {1, 10, 100, 1000}. System
identification is not evaluated for p = 1000 given the
computational cost of forward integration.

• History lengths h ∈ {1, 10}. h = 10 is not applicable to
system identification, as it takes only one measurement
as input.

• With/without averaging, see Section III for details (EQL
only with averaging).

• On real data (left column) and simulated data (right
column), EQL only on real data.

In the following, we briefly discuss the experimental results.



Fig. 4: Plots on the left correspond to real-world settings and their simulation equivalents are shown in the right column. From
top to bottom we vary the prediction horizon. The prefix avg- indicates that we averaged the inputs, and the suffix (-his1 or
-his10) stands for the history length, see Section III for details. We compute an error for each test trajectory according to (2),
except that here we only show the error in the angle (i.e. for easier interpretation, we do not include the velocity and torque
prediction errors in the average).



a) Real vs Simulated Data: We can see in Figure 4
that the relative performance of the benchmarked methods
is similar on simulated and real-world data, except for the
system identification approaches. Not surprisingly, these
approaches achieve perfect performance in simulation, which
indicates that they identify the parameters correctly (up to
an equivalence class). However, on the real data, the system
identification methods perform very poorly. This performance
gap is most likely due to physical effects which are not
captured by the rigid-body dynamics model, such as nonlinear
actuator dynamics. By including such effects in our model,
we could probably achieve much higher accuracy for the
system identification methods, but doing so is nontrivial and
beyond the scope of this paper.

b) Prediction Horizon: Not surprisingly, with increasing
prediction horizon the mean and variance of the errors
generally increase. It seems that the system identification
methods degrade the most with increasing prediction horizon.
This is likely due to the fact that they need to forward integrate,
while all other methods directly predict the observation at the
desired horizon. The plot for prediction horizon 1000 indicates
that averaging the action inputs over time degrades accuracy,
in comparison to taking the entire action horizon into account.
Hence, methods which can accommodate high-dimensional
inputs, such as neural networks and linear models, achieve
the best performance.

c) Aggregate Performance of Different Methods: In
Figure 5, we aggregate the performance of the different
prediction horizons shown in the left column of Figure 4 (and
also velocity prediction performance, not shown here). This
allows us to obtain an overall ranking of the methods. At the
top of Figure 5, we order the methods by their ranking on
the iid test set. Among the tested methods, neural networks
clearly achieve the best iid test error. At the bottom, we show
the same rankings, but now ordered according to the transfer
test set. Interestingly, the best performance on the transfer
task is achieved by a different method, the linear prediction
model with a history of 10. This raises the question whether
we can expect models with a good iid test error to generalize
well to the transfer distribution.

d) Transfer Error vs iid Error: In Figure 4, we observe
that the error on the transfer test data is always substantially
higher than the error on the iid test data. This is due to (1)
the methods being trained on a different data distribution and
(2) the robot moving more aggressively in the transfer data.

However, it is interesting to note that the gap between
iid and transfer error varies across methods. In Figure 5,
we observe that flexible methods (NNs and GPs) tend to
have a better ranking in terms of iid error than in terms of
transfer error (i.e. the blue dot is below the orange dot). The
converse holds for simple methods (linear) and algorithms
which encourage the model to have few terms (EQL). Hence,
the ordering of the algorithms with respect to the iid error
is significantly different from their ordering with respect to
the transfer error (compare top and bottom in Figure 5). This
indicates that regularization may be even more important for
transfer to different distributions (controllers) than it is for

Fig. 5: These two figures show the average ranking of
each method (averaged over error type [angle, velocity] and
prediction horizons, only real data), lower is better. Both
figures show the same information, with the only difference
that the upper one is ordered according to the average ranking
on the iid test set and the lower one according to the average
ranking on the transfer test set.

standard iid generalization. However, for the transfer case it
is not clear how to perform validation, because at training
time we do not know which control policy will be used at
test time.

VI. DISCUSSION

We generated a real-world dataset to systematically evaluate
dynamics-learning algorithms in terms of transferability to
unseen controllers. As a first step into this direction, we
benchmarked a number of methods, and we found that
the iid test error is not necessarily a good proxy for the
extrapolation error. This indicates that it is important to
benchmark dynamics-learning methods in terms of their
transfer/extrapolation error, in addition to the iid test error.
Therefore, we believe that the proposed dataset is a suitable
complement to existing benchmarks.
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A. Boukouvalas, P. León-Villagrá, Z. Ghahramani, and J. Hensman,
“GPflow: A Gaussian process library using TensorFlow,” Journal of
Machine Learning Research, vol. 18, no. 40, pp. 1–6, apr 2017.
[Online]. Available: http://jmlr.org/papers/v18/16-537.html

[43] P. M. Wensing, S. Kim, and J.-J. E. Slotine, “Linear matrix inequalities
for physically consistent inertial parameter identification: A statistical
perspective on the mass distribution,” IEEE Robotics and Automation
Letters, vol. 3, no. 1, pp. 60–67, 2017.


