
MINES PARISTECH

MASTERS THESIS

Actively Learning Dynamical Systems
with Gaussian Processes

Author:
Mona BUISSON-FENET

Supervisor:
Friedrich SOLOWJOW
Dr. Sebastian TRIMPE

Option MAREVA
Intelligent Control Systems

Max Planck Institute for Intelligent Systems

February 21, 2020

http://www.mines-paristech.eu
https://www.linkedin.com/in/mona-buisson-fenet-04587b113/
http://is.tuebingen.mpg.de/person/fsolowjow
https://www.is.mpg.de/~strimpe
https://ics.is.mpg.de
https://www.is.mpg.de/en

3

Abstract

Predicting the behavior of complex systems is of great importance in many fields
such as engineering, economics or meteorology. The evolution of such systems
often follows a certain structure, which can be induced, for example from the laws
of physics or of market forces. Mathematically, this structure is often captured by
differential equations. The internal functional dependencies, however, are usually
unknown. Hence, using machine learning approaches that recreate this structure
directly from data is a promising alternative to designing physics-based models.
In particular, for high dimensional systems with nonlinear effects, this can be a
challenging task.

Learning dynamical systems is different from the classical machine learning tasks,
such as image processing, and necessitates different tools. Indeed, dynamical systems
can be actuated, often by applying torques or voltages. Hence, the user has a power
of decision over the system, and can drive it to certain states by going through the
dynamics. Actuating this system generates data, from which a machine learning
model of the dynamics can be trained. However, gathering informative data that is
representative of the whole state space remains a challenging task. The question of
active learning then becomes important: which control inputs should be chosen by
the user so that the data generated during an experiment is informative, and enables
efficient training of the dynamics model?

In this context, Gaussian processes can be a useful framework for approximating
system dynamics. Indeed, they perform well on small and medium sized data sets, as
opposed to most other machine learning frameworks. This is particularly important
considering data is often costly to generate and process, most of all when producing it
involves actuating a complex physical system. Gaussian processes also yield a notion
of uncertainty, which indicates how sure the model is about its predictions.

In this work, we investigate in a principled way how to actively learn dynamical
systems, by selecting control inputs that generate informative data. We model the
system dynamics by a Gaussian process, and use information-theoretic criteria to
identify control trajectories that maximize the information gain. Thus, the input
space can be explored efficiently, leading to a data-efficient training of the model.
We propose several methods, investigate their theoretical properties and compare
them extensively in a numerical benchmark. The final method proves to be efficient
at generating informative data. Thus, it yields the lowest prediction error with the
same amount of samples on most benchmark systems. We propose several variants
of this method, allowing the user to trade off computations with prediction accuracy,
and show it is versatile enough to take additional objectives into account.

5

Résumé

De nombreux domaines, allant de l’ingénierie à la météorologie en passant par la
finance, nécessitent de prédire le comportement de systèmes complexes. L’évolution
de ces systèmes obéit souvent à une certaine structure, qui peut être déduite des lois de
la physique ou des marchés par exemple. Cette structure est souvent exprimée math-
ématiquement par des équations différentielles. Cependant, les dépendences internes
des fonctions présentes sont généralement inconnues. L’utilisation d’algorithmes
d’apprentissage automatique qui récréent cette structure directement à partir de
données est donc une alternative intéressante au design de modèles physiques, qui,
encore aujourd’hui, est une tâche difficile.

L’apprentissage de systèmes dynamiques est différent des tâches classiques ef-
fectuées par de tels algorithmes, comme l’analyse d’images. En effet, les systèmes
dynamiques peuvent être actionnés, souvent par l’application de tensions ou de
couples moteur. L’utilisateur a donc un pouvoir de décision sur le système, et peut le
commander afin d’atteindre certains états. Actionner le système génère des données,
qui peuvent être utilisées pour entraîner un modèle de la dynamique. Cependant,
obtenir des données informatives et représentatives de tout l’espace des états est
une tâche complexe. Dans ce contexte, la question de l’apprentissage actif prend
de l’importance : quelles actions l’utilisateur doit-il choisir pour que les données
générées pendant une expérience soient informatives, et permettent d’entraîner effi-
cacement un modèle de la dynamique ?

Pour apprendre des systèmes dynamiques, des outils différents de l’atirail habituel
en apprentissage automatique sont nécessaires. Les processus Gaussiens peuvent
alors se révéler utiles. En effet, des modèles performants peuvent être entraînés avec
des sets de données de taille limitée. Cela est d’autant plus important que ces données
sont souvent coûteuses à produire et à traiter, d’autant plus quand il est nécessaire
d’actionner un système physique complexe pour les générer. De plus, une notion
d’incertitude est comprise dans le modèle, permettant de quantifier à quel point les
prédictions sont sûres.

Nous proposons plusieurs méthodes permettant d’apprendre activemement des
systèmes dynamiques, par la sélection d’actions informatives. La dynamique du
système est modélisée par un processus Gaussien, et l’utilisation de critères provenant
de la théorie de l’information permet d’identifier des trajectoires informatives dans
l’espace des commandes. Celles-ci permettent d’explorer l’espace des états efficace-
ment, entraînant ainsi le modèle en minimisant la quantité de données nécessaire. En
premier lieu, nous analysons les méthodes proposées d’un point de vue théorique,
avant de les comparer à l’aide d’un banc de test numérique. La dernière méthode,
basée sur du contrôle optimal, se révèle très efficace pour générer des données infor-
matives, et a donc l’erreur de prédiction moyenne la plus basse (à quantité de données
fixe) pour la plupart des systèmes que nous testons. Nous proposons plusieurs ver-
sions de cette méthode, qui permettent à l’utilisateur d’ajuster l’importance de la
la performance du modèle comparé au temps de calcul. Nous montrons aussi que
cette méthode est assez versatile pour permettre d’incorporer d’autres objectifs que
la simple exploration.

7

Contacts

Dr. Sebastian TRIMPE trimpe@is.mpg.de
Friedrich SOLOWJOW fsolowjow@is.mpg.de
Mona BUISSON-FENET buissonfenet@is.mpg.de
Intelligent Control Systems Group https://ics.is.mpg.de

trimpe@is.mpg.de
fsolowjow@is.mpg.de
buissonfenet@is.mpg.de
https://ics.is.mpg.de

9

Contents

Abstract 3

Résumé 5

Contacts 7

1 Introduction 15

2 Foundations 19
2.1 Context and notation . 19
2.2 The learning framework . 20

2.2.1 Gaussian processes for machine learning 20
2.2.2 Design choices and limitations 23

2.3 Generating informative data . 23
2.3.1 System identification and notions from classic control theory . 23
2.3.2 Active sampling for Gaussian processes 24

2.4 A related paradigm: reinforcement learning 29
2.4.1 Basic concepts for reinforcement learning 30
2.4.2 Policy search for Gaussian processes 30
2.4.3 Explicit exploration for reinforcement learning 32

3 Problem formulation and greedy method 33
3.1 General formulation . 33
3.2 Simplified problem: the greedy method 34

3.2.1 Implementation and tests . 34
3.2.2 Influence of the cost function . 36

3.3 Conclusion on the greedy method . 38

4 Two main methods and their theoretical analysis 41
4.1 Separated search and control . 41

4.1.1 Submodularity . 41
4.1.2 Sketch of the approach . 43
4.1.3 Submodularity: from static to dynamic 44
4.1.4 First tests . 46

4.2 Optimal control for information maximization 48
4.2.1 Mathematical formulation . 48
4.2.2 Influence of the planning horizon 49
4.2.3 Adding other costs . 50
4.2.4 Advantages and limitations of the method 50

4.3 Event-triggered switch between exploration and exploitation 52
4.3.1 Greedy switch . 52
4.3.2 Receding-horizon switch . 55

4.4 Conclusion on the main methods . 56

10

5 Experimental results 59
5.1 Experimental set-up . 59

5.1.1 Dynamics tested . 59
5.1.2 CasADi, Ipopt, and the code . 64
5.1.3 Metrics . 65
5.1.4 Reducing the variance of the learning results 66

5.2 Benchmark results . 68
5.2.1 Methods to compare . 69
5.2.2 Pendulum . 69
5.2.3 Two-link planar manipulator . 71
5.2.4 OpenAI double inverted pendulum on a cart 71
5.2.5 Unicycle . 72
5.2.6 OpenAI half cheetah . 73
5.2.7 OpenAI ant . 74
5.2.8 Table comparison of final results 76
5.2.9 Conclusion on the benchmark 77

6 Future investigations 81
6.1 Validation of the learned model on a control task 81
6.2 Taking other objectives into account . 81
6.3 What makes a system easy or hard to explore? 81

7 Conclusion 83

Bibliography 85

11

List of Figures

2.1 Gaussian process regression . 21
2.2 Hyperparameter tuning for Gaussian process regression 22
2.3 Excitation signals for standard system identification. 24

3.1 Illustration of pendulum . 35
3.2 Greedy method with CSTR simulations and bounded control 36
3.3 Simplified greedy method with pendulum simulations and unbounded

control . 37
3.4 Greedy method with pendulum simulations and bounded control . . . 38
3.5 Greedy method with pendulum simulations and different control costs 39
3.6 Greedy method with CSTR simulations and different control costs . . . 40

4.1 Tree representation of active learning problem 45
4.2 Separated search and control with pendulum simulations 47
4.3 Comparison of different time horizons for the pendulum simulations,

with the optimal control method . 51
4.4 Greedy switched version of the optimal control method, with the

pendulum simulations . 54

5.1 Illustration of two-link robot manipulator 61
5.2 Illustration of unicycle . 62
5.3 Illustration of Gym systems . 64
5.4 Illustration of evaluation grid with pendulum 66
5.5 Box plots for pendulum with high RMSE variance 67
5.6 Box plots for pendulum simulations . 70
5.7 Box plots for two-link robot simulations 72
5.8 Box plots for light DIPC simulations . 73
5.9 Box plots for DIPC simulations . 74
5.10 Box plots for unicycle simulations . 75
5.11 Box plots for half cheetah simulations 76

13

List of Tables

4.1 Summary of proposed methods . 57

5.1 List of methods for benchmark . 69
5.2 Comparison of benchmark results . 77

15

Chapter 1

Introduction

Dynamical systems describe the changing world around us. Controlling their be-
havior is a difficult, but nonetheless very important problem in many fields such
as engineering, physics, and economics. Accurate models are essential for many
downstream tasks including control or monitoring, however, it can be difficult to ob-
tain them. First principle models require extensive knowledge about the considered
dynamical system. Because of the availability of experimental data, as well as novel
models and algorithms to process it, learning dynamics models directly from that
data has become an attractive alternative. It is an active research area, with significant
interest coming from the robotics community as shown by some recent surveys [1],
[2], field in which large amounts of data are often available while some behaviors are
very hard to model. The framework of reinforcement learning (RL), historically more
focused on learning tasks such as playing games [3], has also been tackling tasks with
dynamical systems in the physical world recently [4].

Despite the principled availability of ever more data enabled through modern sen-
sor and computer technology, obtaining rich and informative data sets of dynamical
systems in the physical world is still a significant challenge. For example, a humanoid
robot that is equipped with hundreds of sensors, each of which generate hundreds to
thousands of data points every second, will quickly amass big data. However, if this
robot is mostly standing still, this data is essentially useless as it is not informative
about the underlying dynamical processes. More generally, generating data sets that
are sufficiently rich to train models of a complex dynamical system represents a key
challenge in learning for physical system. In addition, generating data on physical
processes is often time-consuming and practically involved. This research therefore
aims at addressing the question of how to efficiently generate data that is informative
for learning of dynamics models. We start by introducing relevant literature on this
topic.

Related work When studying dynamical systems such as physical platforms or
robots, classical approaches start by building a model of the system dynamics. This
model usually depends on certain parameters, which can be unknown. It then
becomes necessary to estimate those parameters from data produced by the system,
and hence to excite it in a way that the generated data will enable this estimation.
This falls into the domain of system identification. For linear time-invariant (LTI)
systems, choosing these excitation signals relies on the well-established theory of
persistence of excitation [5]. For nonlinear systems however, little results exist and
there is no clear method for solving the system identification problem [6]. The related
field of Optimal Experiment Design (OED),which aims at easing the task of system
identification, is also an active area of research in systems and control [7].

Another way of modeling physical systems is to use data-driven methods, which
do not rely on a priori knowledge of the system. Gaussian processes (GPs) are one

16 Chapter 1. Introduction

of these, and have proven to be an efficient tool for learning systems that are hard
to model, such as complex robots [2], friction, contact dynamics, or any other highly
nonlinear phenomena. A Gaussian process is a distribution over function spaces: it is
a (possibly infinite) collection of random variables, any finite number of which have
a joint Gaussian distribution. These models enable efficient regression methods. They
are probabilistic, highly flexible, take uncertainty into account, can cope with small
datasets, and can incorporate prior knowledge [8], which are useful properties for
learning dynamical systems.

Note that hybrid frameworks that combine analytical models and data-driven
methods are also an active research area.

A related framework is that of Bayesian optimization (BO). The aim is then not to
learn an unknown model underlying some data, but to use this data to estimate the
maximum of an unknown function. Gaussian processes have also been used in this
context to represent the unknown function [9].

Other works rely on learning how to accomplish a certain task directly by learning
a specific policy instead of a dynamics model [4], [10]. These reinforcement learning
methods learn to perform actions with dynamical systems, without relying on a
model of the dynamics. In this work however, we use model-based methods, which
tend to be more general.

In this research, we focus on designing methods that generate informative exci-
tation signals in order to efficiently learn a dynamical system with a GP. Some such
methods already exist for learning static GPs, by iteratively choosing where to sample
next in order to obtain the most accurate GP model. This is usually done by finding
an information-theoretic criterion that guides the sampling procedure, in order to
gather data that enables efficient learning. This criterion is often derived from the
notion of uncertainty embedded in the GP’s posterior variance. For example, [11]
uses such an approach to sequentially place a fixed number of sensors in a static field
to be learned by a GP, and [12] for studying when samples can be chosen a priori and
when they should be adapted during the experiment.

However, active learning for modelling dynamics with GPs is still a widely open
problem, though some attempts have been made for example through parametriza-
tion of the dynamics [13], [14]. Indeed, in the case of static processes, the active
learning strategy mainly needs to compute interesting sampling points to learn from;
but in the case of dynamical systems, it is not possible to sample anywhere. Instead,
the method will need to decide how to steer the system such that the next states
attained will provide interesting samples to learn from.

Contributions In this work, we derive several methods for actively learning a
dynamical system with GPs:

• Extension of the state of the art for learning static GPs to the dynamical setting;

• Proposal of a novel input trajectory optimization method, and several computa-
tionally more efficient event-triggered approximations;

• Theoretical analysis of each of the new methods, and insights on performance
and faced trade-offs;

• Benchmark of the proposed methods on a set of numerical experiments, includ-
ing robotic systems coming from Reinforcement Learning benchmarks such as
OpenAI Gym.

Chapter 1. Introduction 17

Outline This thesis is organized as follows. We start with preliminary results from
the state of the art presented in Chapter 2. We then present notations and a simplified
problem formulation in Chapter 3. We design two main active learning strategies for
solving the exploration problem in Chapter 4, and analyze them theoretically: besides
the classical system identification signals presented in Section 2.3.1, and the greedy
method from 3.2, we introduce a separated search and control method inspired from
works on active learning for static systems with GPs (see Section 4.1), and an optimal
control method (see Section 4.2). In Chapter 5, we compare the proposed methods on
a numerical benchmark, where we discuss the experimental set-up and the obtained
results, before discussing future work in Chapter 6 and concluding in Chapter 7. The
proposed approaches are summarized in Table 4.1.

19

Chapter 2

Foundations

Before presenting our own concepts and results for actively learning a dynamical
system with Gaussian processes, we start with some existing preliminary results.
This aims at giving the reader an overview of the state of the art in this field, and tools
for understanding the proposed methods. We first introduce some notations, then
present the chosen learning framework for this project: Gaussian processes. After
stating some of their properties, we present interesting existing results for generating
informative data in order to learn a system, some from classical system identification,
others from the state of the art on active learning for static GPs. Finally, we also
introduce some concepts and works from reinforcement learning (RL), in which
similar questions are investigated.

2.1 Context and notation

We consider a system subject to the following discrete-time dynamics:

xk+1 = f (xk, uk) (2.1)
yk = xk + εk, (2.2)

where f is an unknown Lipschitz-continuous function representing the possibly
nonlinear dynamics of the system, xk ∈ X is its state at time t ∈ N, with X ⊆
Rdx the space of possible states, uk ∈ U is the control input, with U ⊆ Rdu the
space of possible controls, and εk ∼ N (0, σ2

ε) is Gaussian measurement noise. For
system inputs X =

(
(x0, u0) · · · (xn, un)

)ᵀ
, we observe the noisy measurements

Y =
(
y1 · · · yn+1

)ᵀ
. We assume U is compact, i.e., the possible control input is

bounded and closed in each dimension, which is a realistic assumption.
The goal of this thesis is the design of novel strategies for actively learning f : we

aim at exciting the system (2.1)-(2.2) such that the data gathered during an experiment
yields a sample-efficient estimation of the underlying dynamics. In order to do so,
we computethe control inputs (u0, ..., un) that generate informative data for learning
f , by optimizing an information criterion. In this chapter, we give an overview
of the relevant literature and existing related results. We first present the learning
framework chosen for this project: Gaussian processes. Then, we show some existing
results on active learning that tackle the question of how to generate informative
data that enables efficient learning for the chosen problem. Finally, we also present
some aspects of a related field that also deals with learning for dynamical systems:
reinforcement learning (RL).

20 Chapter 2. Foundations

2.2 The learning framework

In this Section, we present the learning method used in this work: Gaussian processes
(GPs). We introduce their main features and how to use them, before investigating
the literature for actively learning GPs. In this thesis, unless otherwise specified, f
represents a true function and f̂ its GP estimate.

2.2.1 Gaussian processes for machine learning

The first important piece of literature consists of the book "Gaussian processes for
Machine Learning", by Rasmussen and Williams [15]. In Chapter 1, a general intro-
duction is provided and defines broadly Gaussian processes as a generalization of
Gaussian distributions to infinite dimensional spaces:

Definition 1. A Gaussian process is a collection of random variables, any finite number of
which follow a joint Gaussian distribution. A GP can be fully characterized by its mean and
its symmetric, positive definite covariance function. Assume the process f̂ maps the known
inputs

X =

 x0
...

xn,

 (2.3)

to the observed outputs

Y =

y0
...

yn

. (2.4)

Then predictions of f (x) at a new, unobserved point x can be expressed analytically as the
posterior mean and variance

µ(x) = k(X, x)ᵀ(K + σ2
ε I)−1Y (2.5)

σ2(x) = k(x, x)− k(X, x)ᵀ(K + σ2
ε I)−1k(X, x), (2.6)

where k is the kernel function, K = (k(xi, xj))xi ,xj∈X is the covariance matrix of the data X,
and k(X, x) = (k(xi, x))xi∈X.

In this case, for any fixed possible x, the probability of drawing the associated
value f̂ (x) follows a normal distribution N (µ(x), σ2(x)). This regression method
using GPs is illustrated in Figure 2.1, where a continuous function is learned by
the GP; samples from the prior distribution are learned, then four data points are
observed and the posterior distribution is adjusted accordingly.

Note that for a GP with multiple independent outputs, and different kernels
for each output dimension, the posterior variance is then σ2

i (x) for each output
dimension.

Definition 2. In the case of d independent output dimensions with d different kernels, instead
of the previous posterior variance (2.6), we obtain a posterior covariance matrix of the form

Σ(x) =

σ2
1 (x) 0

. . .
0 σ2

d (x)

, (2.7)

2.2. The learning framework 21

FIGURE 2.1: Learning a continuous function (regression) with a Gaus-
sian process. Samples are drawn from the prior distribution of mean 0,
variance 1 (left). Then, four data points are observed by the GP, and
samples are drawn from the resulting posterior distribution (right).

Source: https://pythonhosted.org.

where σ2
i (x) is the posterior variance for the ith output dimension as per definition (2.6),

using the ith kernel. We then define the scalar posterior variance in the mulit-output case as

σ2(x) = |Σ(x)|1/d. (2.8)

In this work, we always always use the scalar posterior variance, be it (2.6) for a
single output dimension or (2.8) for multiple independent output dimensions.

This type of model is non parametric, which means little assumptions are made on
the type of function that best describes the model underlying the data, and therefore
the risk of over or under-fitting depending on the class of functions chosen by the
user is lower. It is also probabilistic: it provides a notion of the uncertainty of the
model. Once the GP has been trained (i.e., data has been observed), its guess for the
function f is the mean function µ, and its measure of how accurate this guess is is the
posterior variance σ2.

However, an important design choice remains: the choice of the type of covariance
function. The observed data is directly used for predictions through the covariance
matrix K: if the new point x is spatially close to an observed point xi, then they will
be considered correlated and the estimation of f (x) will be close to the observation yi.
The main difficulty in training a GP is then to choose the right covariance function,
and the right hyperparameters for it: the covariance function will determine the type
of relationship between the data points (e.g., the smoothness of f̂), and its hyperpa-
rameters how closely they are related to each other. GPs are non parametric models,
but these design choices still have a great influence on the resulting predictions, and
therefore need to be justified and thought through. Some reflections on hyperparam-
eter tuning are therefore given in Chapter 5 of [15]. The relationship between GPs
and other commonly used regression tools such as Support Vector Machines (SVMs),
Reproducking Kernel Hilbert Spaces (RKHS) and spline models is investigated in
Chapter 6 of [15].

Robustness Overfitting is less of a problem than for most machine learning frame-
works [16]. Indeed, GPs learning continuous functions with universal kernels (such
as the wildly used squared exponential kernel) converge asymptotically: no matter
how badly the hyperparameters are chosen, as the amount of data grows to infinity,
the GP grows arbitrarily close to the true function [17]. This is not the case for most

https://pythonhosted.org/infpy/gps.html

22 Chapter 2. Foundations

FIGURE 2.2: When performing Gaussian process regression, hyperpa-
rameter tuning (choice of covariance function and of its parameters)
influences the obtained model. Here, the lengthscale is chosen medium
(up), yielding an accurate model, small (bottom left) yielding a model
that might not be smooth enough, or large (bottom right), yielding a

very smooth model. Source: [15].

parametric models, for which if the class of models chosen by the user to fit the data
is wrong, then there is no hope of converging to the true function. The fact that
spatial correlations of the prediction point with the measurements are directly taken
into account and that there are fewer hyperparameters also helps achieving good
convergence in practice. However, for a fixed amount of data, learning performance
can still degrade if the kernel or its parameters are badly chosen, for example if
the procedure that chooses them by maximizing the log marginal likelihood falls
in a bad local optimum. This phenomenon is illustrated in Figure 2.2, where the
obtained model for GP regression with small, medium or and large lengthscale in the
covariance function are showed. If the lengthscale is large, then the obtained model
is much smoother than if it is small; the "best" lengthscale can be determined with
more data, or chosen by the user.

Scalability GPs tend to be computationally heavy as adding each new data points
requires the inversion of the large covariance matrix K, for which the temporal
complexity is O(n3) with n the number of data points in X. Therefore, GP regression
tends not to be scalable and subject to the curse of dimensionality. Making scalable
GP models is an active area of research, and several approaches have shown good
results. For example, numerous works exist on designing sparse approximations

2.3. Generating informative data 23

of GPs that are able to maintain performance while speeding up computations; an
overview of the most important approaches is provided in [18]. In future work, it
would be interesting to combine such approaches with the methods developed in this
thesis, and to evaluate whether the active learning strategies can be sped up enough
to run in real-time.

2.2.2 Design choices and limitations

To sum up, we can say that Gaussian processes are a large class of probabilistic,
non parametric models. They have been used in numerous works for modeling
static processes, and have gained more influence recently for modeling dynamical
systems. In this work, we model nonlinear system dynamics with a GP, for which all
output dimensions are independent. Since our focus is on exploration and not on the
learning procedure itself, we work with the simplest and most common GP training
procedures used in literature. One independent GP is learned from all inputs to each
output dimension, with stationary hyperparameters that are optimized during the
procedure by maximizing the log marginal likelihood. Reasonable prior distribu-
tions over the GP’s hyperparameters are provided; we call these hyperpriors, and
guess them from previous experiments. However, this framework might not be ideal
for learning nonlinear dynamical systems. For example, some existing approaches
learn GP models of time-series dynamics in order to capture delays in the system
dynamics, which can yield a significant increase in performance when learning non-
linear dynamical systems [14]. Another issue is having stationary hyperparameters,
meaning we assume that the same kernel (with the same lengthscales) can explain
the data in all regions of the state space. This assumption is often not verified, and
considering nonstaionary GPs, though it leads to a steep increase in the number of
hyperparameters, often also increases performance [11] [12] . In the case of nonlinear
dynamical systems, whose behavior can vary a lot in different regions of the state
space and show delays, considering nonstationary time-series GPs would probably
produce much better models. Finally, it is also possible to use coregionalization to
correlate the independent output dimensions of the GP models in order to exploit
any information the output dimensions could have about each other [19]1. In this
work, for simplicity and in order to focus on the exploration part of the problem, we
use the more common framework of an independent, stationary squared exponential
kernel for each output dimension.

2.3 Generating informative data

After specifying how GPs are used for this research and what their main character-
istics are, we tackle the question of how to generate informative data for learning
system dynamics with GPs. We give a brief overview of the standard system identifi-
cation tools often used in this context, then present some previous work on actively
learning GPs for static processes.

2.3.1 System identification and notions from classic control theory

Clearly, the problem we tackle in this work, namely informative input generation for
dynamical systems, is not entirely new. The field of system identification has been
concerned with such questions for some time now. Most methods from this field,

1See GPy and a few jupyter notebook tutorials for implementations.

https://gpy.readthedocs.io/en/deploy/GPy.models.html#module-GPy.models.gp_multiout_regression
https://bigaidream.gitbooks.io/subsets_ml_cookbook/content/bayes/gp/coregionalized_regression_gpy.html
https://nbviewer.jupyter.org/github/SheffieldML/notebook/blob/master/GPy/coregionalized_regression_tutorial.ipynb

24 Chapter 2. Foundations

(A) Sinusoidal signal. (B) Chirp signal.

(C) PBRS (D) APBRS.

FIGURE 2.3: Excitation signals used in standard system identifica-
tion. These generic excitation strategies do not usually enable efficient
identification of all parameters, most of all for complex nonlinear sys-
tems, for which system-specific excitation methods are often necessary.

Source: http://www.ni.com/innovations-library/white-papers.

after parametrizing the system dynamics, attempt to identify those parameters by
designing "appropriate excitation signals for gathering identification data" [20], which
is exactly the topic of active learning. Most of the notions, such as persistence of
excitation [5] and experiment design, are well defined and studied for linear systems.
However, little results exist on choosing excitation signals for identifying nonlinear
systems.

In their survey [6] for example, the authors present a user-oriented guide of the
differences between linear and nonlinear system identification, and present their
main difficulties. They underline the fact that while solutions of linear systems live
on a hyperplane, those of nonlinear systems live on complex manifolds, that are
therefore much harder to describe, extrapolate from and navigate; this mathematical
difference is at the core of the difficulties experienced in identifying and controlling
nonlinear systems. Overall, they insist on the difficulty and the lack of unifying
results for nonlinear system identification.

Standard tools exist for supervised input selection for linear systems, but for
nonlinear systems it boils down to a complex optimization system, which is the type of
approach we will take later in this project. When system-specific signals are avoided,
standard signals are usually used, such as: sinusoidal signals of various frequencies,
chirps with varying frequency, pseudo binary random sequences (PBRS) or PBRS
with varying amplitude (APBRS). See Figure 2.3 for a representation of each of these
excitation signals, for which the most important parameters are usually amplitude
and frequency (or equivalently minimum time before a change is possible). Later
in the project, when benchmarking our methods for actively learning a dynamical
system with GPs, we compare them to these standard system identification tools in
order to demonstrate their performance.

2.3.2 Active sampling for Gaussian processes

In general, when faced with a machine learning problem, the objective is to reach
the desired performance with as little data as possible. Indeed, data is expensive:
either because of the cost of conducting experiments, or because of the cost of labeling
the necessary amount of data. On top of this, small, highly informative datasets are
generally better, because they can contain the same amount of information as a large

http://www.ni.com/innovations-library/white-papers/d/

2.3. Generating informative data 25

dataset while being less costly to obtain and easier to do computations with. Such
ways of thought lead to the concept of active learning, where the aim is to decide
during the learning procedure which point should be sampled next, depending on
what has been seen until now. This is also used in other domains, such as image
classification: during training, the performance of the classifier for each possible class
is monitored, and the next set of training images is chosen primarily with samples
of classes that have not been learned well yet, in order to enhance efficiency of the
training procedure.

Most machine learning paradigms are faced with this issue, and designing meth-
ods that decide where to sample next in order to obtain an informative dataset is
an active area of research. Some approaches already exist for learning static GPs.
We present them in the next paragraph, before introducing some further work on
exploration with dynamic GPs. But first, we introduce some of the information
criteria often used for actively learning GPs.

Types of information criteria Before presenting some existing methods for actively
learning static GPs, we define the information-theoretic criteria often used in this
context.

• Posterior variance:
In the Bayesian framework, which is the case for GPs, we have a prior distribu-
tion before observing the data, and then a posterior distribution after having
observed it. We have the set of sample points X and the set of observations
Y = f (X) + ε with ε a Gaussian noise vector of variance σ2

ε , where f is a GP. For
a new test point x (or set of test points), we assume a certain prior distribution
of f̂ (x), usually of the form f (x) ∼ N (0, Σprior). Then, using the GP trained on
the observations, we obtain a posterior distribution of mean (2.5) and variance
(2.6), as in Definition 1.

In this case, σprior is the prior variance and σ2 is the posterior variance. Therefore,
maximizing the posterior variance boils down to choosing x the new test point
such that the uncertainty at that point, named σ2(x), is highest.

• Entropy:
The entropy of a random variable quantifies the uncertainty we have on that
random variable. In the context of GPs, we define the notion of differential
entropy.

Definition 3. The differential entropy of a new sample point x∗, given a GP character-
ized by its posterior mean and variance functions (µ(·), σ2(·)), is given by

H(x∗) =
1
2

log(2πeσ2(x∗)). (2.9)

With this definition, maximizing the posterior variance and maximizing the
entropy are equivalent, however, the entropy is numerically more tractable
thanks to the log term, that making it easy to compute even for small values of
the variance.

• Mutual information:
Mutual information measures how much information two random variables
share, i.e., how much knowing about one of the variables reveals about the
other.

26 Chapter 2. Foundations

Definition 4. The mutual information between two random variables X1 and X2 is
defined as

MI(X1, X2) = H(X1)− H(X1|X2) = H(X2)− H(X2|X1), (2.10)

where X1|X2 denotes that X1 is conditioned on X2.

In the case of optimal sensor placement [21], it is defined as

MI(S \ X, X) = H(S \ X)− H(S \ X|X) (2.11)

with X the sampling points and S the space on which f̂ is defined. Maximizing
this criterion finds the sampling set X which makes the entropy of the unsam-
pled space as small as possible compared to before, i.e., that maximizes the
information about S \ X given by X.

Note however that this same mutual information criterion can be given different
meanings depending on the variables that are considered in it. As shown in
[9], using our own notations, when looking at the mutual information criterion
I(Y, f) = H(Y)− H(Y| f), we have

H(Y) =
1
2

log
∣∣2πe(K + σ2

ε I)
∣∣; H(Y| f) = 1

2
log
∣∣2πeσ2

ε I
∣∣, (2.12)

which yields

MI(Y, f) =
1
2

log
∣∣∣∣I + 1

σ2
ε

K
∣∣∣∣. (2.13)

In this case, maximizing the mutual information corresponds to maximizing
the knowledge about f that is given by the observations YX, which here is
equivalent to maximizing posterior variance. In this work, we focus on the
differential entropy criterion H, since this is equivalent to posterior variance
but numerically more tractable.

In this work, we focus on the differential entropy criterion H, since all three are
equivalent in our settings, but entropy is more tractable numerically.

Active sampling for static Gaussian processes There are some examples of active
learning frameworks for Gaussian processes in literature. Most of them are concerned
with learning a static phenomenon with a GP. One of the most well-known examples,
and very useful for our future work, is the sensor placement problem [11].

Imagine that a GP is used to estimate the temperature f along a line: f (x) denotes
the temperature at distance x ∈ X from the origin of the line. The GP f̂ is used to
approximate f ; some data has previously been collected, and now N sensors are
available for taking measurements. The aim is now to find the most informative
N sampling locations at which to place the sensors, i.e., which will yield the best
estimation of f for a fixed number of sampling points. This can be done by finding
the locations that maximize a certain information criterion I, which can for example
be differential entropy (see Definition 3) or mutual information (see Definition 4)
for example (in this case, the authors argue that mutual information yields better
performance). Since maximizing such a criterion is NP-hard, the authors propose the

2.3. Generating informative data 27

following greedy rule:

xi = argmax
x∈X\{x1,...,xi−1}

I(x) ∀ i ∈ {1, ..., N}, (2.14)

At each iteration, the information criterion is maximized and xi is chosen as the
next sampling point. Thanks to a property of the information criterion I called
submodularity, which we will consider more in detail later in this thesis (see 4.1.1),
it can be shown that the sequence (x1, ..., xN) of sampling points selected by (2.14)
is worse than the optimal sequence only up to a constant bound. Furthermore, if
the information criterion I is one of the aforementioned ones (see 2.3.2), then it
only depends on the posterior variance of the GP and not on its mean; hence, with
(2.5), it does not depend on the observed data Y. This means that it is possible,
for fixed kernel and covariance matrix given by previous observations or expert
knowledge, to compute the (i + 1)th greedy placement without having actually taken
any measurements with the i first sensors, just by knowing where they are placed.
Hence, (x1, ..., xN) can be computed offline: it is possible to first compute where to
place the N sensors, then place and activate them all at once, without needing to first
place each, take a measurement with it, then decide on the next one.

Several papers build on these results for the sensor placement problem. For exam-
ple in [12], where the authors investigate when sequential placement is advantageous
compared to a priori placement. Indeed, as we just stated, the greedy rule (2.14),
(x1, ..., xN) can be computed offline, i.e., a priori, without seeing any data from the
sensors (except some already available data to start with). But this is only true if
the GP hyperparameters stay the same during the procedure. Indeed, if the user
is not sure of the hyperparameters and wants to optimize them after the ith sensor
was placed, in order to have a more accurate estimation of f and therefore a better
placement for the (i + 1)th sensor, then it becomes necessary to actually make a mea-
surement at xi, optimize the hyperparameters, and compute xi+1 accordingly. This
is called the sequential approach, as opposed to the previous a priori approach. In
[12], the increase of performance given by the sequential approach is compared to
its cost. A rule for switching from sequential to a priori is derived, depending on
how high the uncertainty over the hyperparameters is: once they are well-known
and the model fits well, there is no need for optimizing them and the a priori method
can be used. This trade-off between a priori and sequential sampling seems very
close to the well-known exploration/exploitation trade-off in reinforcement learning:
there is always some interest in staying in a known regions, but also in traveling to
regions where the estimate is highly uncertain, since they have a high information
gain potential. These two sides often have to be weighed against each other.

A related problem is that of Bayesian optimization (BO). In this case, the aim is not
to estimate f as accurately as possible, but to estimate its maximum (or respectively
minimum). Using as few noisy observations as possible, we want to find

x∗ = argmax
x∈X

f (x). (2.15)

This can be illustrated with the same use case as for the greedy active learning
strategy: image we have N temperature sensors, some previously collected data or
expert knowledge, and we want to find the maximum temperature along a line. We
again have to decide where to place the N sensors, but the aim is different: instead of
trying to get an overall good model f̂ , we want to estimate x∗. The authors of [22]
propose the GP-UCB strategy: at each iteration, the next sampling point xi is chosen

28 Chapter 2. Foundations

as

xi = argmax
x∈X

µi−1(x) + β1/2
i σ2

i−1(x), (2.16)

where µi is the posterior mean of the GP and σ2
i its posterior variance at iteration i.

In this case, both the posterior mean and variance are taken into account, and the
parameter β is used for weighing off whether the focus is on exploitation (choose xi
close to places where the posterior mean is high) or on exploration (choose xi close to
places where the uncertainty is high). Since the posterior mean intervenes in (2.16),
and the observations Y are necessary to compute it (see (2.5)), this method can only be
applied sequentially and not a priori (a measurement from each sensor is necessary
to compute the next placement).

Other works based on similar ideas include [13], where the near-optimal sensor
problem [11] is extended to near-optimal path planning for an underwater robot. The
space to explore is discretized into a finite number of possible waypoints to visit,
linked by a finite number of straight paths from one waypoint to the other. The
information criterion in (2.14) is then parametrized by the path P, an ordered list
of waypoints to visit. The resulting problem is very close to the sensor placement
formulation, since it consists in optimizing over a list of possible locations on a
grid, and can be solved efficiently by using results from combinatorial optimization.
Similar ideas are used for informative path planning of multiple underwater robots
in [23], but no notion of dynamics is introduced there either.

The previous active learning methods rely on the fact that f is static: if a sampling
location x is chosen, then a sensor can simply be placed there and a new data point
is produced right away. This is however not the case for dynamical systems: in
a dynamical system, if we wish to observe the state x, then we have to drive the
system to that state by controlling it. The dynamics can be understood as constraints
for the active learning problem. Though some papers relying on similar ideas for
control systems exist ([24], [25]), there are to the best of our knowledge no unifying
results extending such approaches to dynamic GPs. In the next chapters, we will
derive several novel methods for actively learning dynamic GPs, some of which
are extensions of the previous results to the dynamical setting. We will show this
extension is a first step in solving this problem, but sub-optimal. We will then design
an active learning strategy that takes the dynamics directly into account and shows
superior performance on a numerical benchmark. But first, let us introduce some
related work on using GPs to learn dynamical systems.

Exploration and control with dynamic Gaussian process models As presented
previously, most existing work on the topic of active learning for GP models focuses
on static phenomena. There are however some results on exploration and control
of dynamical systems with GPs. In [8] for example, the authors model a dynamical
system with a GP, not by using input-output data directly, but rather by learning a
time-series model of the dynamics. They provide a greedy scheme for generating
informative control inputs that reduce the uncertainty about the GP hyperparameters,
and a control scheme inspired from model-predictive control (MPC) for driving the
system to follow a reference trajectory once the GP has be learned reasonably well.
They also investigate how to choose the most informative subset of already sampled
data to keep in memory while the system keeps running, and only gets re-learned
and updated once in a while; this is also interesting, but further away from our
direct concerns. Their informative control generating strategy resembles the greedy

2.4. A related paradigm: reinforcement learning 29

scheme we propose in the next chapter (Section 3.2), and their MPC-inspired control
scheme for the GP yields an optimization problem that is similar to the active learning
formulation (see (3.5)-(3.6)), but with a different objective.

Exploring with a dynamical system while respecting certain safety constraints is
also an active area of research, and some of the existing results use GP models. This
makes sense for industrial applications, since systems often have a certain unknown
safe subspace in which they can evolve, but can get damaged when they get out of
the safe zone. In [26] for example, the settings are quite similar to the active learning
problem for dynamic GPs: the aim is to learn f the true dynamics of a system with
a GP, by using a control policy π to excite it. In order to learn f , it is necessary to
explore the state-space, but the authors incorporate safety constraints by restricting
the space that can be explored to safe ellipses. The designed controller is an MPC
that optimizes a cost function containing an information criterion, but subject to
the constraints of staying in the safe space. They estimate the state in T time steps
through a propagation of the current GP model through time, and a trajectory is
only considered acceptable (i.e., respecting the safety constraints) if the ellipsoid
representing the confidence region of the state in T time steps is still in the safe space.
Though their paper focuses a lot on safety, which is out of scope for this thesis, the
adopted approach is similar to the active learning problem we will formulate in the
next chapter (see (3.5)-(3.6)), with some differences in the assumptions that are made
(GP is learned on residuals only, assuming affine state-feedback control).

The problem formulation in [14] is also similar to the active learning problem,
with a focus on safety. Two GPs are trained: one that models the dynamics of a
system that we want to learn, and one that models the safety of a given state. Both
are learned on data collected from the physical system, i.e., state and control input
data measured on the system, but also from a safety information that the system
provides, for example the temperature of a critical component. The GP is again
not trained directly with input-output data but with time series following a non
exogenous model. The authors parametrize the system trajectories as piece-wise
constant, then optimize this parametrization to maximize an information criterion
while respecting a certain probabilistic safety constraint. Therefore, their framework
does not directly choose the most informative control inputs to send to the system,
but the whole most informative parametrized trajectory in input space. Hence, in
this work also the considered problem formulation is similar to (3.5)-(3.6), but the
assumptions and proposed methods differ.

All in all, though some recent works have started going in that direction, we still
know of no general methods for actively learning dynamic GPs. We will propose such
methods in the next chapters, after introducing some related work on reinforcement
learning.

2.4 A related paradigm: reinforcement learning

In the field of reinforcement learning (further RL), an agent learns to perform a certain
task by interacting with its environment. Some of the recent research attempts to
apply such approaches to robots and other types of dynamical systems. Exploration
of the state space is therefore also considered in RL, and weighed off compared to
exploitation of the knowledge already gathered, leading to the well-known trade-
off between exploration and exploitation. Though active learning is not explicitly
a research topic in RL, since the focus is more on the task that an agent wants to
accomplish, the problems we face and concepts we propose are related. Some of the

30 Chapter 2. Foundations

recent RL frameworks and papers for learning to perform a task in a physical system
are presented in the next section.

2.4.1 Basic concepts for reinforcement learning

Reinforcement learning is based on an agent learning how to perform certain tasks
by trial-and-error, by interacting with its environment. We have S a state space
representing the agent’s environment, A a set of possible actions, R(s, a) a reward
function associated with state s and action a, and T(s′|s, a) the transition probability
of getting to state s′ when performing the action a in states. The environment is
considered non deterministic since performing action a in state s does not need to
always lead to the same outcome s′. The most common framework for RL is that
of Markov Decisions Processes (further MDP): we consider that the probability of
getting to state s′ after performing action a only depends on the current state s and
not of the previous states and actions, i.e., the system has no memory of previous
states and actions.

The reward and transition functions, respectively R and T, are considered un-
known to the agent, who can interact with its environment in order to learn them.
In other words, we do not know how our actions impact the world, and we do not
know the immediate reward after an action; if we did, then finding the sequence of
actions that best performs a certain task would be a planning problem and would
not necessitate any interaction, but only the optimization of a certain criterion under
this sequence of possible actions. The objective of the agent is then to learn a policy,
i.e., a mapping that associates to each possible state an action to be taken by the
agent, that enables it to perform the task. The agent is guided in the training process
by the reward function, which returns high rewards if the agent is getting closer to
achieving the task, and low rewards if it is getting further. There are two main ways
of obtaining such policy: either policy search (finding π∗ the policy which maximizes
the sum of future expected rewards) or value iteration (finding the optimal value
function V∗ which maximizes the sum of future expected values, and from which we
can deduce an optimal policy).

Two types of RL should be distinguished. On the one hand model-based RL,
where the agent first tries to learn a model of its environment (learn the functions
R and T), then plans its policy using those estimates. On the other hand model-
free RL, where the agent directly evaluates a policy or a value function and tries to
optimize them. According to literature [4], [27], model-based RL has proven to be
more efficient in learning control of dynamic systems for now, since it can leverage the
agent’s knowledge of its environment in order to find the optimal policy, and therefore
needs fewer iterations (i.e., fewer expensive interactions with the environment) before
it can perform the given task.

2.4.2 Policy search for Gaussian processes

In [4], the authors introduce PILCO, a Matlab framework that aims at learning
an optimal policy for a dynamical system modeled by a GP, using reinforcement
learning. This framework performs policy search in a data-efficient way: it uses
gradient descent to optimize the parameters θ of the control policy π(xk−1, θ) = uk−1
according to a cost function Jπ(θ) by using responses of the system to inputs as data
points, while keeping the number of interactions as low as possible. This gradient
descent can be computed analytically using the expressions of posterior mean and
variance for a GP, along with moment matching for uncertainty propagation. Note

http://mlg.eng.cam.ac.uk/pilco/release/pilcodocV0.9.pdf

2.4. A related paradigm: reinforcement learning 31

that uncertainty propagation in this context means propagating the GP in time.
Take a simple example: assume (xk) is a sequence of random variables such that
xk+1 = f (xk) is normally distributed for a fixed k. If f is a nonlinear function,
then the random variable xk+2 is not normally distributed anymore. But it can be
approximated by a Gaussian distribution using approximation techniques, such as
moment matching. There exists a rich literature on the design and evaluation of
such approximation methods, that enable the propagation of a GP through nonlinear
transformations.

PILCO iteratively performs the following steps until a task is considered success-
fully learned:

• Train a GP model of the environment from all recorded data

• Approximate the cost function Jπ(θ)

• Perform gradient descent until a minimum of Jπ(θ) is reached at θ∗

• Set the control policy to π∗ = π(θ∗)

• Evaluate π∗ by applying it to the system: the agent receives a reward on π∗ and
new sample points

• Iterate until the reward on π∗ is considered sufficient.

This method is particularly useful for robotics, since it can derive a good policy π in
only a few number of iterations, i.e., a few number of experiments, which tend to be
expensive for robotic applications in particular.

Several extensions and improvements of PILCO have been proposed in literature.
In [27], it is made clear that he classic assumptions for GP modeling are that the inputs
X are noise-free, and the outputs Y = f (X) + ε have i.i.d. noise, but that both these
assumptions are violated when modeling time series such as the state of a dynamic
system. The authors then propose a method to leverage these difficulties: training
the GP to predict long-term trajectories instead of producing only one-step ahead
predictions, so that the success of the task that is being learned is taken into account
directly into the model training. This approach can be implemented directly into
PILCO by replacing the usual hyperparameter optimization with a more complex
mechanism, that takes the long-term prediction error into account. In the same
line of thought, [28] also proposes hyperparameter optimization and uncertainty
propagation procedures that are more adapted to learning system dynamics with
a GP, most of all when latent states and input and output noise are present. As
presented in these papers, there are more sophisticated ways of learning a dynamic
GP and propagating it through time than what we use in this project. Since our focus
lies on exploration, we use the more standard frameworks for learning f̂ , and leave
combining the methods presented in this thesis with more advanced GP training
schemes for future work.

Note also that PILCO, like any RL framework, is task-specific: a policy is only
learned for a specific task, and has to be re-learned if the task changes even slightly.
Most scientists in favor of model-based RL argue that learning a model, then using it
to derive a policy is more general since the model can then be re-used for another task.
This also holds true for active learning in general: learning a model is a high-level
objective, and if a good model can be learned from data, then it can be used for control
and accomplish various tasks. This is why, in this work, we focus on actively learning
a GP model instead of a specific task.

http://mlg.eng.cam.ac.uk/teaching/4f13/1819/moment%20matching.pdf

32 Chapter 2. Foundations

2.4.3 Explicit exploration for reinforcement learning

The concept of exploration has also been investigated in the context of RL. In [29]
for example, the authors accelerate Q-learning on several classic benchmarking
tasks (including the Gym tasks from OpenAI) by designing methods for global
exploration of the policy space. The criticality of exploration in the case of DDPG,
the adaptation of Q-learning to continuous state space, is underlined; it is mentioned
that most exploration strategies used until now are rather simplistic (simply adding
uncorrelated noise to the policy outputs). Since DDPG is an off-policy learning
scheme, it is possible to design a teacher policy that explores the state space and
gathers informative data, and a student policy that uses the collected data to optimize
the true RL policy of the agent. This teacher policy will then explore regions of the
state space that have high improvement expectation (expected to increase the value of
the student policy the most based on past experiments), and pass on this exploration
data to the student policy, which simply follows deterministic DDPG based on the
data gather until now. The authors show significant improvement of the quality of
the policy compared to classic DDPG, but also significant computational overhead.

In [30], the focus lies on designing robust control policies that minimize a quadratic
cost for linear systems with unknown parameters and static-gain feedback control.
The authors design control policies that jointly minimize the worst-case cost given
current uncertainty about the system (worst-case for robustness), and the uncertainty
as to whether this cost is indeed worst-case. The empirical results show that the
obtained control policy is more efficient than a nominal controller, because it has
learned more about the environment, and also more than a greedy controller, because
even though the greedy exploration method often learned more about the system, it
also learned parameters that may be useless for the control task. The same authors
develop this approach again for a more control-oriented audience in [31].

These recent works on exploration for reinforcement learning underline how
critical it can be for learning frameworks to explore well, be it exploring the input
space for learning a dynamics model, or exploring the policy space for learning
a task-specific policy. This shows that the topics of exploration, of data-efficiency
and hence of active learning spark more and more interest in the machine learning
research community. The active learning methods proposed in this thesis are part of
this broader research topic.

33

Chapter 3

Problem formulation and greedy
method

In this chapter, we present the first ideas and numerical experiments for actively
learning dynamical systems with GPs. We start with some notations, then introduce
our main ideas for the dynamical active learning strategy, and derive a simplified
problem formulation, with some numerical experiments as a proof of concept. In the
next chapters, we will extend this to a complete problem formulation and present
different active learning strategies, which we will then benchmark.

3.1 General formulation

We consider a system subject to the following discrete-time dynamics, starting from
fixed initial state x0 ∈ X :

xk+1 = f (xk, uk) (3.1)
yk = xk + εt, (3.2)

as defined in 2.1. The true function f is modeled by a GP f̂ . This GP maps inputs(
(x0, u0) ... (xn, un)

)ᵀ
to outputs

(
x1 ... xn+1

)ᵀ
. We denote X the dataset avail-

able for training, and Y the set of corresponding noisy measurements of the states
(x1, ..., xn+1). Its posterior mean and variance can be expressed as

µ(x) = k(X, x)ᵀ(K + σ2
ε I)−1Y (3.3)

σ2(x) = k(x, x)− k(X, x)ᵀ(K + σ2
ε I)−1k(X, x), (3.4)

where K = (k(xi, xj))x,ixj∈X is the covariance matrix of the dataset X, and k(X, x) =
(k(xi, x))xi∈X. We denote f̂k the GP after having observed yk = xk + εk, Hk its entropy
function, and so on.

The GP can be evaluated at any new test point (xk, uk), i.e., predict the next point
xk+1, through the posterior mean µ(xk, uk) and the posterior variance σ2(xk, uk) at this
point. We assume the system is reasonably stable and controllable in the exploration
region, in the sense that it does not diverge, and it can be actuated. This is the case
for example with robots. Indeed, if exploration can cause the system to diverge, or if
the control inputs do not influence it, then the problem is ill-posed, and there is little
any active learning strategy can do.

In this work, our focus is on exploration and not on the learning procedure itself.
Therefore, we work with the simplest and most common GP training procedures
used in literature, as described in Section 2.2.2. In the experiments, we mostly use the
standard squared exponential (SE) kernel.

34 Chapter 3. Problem formulation and greedy method

The active learning problem can be stated as follows: we wish to learn f̂ as effi-
ciently as possible, i.e., for a fixed number of sample points, to be able to approximate
the unknown system dynamics f with f̂ as closely as possible. Hence, we want to ex-
plore the input space so that the dataset used for training the GP is highly informative.
This task can be formulated as an optimization problem:

min
x∈X ,u∈U

J((xk, uk), ..., (x̂k+M, uk+M)) (3.5)

s.t. x̂k+1 = f̂ (xk, uk) ∀ k ∈ {k..., k + M}, (3.6)

where J is a cost function, and M the time horizon, which is assumed to be fixed. In
this formulation, there are two optimization variables: the state x, and the control
input u, which need to be optimized jointly since they are not independent. However,
for a well-posed dynamical system, given the dynamics, an initial position xk and a
controller uk, there is a uniquely defined "arrival" point xk+1; so we can optimize a
function of xk+1 by just acting on the optimizing variable uk. Hence, we can re-write
(3.5)-(3.6) as:

U∗k = argmin
uk ,...,uk+M−1∈UM

J((xk, uk), (f̂ (xk, uk), uk+1), (f̂ (f̂ (xk, uk), uk+1), uk+2), ...), (3.7)

where U∗k = (u∗k , ..., u∗k+M−1), and the only optimization variable is u, and not x.
After each iteration, a control trajectory is applied and yields new observations. We
use these observations to update the GP and optimize its hyperparameters. After
that, we restart a new optimization procedure. Indeed, if we did not update the
GP after seeing data, then we might as well do the optimization procedure a priori,
i.e., blindly, since the cost does not usually depend on the observations directly. This
is the general scheme we investigate for generating informative control inputs that
enable data-efficient training of the GP; we will provide more specific results bit by
bit over the next chapters.

3.2 Simplified problem: the greedy method

The first method we propose is obtained by simplifying the problem somewhat: we
consider M = 1 (one-step ahead predictions), and for the cost at time k with a fixed xk,
we take J = −Hk(xk, uk). With this simplified formulation, from fixed xk, we select
the next control input according to the greedy rule

u∗k = max
uk∈U

Hk(xk, uk). (3.8)

This approach aims at selecting control inputs that yield x̂k+1 = f̂ (xk, uk) with high
uncertainty, i.e., control inputs for which the GP cannot predict the output accurately,
given the current state. Hence, the selected uk explore both the state space (select
uk such that the next state xk+1 is in an unknown region of X) and the input space
(select uk that have not been used before). This enables the model-based exploration
of both X and U , in order to generate an informative dataset for training f̂ .

3.2.1 Implementation and tests

We start by implementing the greedy method and investigating the obtained results.
At each time step k, given the current state xk, we choose uk according to (3.8), using

3.2. Simplified problem: the greedy method 35

FIGURE 3.1: Schematics of an inverted pendulum.

scipy’s library optimize.minimize. Then, we estimate the next state x̂k+1 given
the selected uk, measure the true next state xk+1, and plot both. We implement the
dynamics of a simple inverted pendulum, discretized and solved with a Runge-Kutta
4 (further RK4) scheme [32], and investigate several aspects of our greedy solution on
this simple example.

We use scipy’s optimize.minimize library for this first method, which might
not be ideal in the future for running experiments on active learning with GPs for
dynamical systems. Indeed, the optimizers provided there, such as BFGS or Nelder-
Mead methods, assume convex and sufficiently smooth objective functions. This is a
classic choice in optimization, but not the case for objective functions that involve
posterior variance or entropy of a GP. Therefore, the provided optimizers will only
deliver local optima and might get stuck in them, for example if the initial point
for the optimization does not change. One possibility is then to try out random
initializations and pick the lowest cost to start the optimization procedure. We also
test initializing the optimization procedure either at 0, or at uk−1. The "random best"
initialization produces the best results, since it helps finding a better local optimum,
and it is the one we use for further experiments. For future experiments, we will
use more advanced optimization toolboxes. These plots mostly serve as a proof of
concept for the general ideas and as base-case results for the greedy method.

Dynamics tested We simulate a simple inverted pendulum as the first system
and test our methods with it. This is a good system to start with, since it is easy
to understand and interpret; a schematics is shown in Figure 3.1. There are two
states, the pendulum angle θ and its angular velocity θ̇. The dynamics have an
auto-regressive structure, and the ODE on θ̇ is nonlinear because of a sin(θ) term,
which can be considered as linear locally around the stable equilibrium θ = 0, when
the pendulum is handing down. Precise dynamics equations and parameters of all
studied systems are listed in Section 5.1.1. We plot the accumulated angle of the
pendulum (θ = 3.14 represents one swing-up around its axis, after which the angle
keeps growing), and use a squared exponential kernel for learning. Note that, even if
we can see on the graphs shown here that one step ahead predictions are accurate
after only 15 time steps, this does not mean that the learned model has high quality.
Indeed, if the system stays in a small region of the state space: as seen in Figure
3.4, we have no information on how accurate the model is when looking at a larger
portion of the state space. We are also only plotting one step ahead predictions and
not several steps ahead. Metrics for measuring how much of the state space was
explored with a certain active learning strategy and how well the corresponding
system could be learned are given in Section 5.1.3, in order to quantitatively compare
the different methods.

36 Chapter 3. Problem formulation and greedy method

St
at
e

Iterations

(A) Trajectory of x1

St
at
e

Iterations

(B) Trajectory of x2

FIGURE 3.2: Actively learning the dynamics of a continuously-stirred
reservoir tank [33] (CSTR) in simulation using the greedy method (3.8)
with bounded control. We plot the estimated states over time (blue
line), along with the posterior variance (light blue), against the true
states (green line). After about 15 iterations, the predictions are very
close to the true next state, and the variance is very low: the GP has
learned the dynamics of the system in this region of the state space.

We also implement simulations of a nonlinear chemical system described in [33],
Section 9. This time, the dynamics are exponential and more complex than for the
pendulum. They are also presented in details in Section 5.1.1, and illustrated in Figure
3.2.

Bounding control and state Actively learning a dynamic GP boils down to explor-
ing its input space. If the control input is left unbounded, then it tends to grow to
infinity in order to always explore further, as seen in Figure 3.3, where the accu-
mulated angle of the pendulum simulations is diverging (pendulum keeps turning
around). Assuming limited control is a reasonable assumption, since this is often
the case in practical applications, and it makes exploration more challenging. For all
further experiments with the pendulum, we use U = [−5, 5]. With these bounded
inputs, the system stops diverging and we obtain a more useful oscillatory behavior,
as shown in Figure 3.4. In some applications, it can also make sense to bound X to
enforce hard constraints on the states.

3.2.2 Influence of the cost function

For now, we have only considered a purely information-theoretical criterion, i.e., min-
imizing: Jt(uk) = −Hk(xk, uk). However, it could be useful to add other terms to
the cost function for certain applications: a more complex cost function can take
other objectives into account as only active learning, such as achieving a specific task,
minimizing control and sensing costs, etc. This is the case for example in Bayesian
optimization (see Section 2.3.2), where the objective is not to learn an unknown
function f , but to find its maximum. Adding a term of type −αµ(xk, uk) to (3.8)
could incorporate this extra objective, similarly to the GP-UCB method for Bayesian
optimization in the static case [22]. We leave such possible extensions for future work.

We start by adding a term in the cost function, weighted by α > 0:

Jk(xk, uk) = −[Hk(xk, uk) + α||uk||L2]. (3.9)

3.2. Simplified problem: the greedy method 37

St
at
e

Iterations

FIGURE 3.3: Actively learning the dynamics of a pendulum in simula-
tion with the greedy method (3.8), using the true dynamics for active
sampling. We plot the estimated states over time (blue line), along
with the posterior variance (light blue), against the true state (green
line). With no constraints on the value of u, we observe that the active
sampling strategy drives the control to high values, and the system

naturally diverges.

Adding this term reduces the control costs of the active learning procedure. It also
makes sure that, even if states often bear more uncertainty than controls, which can
push the system towards always using the highest possible control values to reach
new states, intermediate control values are also generated, which can sometimes
increase learning performance. Finally, it also serves as a type of regularization,
similarly to L2- regularization often used in machine learning: it makes the control
trajectory somewhat smoother, and therefore the mapping from state and control to
next state somewhat easier to learn. It also comes with a weighing parameter α, that
easily enables the user to decide how much smoothing should be done. We typically
used values of α around 10−2 for our experiments. Though we end up focusing on the
entropy criterion only, since it is the most direct one for active learning, this serves as
a proof that adding other terms to the cost considered in our optimal control methods
is very possible, and can increase performance in some use cases.

In the pendulum simulation with bounded control, this cost function yields
different behavior, but also enables learning f . As illustrated by Figure 3.5, one
exploration trajectory (top) has been obtained with entropy, the other (bottom) by
adding the norm of uk in the cost. In the top figure, we obtain highly varying control
inputs, whereas in the bottom one the control is very high at the beginning but
quickly stabilizes around 0, yielding a lower control cost in terms of its norm over
time. This behavior exhibits a trade-off between information gain and control costs.
It also works as a natural stopping criterion: once the uncertainty is below a certain
threshold, then gaining more information is not worth it compared to the costs it
brings, therefore the control input converges to zero; we could use that in the future as
a stopping criterion. However, we should not overuse it, since it greatly constrains the
exploration possibilities of the strategy and yields less variety and less amplitude in
the possible behaviors. In the final experiments, we end up using only the information
criterion without any extra cost, since this slows down the exploration procedure; but
it can still be useful for some applications.

Similar behavior is observed when testing the control cost (3.9) with the CSTR
simulations, as seen in Figure 3.6 (here on x2). Here, we test different values of the

38 Chapter 3. Problem formulation and greedy method

St
at
e

Iterations

FIGURE 3.4: Actively learning the dynamics of a pendulum in simu-
lation using the greedy method with bounded control. We plot the
estimated accumulated angle over time (blue line), along with the pos-
terior variance (light blue), against the true angle (green line). After
about 15 iterations, the GP has learned the dynamics of the pendulum

in this region of the state space.

parameter α. As expected, we observe that for high values of α the controller obtained
tends to stick to zero, while for small values of α its behavior is similar to previous
cases when we did not take the norm of the control inputs into account.

3.3 Conclusion on the greedy method

With this greedy method, the optimal control input is always chosen by looking for
the most uncertain next state. However, it is still greedy: for complex nonlinear
systems with bounded inputs, planning only one step ahead might not be enough
to explore a large part of the state space. Instead, this control strategy will tend to
oscillate between the regions of the input space that have not been explored yet,
but never reach them, because each time it gets close to one, this region becomes
less informative and it becomes more interesting to go to the next one. This sort of
spiraling exploration strategy is suboptimal. Hence, we introduce a time horizon
over which the control input is optimized, yielding more long-sighted strategies. The
two main methods, presented in Chapter 4, plan several steps ahead, and explore the
input space more efficiently.

Note that if the control input is not bounded, then the system can go anywhere
even just from one time step to the next,; in that case, the short and long-sighted
strategies are equivalent. The active learning problem then reduces to a static problem,
since no dynamics constrain it anymore, and classic methods for static GPs can be
applied, such as those presented in Section 2.3.2. However, this is not the case here,
as for the purpose of realism we assume bounded control inputs.

3.3. Conclusion on the greedy method 39

St
at
e

Iterations

(A) True and estimated pendu-
lum angle

Co
nt
ro
l

Iterations

(B) Control input when cost is
posterior variance

St
at
e

Iterations

(C) True and estimated pendu-
lum angle

Co
nt
ro
l

Iterations

(D) Control input when cost is
posterior variance and control

norm, α = 1

FIGURE 3.5: Greedy method with the pendulum simulations, either
with bounded controller (top), or adding the control norm in the cost
(bottom). We use the same level of process noise and f̂ in the dynamics

constraints, and α = 1.

40 Chapter 3. Problem formulation and greedy method

St
at
e

Iterations

(A) True and estimated state x2,
added control norm with α =

0.1

Iterations

Co
nt
ro
l

(B) Control input, added con-
trol norm with α = 10−2

St
at
e

Iterations

(C) True and estimated state x2,
added control norm with α = 1

Co
nt
ro
l

Iterations

(D) Control input, added con-
trol norm with α = 1

St
at
e

Iterations

(E) True and estimated state x2,
added control norm with α =

100

Co
nt
ro
l

Iterations

(F) Control input, added con-
trol norm with α = 104

FIGURE 3.6: Greedy method with the CSTR simulations, when adding
the control norm in the cost for different values of α.

41

Chapter 4

Two main methods and their
theoretical analysis

In this chapter, we present our main methods for tackling the active learning problem
(see Section 3.1 for the complete problem formulation). First, we design a separated
search and control method, which is a direct extension of existing methods for the
static sensor placement problem (see Section 2.3.2). This method greedily picks
informative locations to visit, then designs a controller that drives the system there.
Clearly, there are shortcomings to this as well, which we overcome with a novel
method that optimizes the whole control trajectory over a fixed horizon. We start
with a mathematical formulation of the optimal control problem, then present how
it can be solved, and identify the main points to further investigate. We give a
theoretical analysis of both proposed methods, then present empirical results on a
numerical benchmark in the next chapter.

4.1 Separated search and control

We present a separated search and control approach for actively learning dynamical
systems with GPs. This method is based on existing the state of the art for actively
learning static GPs (see Section 2.3.2), which mainly rely on a property called submod-
ularity. This property enables interesting results and theoretical guarantees; it would
be beneficial if such results could be carried over to the dynamical setting. However,
we show here that though the general framework can be extended for dynamical
systems, providing similar theoretical guarantees is highly non trivial, and there are
more efficient ways of approaching the problem.

4.1.1 Submodularity

We start by defining submodularity and the theoretical guarantees it can provide.

Definition 5. Assume E is a finite and constant set. A set function φ : 2E → R, where 2E is
the power set, is submodular if ∀ A ⊆ B ⊆ E, e ∈ E \ B, the following property holds:

φ(A ∪ {e})− φ(A) ≥ φ(B ∪ {e})− φ(B). (4.1)

This property can be interpreted as diminishing returns, and is common in infor-
mation theory. If a new element e is evaluated, it brings more information if the set of
already known elements is small than if it is big.

42 Chapter 4. Two main methods and their theoretical analysis

Definition 6. Assume E is a finite and constant set. A set function φ : 2E → R, where 2E is
the power set, is monotonic if ∀ A ⊆ E, e ∈ E, the following property holds:

φ(A ∪ {e}) ≥ φ(A). (4.2)

A useful result by Nemhauser [34] follows:

Theorem 1 (Nemhauser’s theorem, [34], proposition 4.3). If φ is submodular and
monotonic such that φ(∅) = 0, then the greedy algorithm that starts with A0 = ∅ and
selects a sequence of sets

Ai+1 = Ai ∪
{

argmax
e∈E\Ai

φ(Ai ∪ {e})
}

, (4.3)

for i ∈ {1, ..., N}, with N ∈N fixed, guarantees

φ(AN) ≥ (1− 1/e) max
|A|≤N

φ(A). (4.4)

Equation 4.4 can be interepreted as follows: the sequence AN of N elements
selected according to (4.3) is at least as good as a constant fraction of the optimal
sequence. This guarantees a certain level of optimality of the greedy sequence, which
has the advantage of being relatively easy to compute, as opposed the true optimal
sequence (NP-hard problem if φ is on one of the information criteria presented in
2.3.2).

Remark 1. At each iteration of (4.3), the next element {e} needs to be chosen from the same
set E for Theorem 1 to be applicable.

In order to differentiate between iterations of the separated search and control
procedure, and time steps in an experiment, we index the first ones with i ∈N and
name N the number of locations, and index the second ones with k and name n the
number of data points.

The authors of [11] use Theorem 1 in the sensor placement problem to show that
the sequence of sensor placements chosen by the greedy rule

xi+1 = argmax
x∈X

Ii(x) (4.5)

is suboptimal up to a fixed bound with respect to the exact solution. This holds for I
any monotonic and submodular information criteria, such as the mutual information
I(X, f) = H(YX)− H(YX| f) between the observations Y made at X and the under-
lying function f , which we will use here. See [35], Section 3 and [9], Section II.B
for more details. Since the optimal placement problem in that case is NP-hard and
thus, the exact solution not feasible, this is a useful approximation which provides
theoretical guarantees.

Notions from adaptive submodularity [36] enable similar results when the GP is
updated and its hyperparameters are optimized after each iteration of (4.5), instead of
being constant. The use of a greedy rule for maximizing a submodular information-
theoretic criterion has produced interesting results on active learning for static GPs
[11] [12] (or dynamical processes that can be modeled as such [13]). However, we will
show in the next sections that extending this methodology to dynamical systems is
highly non trivial.

4.1. Separated search and control 43

4.1.2 Sketch of the approach

Next, we extend the static greedy rule (4.5) to dynamical systems and show the
limitations of this approach. Contrarily to the static sensor placement problem, in
a dynamical system we cannot decide to take a measurement at an arbitrary point
xi; we need to steer the system to xi in order to collect data from this state. In order
to manage these dynamical constraints, we propose a separated search and control
approach: at each iteration, we first choose an informative location to visit in input
space, then drive the system to this location. Hence, the dynamical nature of the
problem is not explicitly taken into account in the exploration strategy.

We start from initial the state z0 := (x0, u0), and arbitrarily fix a number N of
locations of interest to visit during the exploration procedure. At each iteration i of
the greedy procedure, we pick the next state to visit according to the greedy rule:

zG
i = argmax

x∈X ,u∈U
I(z ∪ Zi−1, f) = argmax

x∈X ,u∈U
Hi−1(z), (4.6)

where z = (x, u) is the complete GP input, I(Z, f) = H(Z)− H(Z| f) is a monotonic,
submodular information criterion and Hi−1 is the differential entropy of the last GP,
i.e., the GP when it was last updated (at iteration i− 1). Note that it would also be
possible to optimize directly over xG

i instead of (xG
i , uG

i), however, this makes little
difference in practice. Furthermore, optimizing for the complete GP input yields a
more consistent interpretation with the other methods.

We then steer the system to this state xG
i as efficiently as possible, by designing

a control trajectory (uk, ..., uk+M−1) ∈ UM, where M is the control horizon, and k is
the time step since the beginning of the experiment, while i indexes the iterations of
the greedy procedure. Such a control trajectory exists for M large enough since we
assume controllability. Once we are at the given location, we apply the control input
uG

i chosen by (4.6); we are then in the state zG
i ∈ X × U .

We solve this optimization with a simple NLP solver in CasADi. Since initializa-
tion is an important design choice in numerical optimization, we consider several
possible initializations of the procedure. One of them, the so-called "continuous"
initialization, consists in starting the optimization at the current location, so that a rea-
sonably close local minimum will be returned by the greedy submodular procedure.
It is also possible to evaluate the cost function at several random points around the
current state and pick the one with the lowest cost ("random best" initialization). We
can even run the whole optimization procedure from several random points around
the current one and pick the one with the lowest final result ("random best optimum"
initialization).

Once zG
i has been returned by the optimizer, we need to design a controller that

takes the system from the current state to xG
i , where we will apply uG

i . A good
framework for this is the iterative linear quadratic regulator (iLQR), described in
several papers [37] [38]. The linear quadratic regulator (LQR) operates for linear
systems with a backward then a forward pass. Given a quadratic cost characterized
by matrices Q and P, a fixed time horizon, an initial and a target state, the backward
pass determines the sequence of optimal actions to take in terms of the state to reach
at each step, i.e., optimal gains in a state-feedback form with an unknown sequence
of states. The forward pass then starts from the known initial state, and replaces the
states iteratively in the previous optimal sequence of actions. This algorithm can
be adapted to nonlinear systems by locally linearizing the dynamics at each time
step. We use a Python implementation of iLQR and compare several possible settings.
We can either assume the true dynamics are known by the controller, i.e., the iLQR

https://web.casadi.org/docs/#nonlinear-programming
https://medium.com/@jonathan_hui/rl-lqr-ilqr-linear-quadratic-regulator-a5de5104c750
https://github.com/anassinator/ilqr

44 Chapter 4. Two main methods and their theoretical analysis

controller actually takes the system to the state zG
i . Or, in a more realistic setting, that

the iLQR uses the estimated dynamics f̂ to attempt to steer the system to zG
i .

Note that using the true or estimated dynamics for control, the initialization, and
the number N of locations to visit are important parameters for tuning this method.
Next, we discuss its advantages and limitations.

4.1.3 Submodularity: from static to dynamic

We show in this section that the separated search and control method based on greedy
rule (4.6) does not provide realistic theoretical guarantees.

Continuity of the input space As shown by Definition 5, submodularity is only
defined for set functions, although some works exist on extending this concept
to continuous functions. Hence, in order to use this property, X × U should be
compact and discretized. This is not especially the case in this work, and not often
for dynamical systems, which usually have continuous state spaces. However, this
difficulty could be overcome (more or less artificially) by considering only finite input
spaces.

Always picking the next element from the same pool In Figure 4.1, we represent
the possible trajectories of a dynamical system as a tree, starting from a fixed state xk.
We name this tree of possible trajectories Tk. The most favorable problem formulation
would have been to greedily select a whole trajectory through the tree by maximizing
a submodular criterion, as in the following ideal formulation:

(Xk, Uk)
∗ = argmax

(Xk ,Uk)∈Tk

I((Xk, Uk), f) = argmax
(Xk ,Uk)∈Tk

Hk(Xk, Uk), (4.7)

In that case, we would have been able to derive theoretical guarantees for the whole
input trajectory (X∗k , U∗k) generated by the method, using Theorem 1. We would
have been able show the sequence of trajectory chosen for exploration during one
experiment is suboptimal up to a bound. This would have been an extension of the
sensor placement results [11] that provides the same type of powerful guarantees.

However, this ideal extension does not hold, because formulation (4.7) does not
fit into the category of problems defined by (4.3). As mentioned in Remark 1, the pool
of elements from which the greedy rule of type (4.3) picks the next element should
be constant for Theorem 1 to be applicable, but this is not the case here. Indeed, the
tree Tk from which to choose the trajectory (Xk, Uk) changes at each time step, as for
different values of xk the root of the tree, different states are attainable in the tree.
Hence, a problem of type (4.7) cannot provide any theoretical guarantees through the
use of Theorem 1, and theoretical guarantees similar to those derived in [11] cannot
be provided.

This shows that extending the active learning methods for static GPs [11] necessi-
tates to choose the next sampling points from a constant pool of possible elements;
and the only constant pool of inputs to choose from is the whole state space X × U .
With this in mind, we derive the greedy rule (4.6): we choose the next location to visit
from the whole state space, hence, always from the same set of possible elements,
which is conform to the assumptions of Theorem 1. We can then derive the following
result:

Theorem 2. Assume X × U is a constant, finite set of possible inputs. Assume each of the
N locations (zG

i)i∈{1,...,N} selected by (4.6) is actually the global maximum at that iteration.

4.1. Separated search and control 45

xk

x̂k+1

...

x̂k+M ...

...

... ...

...

...

...

uk

...

uk+M−1

...

uk+M−1

...

uk+M−1

FIGURE 4.1: We represent the active learning problem as a tree Tk.
Starting from the current position xk, the first control input needs
to be chosen, which takes the system to the next estimated state, etc
for M steps. The aim is to generate informative control strategies

(uk, ..., uk+M−1).

We denote

ZG =
(
zG

1 . . . zG
N
)ᵀ

, (4.8)

ZOPT = argmax
z1,...,zN in(X×U)N

I((z1, . . . , zN), f), (4.9)

Then, the following guarantee on the sequence of locations selected by (4.6) holds:

I(ZG, f) ≥ (1− 1/e)I(ZOPT, f). (4.10)

Here, H(ZG) = 1
2 log|2πeKzG |, where KzG = (k(zG

i , zG
j))zG

i ,zG
j ∈(zG

1 ,...,zG
N)

is the covariance

matrix of the GP trained on observations of the sample points
(
zG

1 . . . zG
N
)ᵀ

, and I(Z, f) =
H(Z)− H(Z| f).

Proof. Assume X × U is a constant, finite set of possible inputs. Assume each of
the N locations (zG

i)i∈{1,...,N} selected by (4.6) is actually the global maximum at that
iteration. The function I(Z, f) is then a submodular monotonic set function as of [9],
[35]. Hence, the greedy rule (4.6) falls into the category of problems used in Theorem
1. A direct application of this theorem concludes the proof.

This result guarantees (zG
i)i∈{1,...,N} is a near-optimal sequence of locations to visit,

in terms of maximizing its entropy. Note that it does not guarantee anything about
the the trajectory in input space that is actually followed, or about the data gathered
in between locations zG

i .

Remark 2. If we consider the GP is updated and its hyperparameters are optimized after
each iteration i of (4.6), a similar result can be obtained using adaptive submodularity [36].

Never reaching the true greedy optimum However, we cannot guarantee the lo-
cations in Theorem 2 will actually be visited, hence, that (4.10) will hold in pracitce.

46 Chapter 4. Two main methods and their theoretical analysis

Indeed, zG
i found at iteration i of (4.6) is the result of a non-convex, possibly high-

dimensional optimization problem. Hence, it might not be the true maximum, even if
a "random best" or "random best optimum" initialization is used. And even if it is the
true maximum, we can only hope to approximately1 reach it if the iLQR controller
can use the true dynamics of the system and has enough time. If only the estimated
dynamics f̂ are available, which is the more realistic case, and if the time horizon of
the iLQR is limited, then it is not very likely that zG

i will actually be reached.
To sum up, it is highly unrealistic to assume that the state zG

i chosen by (4.6) will
actually be visited, and provide the data that the active sampling procedure chose to
ask for. This shows that Theorem 2 does not hold in practice.

4.1.4 First tests

The separated search and control method still performs reasonably well, as we show
in a few experiments. If we can design a good iLQR controller (artificially known
dynamics for control), and if we have enough time between locations, then this
strategy can be quite efficient. We call this the "artificially good" setting. In this
setting, provided good initialization, the locations to visit push the system to regions
far apart, which are then explored since we have accurate control.

In Figure 4.2, we compare the versions of this method in increasing order of
realism: artificially good and unbounded controller, artificially good but bounded
controller, and bounded controller with estimated dynamics. This is done for the
pendulum simulations (see Section 5.1.1 for detailed dynamics), starting at θ = 0,
with horizon 50, N = 6, and matrices G = 100Idx and P = 0.01Idu used in the
quadratic cost of the iLQR controller (see Section 4.1.2 for more details). We notice
the rapid decrease in performance once only the estimated dynamics are used to
design the iLQR that steers the system to each of the locations. This baseline can
be powerful, but only if the corresponding controller performs well; a method that
directly optimizes the control inputs, and therefore, takes the uncertainty on the
control results into account, is often more efficient.

Conclusion on extending the submodular approach to dynamical systems In the
end, we can say that it is highly non trivial to extend the state-of-the-art approaches
for actively learning static GPs to dynamical systems. Indeed, though we were able
to propose an approach based on similar ideas, similar suboptimality guarantees
cannot realistically be provided. This is based on the fact that the pool from which to
greedily choose the next sample to visit is often continuous, and changes due to the
dynamics of the system; unless we can choose locations from the whole state space,
in which case we will probably not reach them. Hence, we can conclude with the
following revised theorem:

Theorem 3. Procedure (4.6) does not verify the assumptions of Theorem 1 in general. Hence,
Theorem 2 does not hold in practice.

Proof. In general, X × U from which to choose the locations is continuous, and not a
finite set. We also cannot guarantee that the locations (zG

i)i∈{1,...,N} selected by (4.6)
are actually optima. Theorem 2 does not hold without these two assumptions. And
even if these assumptions were verified, we cannot guarantee that the locations (zG

i)

1In any case, the iLQR is an approximate controller. For a complex nonlinear system, no matter
which controller is used, reaching a reference target state is not trivial and cannot be guaranteed without
exact knowledge of the dynamics.

4.1. Separated search and control 47

0 50 100 150 200 250 300
Iterations

60

50

40

30

20

10

0

St
at

e

Mean and variance of the true and estimated trajectory
Prediction
True model

0 50 100 150 200 250 300
Iterations

1

2

3

4

5

RM
SE

RMSE between model and true dynamics over time
RMSE

0 50 100 150 200 250 300
Iterations

0

5

10

15

20

25

30

St
at

e

Mean and variance of the true and estimated trajectory
Prediction
True model

0 50 100 150 200 250 300
Iterations

1

2

3

4

5

RM
SE

RMSE between model and true dynamics over time
RMSE

0 50 100 150 200 250 300
Iterations

8

6

4

2

0

St
at

e

Mean and variance of the true and estimated trajectory
Prediction
True model

0 50 100 150 200 250 300
Iterations

4.0

4.2

4.4

4.6

4.8

5.0

5.2

5.4

RM
SE

RMSE between model and true dynamics over time
RMSE

FIGURE 4.2: Three versions of the separated search and control
method, with the pendulum simulations and N = 6: known dy-
namics with the unbounded controller (top), known dynamics with
the bounded controller (middle), and finally bounded actuation with
estimated dynamics (bottom). We show the true and estimated pendu-
lum angle (left), and the error over time (RMSE, defined precisely in

5.1.3; right).

48 Chapter 4. Two main methods and their theoretical analysis

will actually be visited. This is even less likely if only the estimated system dynamics
are available for controller design. Hence, suboptimality guarantees such as Theorem
2 do not hold in practice.

Though it is an interesting extension of current active learning methods for static
GPs, this separated search and control method cannot provide realistic suboptimality
guarantees. On top of that, it is also does not optimize the data gathered along a
whole trajectory, but only over a set of locations to visit. Indeed, Theorem 2 only
bounds the suboptimality of the sequence of locations to visit, not the suboptimality
of the whole trajectory in input space taken to visit them. Next, we will show that
more efficient strategies can be designed by looking at the whole trajectory.

4.2 Optimal control for information maximization

The previous method chooses informative locations of the input space to visit, and
then separately derives a controller to steer the system there. In the next sections, we
present a method that uses the same information-theoretic criterion. This approach
finds an informative control trajectory that optimizes it, while taking the dynamics
constraints into account, showing superior performance.

4.2.1 Mathematical formulation

The greedy method presented in Chapter 3 shows that a non trivial strategy for explor-
ing the state space can be derived from applying at each time step the control input
that yields the next most uncertain estimated state, according to some information
criterion. Returning to the original problem (3.7):

U∗k = argmin
uk ,...,uk+M−1∈UM

J((xk, uk), (f̂ (xk, uk), uk+1), (f̂ (f̂ (xk, uk), uk+1), uk+2), ...),

where U∗k = (u∗k , ..., u∗k+M−1).
We focus on a natural criterion for the cost: we want to maximize the sum of the

differential entropies of each estimated future state. At each iteration of the procedure,
we pick the next most informative control trajectory by solving the optimization
problem

U∗k = argmax
uk ,...,uk+M−1∈UM

M−1

∑
i=0

Hk(x̂k+i, uk+i)

s.t. x̂k+1 = f̂ (x̂k, uk), uk ∈ U ∀ k, (4.11)

for a fixed time horizon M ≥ 1, and x̂k = yk for i = 0 (simplifying notations).
Numerically, the problem is solved using direct multiple shooting in the optimal
control solver from CasADi[39] with Ipopt[40], as in [26] and [8] for example. CasADi
is a symbolic optimal control solver, hence, it can leverage the fact that the GP’s
posterior mean and variance can be expressed analytically. Given a certain kernel
with certain hyperparameters, we can then formulate the posterior mean and variance
of f̂ and the cost to be minimized in (4.11) as symbolic expressions in CasADi, which
solves (4.11) using Ipopt. Since the problem considered is non convex and nonlinear,
we can only hope to find local minima, and expect a large computational overload.

There are two possible settings for applying this optimal control method, which
we denote "receding horizon" and "plan and apply".

http://www.syscop.de/files/2014ss/noc-summer-school/DirectShootingMethods.pdf
https://web.casadi.org
https://projects.coin-or.org/Ipopt

4.2. Optimal control for information maximization 49

Receding horizon The first possibility is to update the GP and optimize its hyper-
parameters at every time step, then recompute the whole trajectory, in a receding
horizon, MPC-type of approach. This is simple and efficient: the larger M, the better
(more long-term planning), and the GP is updated as often as possible no matter
what. However, it is also very costly in terms of computations; by only updating
the GP and control strategy every M time steps, i.e. rolling out the whole trajectory
before updating everything again, the necessary resources are significantly reduced.
Also, it can sometimes lead to a greedy behavior, since the exploration strategy has a
chance to "change its mind" every time step, which will yield worse performance if
the most informative path to choose is not clear.

Plan and apply Alternatively, we can roll out the whole control trajectory. At
the end, after M steps, we have gotten to xk+M, so we update the GP with the
measurements taken along the way, optimize its hyperparameters, and iterate, in an
compute-and-apply fashion. This setting necessitates fewer resources, but also comes
with a trade-off. The largest M will not necessarily yield the best results, because a
large M will not only mean long-term planning, but also waiting a long time before
updating the learned model f̂ . Therefore, a value of M in between is best: large
enough for planning, but not so large that the GP is not updated often enough.

Connection to Model-Predictive Control Model-Predictive Control (MPC) is a
widely used tool for advanced control, which has produced large amounts of literature
in recent years [41] [42]. In a classic optimal control problem, a cost is optimized
while taking the dynamics into account as constraints, and the resulting controller
ofhorizon M is applied to the system. Model-predictive controllers build on this
approach, but instead apply only the first control input derived by the optimal control
problem, then update the state of the system with the current measurements, and
compute again the M next optimal control inputs. This type of receding horizon
approach takes feedback from the system into account through new measurements
and adjusts the controls as necessary, making it very efficient. It is also possible to
include other constraints (such as terminal constraints) and complex costs in the MPC
problem, making it a useful control tool, including for industrial settings.

The proposed optimal control approach (4.11) is similar to an MPC problem,
hence, we can make use of the existing numerical tools for solving it, such as CasADi.
It is also as versatile as an MPC formulation, since other costs or constraints can be
included for practical applications. But it optimizes an information-theoretical cost
instead of a control one, and only has access to an estimate f̂ of the true dynamics f .
Since it is similar to an MPC formulation, it also has some of its drawbacks, such as
high computational burden and sensitivity to the model quality. Note that similar
control approaches have been used in some existing works for exploring dynamical
systems [43] [26], but in different settings, focusing more on linear systems or on
safety for example.

4.2.2 Influence of the planning horizon

In Figure 4.3, we can see the obtained trajectory for the pendulum simulation with
different values of the time horizon M. The estimated (blue) and true (green) angle
of the pendulum are plotted along with the entropy of the GP at the next estimated
point, showing that with longer horizon, the system explores regions with high
entropy faster and goes further away from the initial position faster. For example,
with U = [−5; 5], the short-sighted solution jumps to quickly from −umax to umax,

50 Chapter 4. Two main methods and their theoretical analysis

and can therefore, only generate small oscillations that can even slowly damp out. On
the contrary, longer time horizons are able to learn how to use previous oscillations
to get the pendulum much higher, and perform a swing-up, after about 70 iterations
for M = 5 and 50 iterations for M = 20, which takes them to unknown regions of the
state-space.

4.2.3 Adding other costs

As we did for the greedy method in Section 3.2.2, we investigate the possibility of
adding extra terms to the cost function used in (4.11). As a proof of concept that this
is possible with our method, we propose the following variant of (4.11):

U∗k = argmax
uk ,...,uk+M−1∈UM

M−1

∑
i=0

Hk(x̂k+i, uk+i) + α||uk||L2

s.t. x̂k+1 = f̂ (x̂k, uk), uk ∈ U ∀ t. (4.12)

Adding α||uk||L2 in the optimization problem reduces the control costs and can also
serve as a type of regularization. The generated control inputs are smoother and less
aggressive, which is often necessary for industrial systems in order to avoid damage.
However, it also reduces the amplitude of the control signals generated, making
exploration less efficient.

In the end, we decide not to add this extra term in our optimization procedure, as
in our practical examples the observed behaviors were efficient and diverse enough.
Also, with the hyperpriors we choose in order to robustify the learning procedure (see
Section 5.1.4), it does not seem necessary to regularize for the training to converge
well. But we have conducted several experiments using this extra cost, even if our
final simulations do not; this serves as a proof of concept that other criteria can be
taken into account by our method. It is one of the advantages of this optimal control
method that it can take other criteria into account than just information maximization,
not only control costs but any type of other behavior, such as staying close to a
reference trajectory for example. Hence, this method not only performs well in terms
of exploration, but also enables other aspects to be taken into account.

4.2.4 Advantages and limitations of the method

This method based on optimal control generates informative control trajectories that
steer the system to regions of high uncertainty in the input state. Because of its very
general formulation, it is highly versatile: we have observed aggressive controls
resembling bang-bang where uk mostly took values ±umax, but also much more
complex behaviors for systems for which this was less optimal. It also enables taking
other considerations into account, simply by adding extra terms to the information
criterion in the optimal control problem, as shown in Section 4.2.3. This strategy
directly uses the model f̂ , and takes the dynamics into account as constraint, while
optimizing over the whole trajectory in the next M time steps. All model-based
active learning strategies (e.g., all those we propose in this thesis, as opposed to
random approaches such as standard system identification signals) explicitly explore
both X and U . But the fact that they directly depend on the GP model can also
be considered a risk: if f̂ is very much off, for example if the hyperparameters are
badly initialized and do not converge with the available data, then the exploration
strategy might not generate useful control inputs. Therefore, providing good priors
for the hyperparameters can be essential to the success of this method. For example,

4.2. Optimal control for information maximization 51

0 20 40 60 80 100 120 140

1.0

0.5

0.0

0.5

1.0

Mean and variance of the true and estimated trajectory
Prediction
True model

(A) True and estimated pendu-
lum angle, M = 1

0 20 40 60 80 100 120 140
4

3

2

1

0

1

Entropy at each next state during exploration
Entropy

(B) Entropy of the GP at the
next estimated point

0 20 40 60 80 100 120 140

15.0

12.5

10.0

7.5

5.0

2.5

0.0

2.5

Mean and variance of the true and estimated trajectory
Prediction
True model

(C) True and estimated pendu-
lum angle, M = 5

0 20 40 60 80 100 120 140

4

3

2

1

0

1

Entropy at each next state during exploration
Entropy

(D) Entropy of the GP at the
next estimated point

0 20 40 60 80 100 120 140

0

5

10

15

20

25

Mean and variance of the true and estimated trajectory
Prediction
True model

(E) True and estimated pendu-
lum angle, M = 20

0 20 40 60 80 100 120 140

4

3

2

1

0

1

Entropy at each next state during exploration
Entropy

(F) Entropy of the GP at the
next estimated point

FIGURE 4.3: Comparison of different time horizons for the exploration
strategy with the pendulum simulations. We plot the estimated pendu-
lum angle (blue) along with the true value (green). We also show the
entropy from the GP at each estimated next point, showing that strate-
gies with longer horizons explore regions of higher entropy faster and
go further away from the initial position sooner, learning to perform
a first swing-up after about 70 iterations for M = 5 and 50 iterations
for M = 20. Note that with M = 20, the pendulum also swings much

more times than with M = 5, yielding a higher cumulated angle.

52 Chapter 4. Two main methods and their theoretical analysis

a useful approach for practical applications could be to start generating data with
one of the random exploration methods, derive reasonable hyperparameters from
this initial data, then start using (4.11) with Gaussian priors over these values of the
hyperparameters.

4.3 Event-triggered switch between exploration and exploita-
tion

As described at the beginning of Section 4.2.1, there are two ways the optimal control
method can be applied: either in a receding horizon, or in a plan and apply fashion.
Having a large horizon M and updating the GP every time step (receding horizon) is
often more advantageous, since we can plan further ahead while still learning from
the generated data often. However, this also imposes a large computational overhead,
and can sometimes even lead to a greedy behavior is the strategy "changes its mind"
too often. Hence, the plan and apply formulation, which shows surprisingly similar
performance in experiments, is promising.

We propose to find a compromise between these two variants, by distinguishing
between two possible cases. On the one hand, the GP has learned well and the model
is accurate, hence, we can plan several steps ahead and avoid wasting computational
power on updating it all too often. On the other hand, the model is not accurate,
hence, model uncertainty make it impossible to predict far into the future, and the
GP needs to be updated. In the following sections, we design two event-triggered
switches that leverage these two types of behaviors.

4.3.1 Greedy switch

We distinguish two behaviors:

• Exploration: greedy, local exploration of a certain region, until the GP has
gathered enough information about this region and has adapted its hyperpa-
rameters, and gives good predictions in this region. In this phase, the active
learning strategy chooses the control trajectory as

u∗k = argmax
uk

Hk(xk, uk), (4.13)

i.e. greedy strategy with M = 1. That way, when we are in a new region of the
input space, we stay there and update the GP very often; we switch to the other
phase once we have learned this region well enough.

• Exploitation: long-term exploration, exploiting the local knowledge we have
gathered until now to plan long-term and reach new regions of the input space.
In this phase, the active learning strategy chooses the control trajectory as

U∗k = argmax
uk ,...,uk+M−1∈UM

M−1

∑
i=0

Hk(x̂k+i, uk+i)

s.t. x̂k+1 = f̂ (x̂k, uk), uk ∈ U ∀ t, (4.14)

with a large value of M to be specified later. That way, once we have learned a
certain region of the input space well, we can plan several steps ahead in order
to get out of this local bassin of attraction and reach a new region, in which we
will then switch back to the exploration phase.

4.3. Event-triggered switch between exploration and exploitation 53

We switch from the exploration to the exploitation phase as soon as a local region
has been learned well, and back to exploration as soon as we reach a new region
on which the GP performs poorly. We propose the following trigger for switching
between the two types of behavior:

S(k, P) =
1
P

P−1

∑
i=0
||yk−i − xestim

k−i ||L2 , (4.15)

where yk is the (noisy) measurement of xk given to the GP for training, and xestim
k−i was

the value of xk−i estimated by the GP at time k− i− 1, i.e. xestim
k−i = f̂k−i−1(xk−i−1, uk−i−1).

Hence, no new computations need to be conducted, we simply evaluate the aver-
age prediction error over the last few data points; if this error was low, the model
is accurate and we can plan long-term, otherwise we need to update it. With η a
threshold set by the user, which characterizes the tolerance of the user in terms of
local prediction error, we define the switch:

• If S(k, P) ≥ η, switch to the exploration phase;

• If S(k, P) ≤ η, switch to the exploitation phase.

Choice of threshold η There exists an upper bound on η over which the system will
always be exploiting, therefore, the GP might not converge well. Similarly, there is a
lower bound under which the system will never exploit and therefore, stay greedy.
For the pendulum with σ2

ε = 0.05, these bounds seem to be around 0.2 and 0.4. We
provide the user with some heuristics on the interval in which η can be chosen, and a
risk-seeking user can then select a higher value from this interval (more exploitation),
a safety-conscious user a lower value (more local exploration).

The threshold η is naturally bounded: we have yk−i = xk−i + εk−i, where εk−i ∼
N (0, σ2

ε Idx). In order to avoid mistaking measurement noise for learning error, we
need η to be larger than εk−i in 99.7% of cases, and therefore, derive the following
bound from simple Gaussian tail bounds:

η ≥ 3σε. (4.16)

Similarly, a good rule of thumb can be derived for an upper bound on η. If we
consider σprior the prior variance of the GP, set by the user before any measurements
are taken, then σprior can be interpreted as the variance that the user expects from
the prior model. It would therefore, make little sense to say that even if the current
model is much more wrong than the prior, the GP should keep exploiting instead of
updating locally until the error goes down. Hence, forcing exploitation even when η
is outside of the expectations of the prior model, i.e. η ≥ 3σprior for a Gaussian prior,
would make little sense. Therefore, we can derive a heuristic upper bound:

η ≤ 3σprior. (4.17)

In our experiments, we did some tuning by hand to find the value of η that best fit
our purposes for each system we studied. With σε = 0.05 and σprior = 1 (standard
Gaussian prior), the values of η that seemed reasonable to us were always inside
those heuristic bounds.

Choice of P If the user can estimate the regularity of the dynamics f , a good choice
for P could be P = dLe, where L is the Lipschitz constant of f . For the pendulum,

54 Chapter 4. Two main methods and their theoretical analysis

0 50 100 150 200 250
Iterations

1

2

3

4

5

RM
SE

RMSE between model and true dynamics over time
RMSE

0 50 100 150 200 250
Iterations

1000

2000

3000

4000

5000

6000

7000

8000

9000

Co
m

pu
ta

tio
n

tim
e

+1.55967e9Computation times during exploration
Time (s)

0 50 100 150 200 250 300
Iterations

1

2

3

4

5

RM
SE

RMSE between model and true dynamics over time
RMSE

0 50 100 150 200 250 300
Iterations

800

1000

1200

1400

1600

1800

2000
Co

m
pu

ta
tio

n
tim

e
+1.55967e9Computation times during exploration

Time (s)

0 50 100 150 200 250 300
Iterations

1

2

3

4

5

RM
SE

RMSE between model and true dynamics over time
RMSE

0 50 100 150 200 250 300
Iterations

6000

6500

7000

7500

8000

8500

9000

Co
m

pu
ta

tio
n

tim
e

+1.55973e9Computation times during exploration
Time (s)

FIGURE 4.4: Compare exploration trajectory, RMSE and computation
time for three versions of the optimal control method: planning M =
20 steps ahead and updating both control and GP every iteration
(receding-horizon, top), planning M steps ahead and updating both
only every M steps (plan and apply, middle), and using the greedy
switch to choose between M = 1 and M = 20 after each iteration

(bottom).

4.3. Event-triggered switch between exploration and exploitation 55

with our parameters, we have P = 14 with that strategy, which sounds coherent
compared to the experimental data. For a same value of M, choosing P too small can
change the results (for η = 0.5, M = 20 and the pendulum simulation, P = 10 gave
good results but not P = 5).

Otherwise, a good heuristic seems to be choosing P close to M/2, which is what
we did for our experiments.

Choice of M for exploitation Due to the nature of the time horizon, we have M ≥ 1.
Note also that CasADi, in order for the symbolic optimization procedure to run, cre-
ates a large graph representing the cost function for direct single or multiple shooting,
which grows exponentially in M. Hence, in order to keep both the computation
time and the memory requirements from CasADi reasonable for a regular desktop
computer, we only consider M ≤ 20. We usually test several values for this horizon,
and find that M = 10 or M = 15 yield good performance (planning horizon long
enough for exploration, but GP updated often enough).

Experimental tests We start by implementing the switch with our previous pen-
dulum simulations (see Section 5.1.1 for detailed dynamics). Recall that the aim of
this event-triggered switching between exploration and exploitation lies in finding a
good balance between computational burden, convergence of the GP and an efficient
exploration. We aim at updating the GP as soon as it is needed (exploration) in order
to gather enough data and learn the whole system well. On the other hand, we avoid
unnecessary calculations such as updating the GP too often if the model is already
accurate, or planning a long horizon ahead when there are very informative points
close by.

This trade-off is illustrated in Figure 4.4. We compare the exploration trajectory,
error (RMSE, defined precisely in 5.1.3) over time and computation time. In the top
figure, the receding horizon setting is used. In the middle figure, we plan the control
trajectory and update the GP every M steps. In the bottom figure, we use the greedy
switch described in this section. The experiments were run with M = 20, η = 0.5 and
P = 10. The first solution shows very promising exploration results, with the lowest
final error, learning to do a swing-up early on, but also the highest computational
cost. On the other hand, the second strategy yields a somewhat higher error and
less efficient exploration, but much less computation. The switching strategy is then
able to balance both aspects, reaching an error almost as low as the receding horizon
variant, with less than half as much computation time. It leans more to one variant or
the other depending on the parameters chosen, and grows greedier as η gets smaller.

4.3.2 Receding-horizon switch

The previous idea for managing exploration and exploitation in an event-triggered
way switches between greedy, local exploration and long-term exploitation. In order
to leverage the high performance of receding horizon while limiting the computa-
tional costs, we propose another approach: always planning long-term, but adapting
the rate at which the GP is updated. This boils down to switching between the
"receding-horizon" and "plan and apply" versions of the optimal control method (see

56 Chapter 4. Two main methods and their theoretical analysis

4.2.1). In both phases, the active learning strategy chooses the control trajectory as

U∗k = argmax
uk ,...,uk+M−1∈UM

M−1

∑
i=0

Hk(x̂k+i, uk+i)

s.t. x̂k+1 = f̂ (x̂k, uk), uk ∈ U ∀ t, (4.18)

but adapts the updating rate of the GP. This yields the following behavior:

• Exploration: long-term exploration (4.18), updating the GP at each iteration.

• Exploitation: long-term exploration (4.18), updating the GP only every M steps.

The switching behavior is the same as previously, with S(t, P) as before:

• If S(t, P) ≤ η, switch to the exploitation phase;

• If S(t, P) ≥ η, switch to the exploration phase.

This switch yields higher computational costs than the baseline switch, but also
higher performance. The previous sections concerning the choice of parameters for
the greedy switch also apply for this one.

4.4 Conclusion on the main methods

In the previous chapters, we presented the problem of actively learning dynamical
systems with GPs, and have discussed some of the existing works in this field. We
have proposed several methods, starting with a greedy method (Section 3.2), then a
separated search and control method extended from the literature concerning active
learning with static GPs (Section 4.1), and finally an informative control generation
method based on optimal control (Section 4.2). We have discussed the advantages
and drawbacks of each approach theoretically. The proposed methods and associ-
ated parameters are summed up in Table 4.1. In the next chapter, we benchmark
these different ideas on a set of numerical examples, and draw conclusions on their
performance.

4.4. Conclusion on the main methods 57

TABLE 4.1: Summary of the proposed methods, and their main pa-
rameters and characteristics. The computational bottleneck of each

method is indicated in the computation column.

Method Main parameters

Model-
based

Planning
horizon

Receding
time

Computation
time

Important
parameters

Standard
system
identi-
fication
signals

No No
planning

No Very short
(update GP)

Holding
time

Greedy Yes M = 1 No Long
(update GP
every step)

Cost
function

Seperated
search and
control

Yes Time
between
locations

No Long if true
dynamics

(iLQR)

Cost, N,
true or

estimated
dynamics
for control

Optimal
control,
receding
horizon

Yes M Yes Long (plan
and update

GP every step)

Cost, M

Optimal
control,
plan and
apply

Yes M No Rather
short (plan
and update
GP every M

steps)

Cost, M

Greedy
switch

Yes M No Rather
short (greedy

phases)

Cost, M, η
(switch

threshold)
Receding
horizon
switch

Yes M Yes if
activated

Rather long
(receding
horizon
phases)

Cost, M, η
(switch

threshold)

59

Chapter 5

Experimental results

In this chapter, we evaluate the methods proposed in this thesis on numerical experi-
ments. First, we present the set-up of our benchmark, then the main experimental
results. The different methods we compare are summarized in Table 4.1. We start
by listing the benchmark systems and their parameters. We then discuss the exper-
imental conditions and choices, along with some problems that were faced, before
presenting the experimental findings.

5.1 Experimental set-up

First, we describe the experimental set-up used for this benchmark. We present the
systems used for testing our methods: an inverted pendulum, a continuously-stirred
tank reactor, a two-link robot manipulator, a double inverted pendulum on a cart, a
unicycle, and the half cheetah robot model. The discrete-time dynamics are solved
numerically, and the methods proposed in this thesis are applied to all systems. Their
results are then compared using several metrics, such as the root mean squared
prediction error over an evaluation grid, and the percentage of that grid that was
actually visited by the system.

5.1.1 Dynamics tested

We test the proposed methods on different dynamical systems. Their dynamics are
described in the following section; in each case, we solve the differential equations
describing them explicitly with the Runge-Kutta 4/5 method [32]. We select appropri-
ate parameters for all the benchmark systems by trial and error. Indeed, we need to
tune them until they enable a certain differentiation between the proposed methods.
If a system is very easy to actuate, for example because it is very lightly damped or
because U is very large, then all methods will be able to generate controls that explore
the whole input space efficiently. On the other hand, if it is very hard to actuate, then
none of the methods will manage to explore it. We aim at finding mostly systems that
lie in between, i.e., which are feasible for some methods and not for others, in order
to demonstrate the difference between them. The chosen parameters still remain
realistic: we end up mostly choosing the damping of the system so it is physically
realistic and not all too easy to actuate, then limiting U so that not all methods can
explore the system as efficiently.

Pendulum We implement the nonlinear dynamics of an inverted pendulum. This
is a standard benchmark in control theory on which to try our algorithms. Also,
the dynamics are well-known and easily visualizable, which makes it convenient to

http://www.matthewpeterkelly.com/tutorials/simplePendulum/index.html

60 Chapter 5. Experimental results

interpret. We use the state x = (θ, θ̇)
ᵀ and the dynamics

ẋ =

(
θ̇

− g
l sin(theta)− k

m θ̇ − u

)
, (5.1)

with g = 9.8 the gravity constant, m = 0.1 the mass of the pendulum, l = 1 its
length, and k = 0.05 the damping factor. We use U = [−5; 5] in the early experiments,
U = [−3.5; 3.5] in the final benchmark.

CSTR The continuously-stirred tank reactor (CSTR) is an example often used in
the MPC literature [33]. Its dynamics are highly nonlinear and unstable, therefore,
not easy enough to learn to be very illustrative of our work; some results with this
system are shown in Chapter 4. Hence, we do not include it in the final benchmark,
but still present its dynamics:

ẋ =

(
1
θ (1− x1)− kx1e−

M
x2

1
θ (x f − x2) + kx1e−

M
x2 − u(x2 − xc)

)
, (5.2)

with x = (x1, x2)
ᵀ, the parameters used in [33], and U = [−3; 3]. This system is highly

unstable and not controllable everywhere, therefore, it is not the best system to test
our methods on, and we do not further exploit it.

Two-link robot Two-link planar manipulators are classical examples in robotics;
they are well-studied, stable, and already show complex behavior. Another advantage
of testing our framework on these systems is that they scale easily, i.e., it is fairly
straightforward to go from a two-link, rather simple robotic arm to multiple links for a
more complex robotic system. We use the states x = (θ1, θ2, θ̇1, θ̇2)

ᵀ, with F = (u1, u2)
ᵀ

the torques imposed by the controller, and the dynamics

ẋ =

 θ̇1
θ̇2

B(θ)−1(F− C(θ̇, θ)− h(θ)− Fv θ̇ − Fs sign(θ̇))

. (5.3)

We set the parameters as follows: g = 9.8 the gravity constant, m1 = m2 = 1 the mass
of each arm, l1 = l2 = 1 their length, r1 = r2 = 1/2, and

Ii =

 1
3 mil2

i 0 0
0 0 0
0 0 1

3 mil2
i

 (5.4)

the inertia matrix of each arm. The system is illustrated in Figure 5.1.
Considering the system without damping leads to serious divergence issues, and

is not very realistic from an application driven point of view. Hence, we add damping.
This is also beneficial for our algorithms, since the system is then stable, and exploring
it becomes less easy for naive methods. After some trials on the simulated system,

we pick the viscous and static friction matrices Fv = Fs =

(
0.4 0
0 0.4

)
, and use

U = [−5; 5].

Unicycle The unicycle is a nonholonomic system, hence, interesting to test our
different active learning strategies on. Indeed, its dynamics are constrained: not all

http://www.cds.caltech.edu/~murray/books/MLS/pdf/mls94-manipdyn_v1_2.pdf

5.1. Experimental set-up 61

FIGURE 5.1: Illustration of the two-link robot manipulator. Source:
https://www.slideshare.net.

movements are possible, and the control inputs have more or less effect depending
on the current state of the system (the forward thrust is the projection of the forward
control onto the current forward axis of the system). Hence, actuating the unicycle
and exploring its state space is non trivial. Its dynamics can be written as follows,
with states X = (x, y, θ, ẋ, ẏ, θ̇)

ᵀ, and imposed torques T = (u1, u2)
ᵀ:

Ẋ =

ẋ
ẏ
θ̇

M−1F + M−1Aᵀ
(AM−1Aᵀ

)−1(b− AM−1F)

, (5.5)

where

M =

 m 0 −mr sin(θ)
0 m mr cos(θ)

−mr sin(θ) mr cos(θ) Ic

 (5.6)

is the inertia matrix of the unicycle, with m its mass, r the length between center of
mass and center of rotation, θ the angle formed by its forward direction, and Ic its
moment of inertia about the center of mass.

F =

u1 cos(θ) + mrθ̇2 cos(θ)
u1 sin(θ) + mrθ̇2 sin(θ)

u2

 (5.7)

are the forces applied;

A =
(
tan(θ) −1 0

)
(5.8)

and b = −ẋθ̇ sec(θ)2 are the terms describing the constraints. We use m = 1, r = 0.05,
Ic = (m

2)
2, a damping coefficient of 1, and U = [−0.05; 0.05]. The system is illustrated

in Figure 5.2.

OpenAI Gym systems OpenAI’s Gym package provides benchmarks for reinforce-
ment learning, including robots from MuJoCo. MuJoCo is a physical simulation

https://www.slideshare.net/DamianGordon1/2-link-planar-manipulator
https://gym.openai.com/envs/#mujoco

62 Chapter 5. Experimental results

FIGURE 5.2: Illustration of the unicycle. Source:
https://www.semanticscholar.org/.

environment often used for benchmarking methods in reinforcement learning, in-
cluding many works in legged locomotion for example. Interesting systems for us
include the ant, the half-cheetah, the (double) inverted pendulum on a cart and the
robot manipulator. Because of its presence in many previous papers [29], [44], [45],
using Gym makes for more reproducible and comparable experiments. We focus
on the tasks with continuous action state, and therefore, exclude simple RL tasks
such as the discrete car on a mountain or Atari games. Since we only need symbolic
expressions for the posterior mean and variance of the GP, the Gym systems can be
integrated into our previous framework, by simply keeping track of the environment
of a system as a parameter of our method and sequentially applying to it the controls
selected by the active learning procedure. We focus on the MuJoCo environments,
which include interesting systems with rather realistic dynamics for our use cases.

Note that the Gym systems often model angles by cos(θ) and sin(θ), while we
modeled them by θ directly in the dynamics we implemented. This has advantages
and drawbacks. On the one hand, using the angle directly is closer to the physical
reality, and makes the notion of exploration and of visiting new regions more explicit.
Also, learning cos(θ) and sin(θ) independently means that the GP is not aware that
they are correlated, hence, loses a lot of information coming from the physical reality
of the angular measurement. On the other hand, this also means that the value of
the angle will get huge, and that the GP has to learn from scratch again at each new
region, since the positions at ±2π, which are actually the same, are not spatially
correlated, and therefore, not perceived as having the same behavior for the GP (since
there is different behavior in between). Another possibility would be to use a periodic
kernel with the real angle, which encompasses the periodicity of the data directly
into the kernel. However, using a naive implementation of this kernel can lead to
numerical instabilities. On top of this, for most system only some of the states are
periodic, hence, we would need to have different kernels for different dimensions,
which is less general and requires knowledge about the system. In the end, we decide
to keep a squared exponential kernel and learn cos(θ) and sin(θ) for the double
inverted pendulum on a cart (DIPC) from OpenAI Gym, but keep the real angle for
the systems we implemented ourselves. It is interesting to note however, that such
design choices also have an impact on the learning procedure and therefore, on the
model-based exploration.

In order to benchmark our methods on the Gym systems, we decide to:

https://www.semanticscholar.org/paper/Control-of-a-Pedaled%2C-Self-balanced-Unicycle-with-Huang-Yeh/6947a01eab33ff8370f0f1491549f85ea0453840

5.1. Experimental set-up 63

• Select only some of the MuJoCo systems, which have more or less realistic
dynamics and are mostly stable (though sometimes not strongly damped).

• Select which observations to use: instead of using the observations provided
by Gym, we can use the internal MuJoCo states directly, that have not been
transformed by Gym. That way, we observe the angles directly instead of their
sine and cosine, the velocities are not clamped, and the dynamics are overall
closer to the true physical dynamics than when using the observations provided
by Gym. However, this is not always a good idea; in the case of the double
pendulum on a cart for example, we end up using the transformed states in
Gym instead of the ones used in MuJoCo, because learning cos(θ) and sin(θ)
seemed easier for the GP than learning directly θ.

• Set the state directly: Gym only allows reset() to set the state of the system, in
a way that is defined differently for each system (either start at a defined initial
state, or at a random state). However, in order to benchmark our methods, we
want to start from the same equilibrium point at each trial, which is not the
case with most of the Gym initializations. We also need to be able to set the
simulation state for evaluation: at each point x in the evaluation grid, we need
to set the simulation state to x, apply a random control and observe the state
xnext. Setting the state can be done by accessing directly the internal MuJoCo
states. Keep in mind that when using undirect observations, i.e., the Gym
observations directly, it will be necessary to return to the internal MuJoCo states
when setting the Gym environment, therefore, the transformation from MuJoCo
to Gym states should be invertible and its inverse used each time we set the
environment if undirect observations are used. Hence, we usually use the direct
observations by setting our state x to the internal MuJoCo state.

• Select the grid on which to evaluate the learned model carefully. If the grid is too
large, for example if it contains points for which the simulation or the system
itself are unstable, then they might not be useful for evaluating the current
model. But if it is too narrow, then it will not differentiate as much as possible
between the exploration strategies, since strategies that stay in one region of
the state space instead of exploring it all will be rewarded. The user should
make sure that the chosen grid only encompasses points that are feasible for
the system; MuJoCo will not always raise an error when physically impossible
states are simulated, but often produce bogus predictions.

• Start at a stable equilibrium, and select U carefully. If the control input can be
very large, and/or the initial state is already an interesting and hard to access
region of the state space, for example in the case of the double pendulum on a
cart (can push the cart up to 1m/s, and starts with an upper vertical pendulum
in Gym), then naive exploration strategies such as random bang bang are
already able to explore all of the state space, since no long-term planning is
necessary to visit regions that could be hard to access. By starting from a stable
equilibrium and using a reasonably limited control input, we place ourselves
in a more realistic context, and also choose problems that are illustrative of the
advantage of model-based exploration methods compared to naive ones, since
they are too hard for exploration to be possible without planning, but feasible
at various degrees with our exploration schemes.

64 Chapter 5. Experimental results

(A) DIPC (B) Half-Cheetah (C) Ant

FIGURE 5.3: Illustration of the Gym systems we use. Source:
https://gym.openai.com.

5.1.2 CasADi, Ipopt, and the code

The code used for the simulations is available on git. We start with an initial state,
and initial controller, and a standard Gaussian prior of mean 0 and variance 1. For
the initialization, we compute x1 = f (x0, u0) and estimate x̂1 again with a mean
of 0 and a variance of 1. After this initial guess, we create the GP model. At each
iteration of a model-based active learning procedure, we call CasADi [39] to find
the next optimal control sequence. This means that instead of finding the optimal
control inputs through numerical differentiation (which was the case with scipy),
we are now computing it through automatic differentiation, using interior-point
methods [40] to solve the optimization problem. Given a current kernel and X, Y
data, we compute the large matrix inverse (K + σ2

ε I)−1 needed for GP evaluation
and keep it in memory. Using the symbolic expression of the GP posterior mean
and variance, we can estimate x̂t+i from any given x̂t+i−1 and ut+i−1 during the
optimization procedure. Once the next sequence of control inputs (over a given
horizon M) has been selected by the optimization procedure, we go back to regular
computations (numerical instead of symbolic), compute the next sequence of true
and estimated states, plot them, optimize the hyperparameters of the GP thanks to
the new measurements, and start again.

The first step in running these experiments is to ensure the GP is converging.
The hyperparameters need to be bounded in order to avoid any numerical issues
in case they do not converge well. The kernel and priors on its hyperparameters
(hyperpriors) also need to be reasonably chosen from previous experiments. There
also need to be sufficient amounts of data available. We also standardize the data:
the GP does not receive X as input but X−µ

σ , where µ and σ are the input’s data mean
and standard deviation. This also significantly helps with convergence.

Once the GP is converging to an accurate and robust model, we can focus on
the optimization part. The Ipopt library [40] is used to find a local optimum of the
nonconvex, nonlinear optimization problem (4.11). Although we can only expect
the solver to return a local optimum to this complex problem, several tricks can be
used to ensure the local optimum is as good as possible. First of all, Ipopt is better
equipped for such problems than classical optimization solvers, for example thanks
to the Hessian regularization or the line search for finding an acceptable step size that
are applied; see [46] for more details. Also, we start by using the direct single shooting
method provided in CasADi’s example pack to solve the optimization problem: but it
is also possible to use other methods such as direct multiple shooting. The difference

https://gym.openai.com
https://git-amd.tuebingen.mpg.de/mbuissonfenet/active_learning_gp.git
https://stackoverflow.com/questions/46641453/numerical-gradient-for-nonlinear-function-in-numpy-scipy
https://www.cs.toronto.edu/~robere/paper/interiorpoint.pdf
https://www.cs.toronto.edu/~robere/paper/interiorpoint.pdf

5.1. Experimental set-up 65

between those two methods, for which there exists very clear documentation, is
that with multiple shooting, not only the control inputs are discretized and entered
as variables of the NLP problem, but also the states. This can be computationally
heavier, but yields better results in terms of the local optimum found by the method.
Another useful trick commonly used in nonconvex optimization, is to try a few
random initializations for the algorithm and then pick the one that yields the best
optimum. This helps with obtaining more robust solutions. We implement several
possibilities for initializing the optimization in the code: the user can either start at
0, at the precedent control input, at a random point, or at the point that gave the
lowest cost from a few random tries. We observe that after these few tricks have been
applied, the local optimum found by Ipopt is most of the time much better than 20
random trajectories we try).

The computational bottlenecks in our procedure are solving (4.11) and training the
GP, i.e., updating the covariance matrix with the newly observed data and inverting
K + σ2

ε I in order to make predictions. This would greatly benefit from techniques
coming from sparse GPs, which aim at computing a small and informative covariance
matrix from all the gathered data. Using multioutput-GPs is also a source of slow
computations. For d independent output dimensions, if all d GPs are different (same
data but different kernels), then we need to go through a list of them and invert d
covariance matrices to make predictions, and run the hyperparameter optimization
procedure d times. In our implementation, since using different kernels for each
output dimension does not seem to greatly improve the final performance, we decide
to use one set of hyperparameters for all output dimensions.

This goes outside the scope of this project and we leave this for future work; but it
would be interesting to see how much our method can be sped up with such practical
improvements.

5.1.3 Metrics

In order to rigorously compare exploration strategies obtained for different parame-
ters, we need a quantitative measurement of the quality of the learned GP model f̂
compared to the true dynamics f . To do so, we define a grid Ω of at least 500 points
(x, u) ∈ X × U uniformly distributed over the region of use of the system. Then,
for each point (x, u) in the grid, we compute x̂next = f̂ (x, u) (mean of the GP) and
xnext = f (x, u). We then define the RMSE over Ω as

RMSE =

√
1

ndx
∑

(x,u)∈Ω
||xnext − x̂next||2L2(Ω)

=

√√√√ 1
ndx

∑
(x,u)∈Ω

dx

∑
i=1

(xnext,i − x̂next, i)2, (5.9)

where n is the number of points in the grid.
Other metrics can also be derived for measuring how well a GP model has been

learned. For example, it can be interesting to evaluate the GP as a whole, including
its posterior variance. However, most of the time its posterior mean is used, for
example for control. The RMSE of the mean as a prediction is also what is most
often considered in literature. Therefore, we focus on this metric for quantifying the
prediction accuracy of a GP model after an experiment.

We also consider another metric for evaluating the exploration achieved by a given
method. Given the evaluation grid, we can measure how much of that evaluation

http://www.syscop.de/files/2014ss/noc-summer-school/DirectShootingMethods.pdf

66 Chapter 5. Experimental results

FIGURE 5.4: Illustration of the evaluation grid with schematics of a
pendulum. Each output dimension is given a grid, and the number
of cells that were actually visited by the system (green) is counted to

evaluate the quality of the exploration.

space was explored during a specific simulation by dividing the part of the state
space covered by the evaluation grid into small cells, then drawing a histogram of
the number of times the true state visited each cell. All positive cells in the histogram
are considered visited, and we compute the percentage of the evaluation grid that
was visited this way. This is illustrated in Figure 5.4, where the schematics of the
pendulum and corresponding evaluation grid are shown. The cells considered visited
are marked in green. This gives another, more explicit measure of how well a certain
active learning strategy explored the state space, and usually correlates well with the
RMSE1. We sum up the results of this measure for our benchmark in Table 5.2.

5.1.4 Reducing the variance of the learning results

After running the benchmark experiments 100 times for each baseline with the
pendulum, we noticed that even with such a high number of simulations, the variance
in the final RMSE metric is quite large. This phenomenon is illustrated in Figure 5.5.
By analyzing the results of such experiments in the case of the pendulum, we see that
the exploration of the state space is similar for all: a few swing-ups are achieved, a
range inside of [−10; 10] of velocities is reached, the control trajectories chosen look
similar. However, the observed RMSE itself looks very different, and sometimes even
starts to converge before diverging towards high values of error again. This does
not appear to reflect a variance in the exploration procedure, but inside the learning
procedure: the exploration looks similar each time, but overfitting occurs in the
learning part, for example if the hyperparameter optimization of the GP converges to
bad parameters. Indeed, good exploration and good learning are correlated but do
not necessarily imply one another: our optimal control-based strategies almost always
explores more than the random ones, which explains why the mean error in Figure
5.5 is lower, but does not always learn better due to problems with hyperparameter
optimization, which explains the high variance.

We aim at reducing this variance in outcomes, in order to better illustrate our main
point in the benchmark, which is to show that model-based strategies are superior
to the naive ones. Indeed, this variance coming from a lack of robustness in the
learning part and not in the exploration part of the framework blurs the difference in
exploration between the baselines. Indeed, we were able to test this assumption by

1High exploration most of the time means low RMSE, though this is not completely straightforward
since the learning procedure can go wrong even when the state space was well explored, and vice versa:
the GP estimation of the true dynamics influences the exploration.

5.1. Experimental set-up 67

FIGURE 5.5: Box plots of RMSE over time, with the pendulum simula-
tions. We observe a high variance for all methods (no legend, we only

want to demonstrate the large variance).

removing the hyperparameter optimization and fixing them to reasonable values; as
expected, this showed model-based methods were able to reach lower error.

We try three main solutions in order to robustify the learning procedure, and
therefore, avoid overfitting, which causes this extra variance:

• Robustify the hyperparameter optimization itself: by only starting hyperparme-
ter optimization after a few time steps (we pick 15) and not from the beginning.
Thus, we avoid the worst-case scenario of getting stuck in a local minimum early
on, which is very likely at the beginning since there is almost no data over which
to maximize the marginal log-likelihood. We also use the optimize_restarts
function from GPy: every time the hyperparameters are optimized, we restart 5
times the optimization procedure from 5 random locations and keep the best
result. This also reduces the chances of getting stuck in a local maximum.

• Start with some data or prior knowledge: often in literature, the authors suppose
that some prior knowledge is available, either in the form of expert knowledge
about the type of system and of kernel to use, or about the hyperparameter
values. Such assumptions are common in the GP literature; for example, [11]
and related works assumed the value of the hyperparameters is known and
fixed. In this work, to provide a fair comparison between all methods, we
provide them all with correct but loose hyperpriors. That way, all the data
that counts for learning will have been gathered during exploration, hence, the
comparison will only focus on how well the methods have explored the input
space and how much this has enabled them to learn the estimated dynamics
f̂ ; but most of them should have similar, rather correct hyperparameters and
none of them should overfit all too often because of such issues not related to
exploration.

The problem is then to implement these priors for each dimension of the kernel
we use in GPy. We implement a multivariate Gaussian hyperprior in GPy, and make a
pull request that is currently still pending. For example, if a successful previous trial
with the pendulum (using a squared exponential kernel) ended with variance 20, and
lengthscales 0.2, 4, and 150, then we choose a multivariate Gaussian prior with those

68 Chapter 5. Experimental results

values as mean, and 10, 0.1, 1 and 20 as the variance, in order for the Gaussian prior
to push towards reasonable values (it is as tightly distributed as the mean is small).
We also bound the possible hyperparameter values in a box between 0.001 and 200 to
avoid numerical issues, for example during the random optimization restarts.

This method successfully reduces the variance of the learning process. With such
hyperparameter priors, the RMSE rarely goes up again after getting some data. The
remaining variance in RMSE hence, mostly comes from the exploration itself and not
the learning procedure, which enables a fair comparison between the proposed active
learning strategies. For example, in the case of the pendulum as seen in Figure 5.6, the
distribution of final RMSE with our trajectory optimization method is mostly bimodal:
either a swing-up was achieved and the RMSE lies around 2 after 300 data points,
or no swing-up was achieved and it lies around 5 or 6. This varying exploration
quality explains the variance in this plot, and enables a comparison of how much of
the state-space is explored with each method.

Note that using multioutput GPs with one set of hyperparameters per indepen-
dent output dimension can also improve the performance of the learning procedure,
and with good hyperpriors also its robustness. Because of the computational over-
head this causes, we only consider one set of hyperparameters, and optimize it
to yield the best performance on average over all output dimensions. With our
benchmark systems, assuming that the same parameters can fit the data for each
output dimension seems reasonable, since removing this assumption did not yield
any remarkable increase in performance.

5.2 Benchmark results

The aim of this thesis is to actively learn the dynamics of a controllable dynamical
system. Results for all methods listed in Table 4.1 on all systems presented in Section
5.1.1 are shown here.

In order to compare the different methods, we plot mean and standard deviation
of RMSE and computation time, over at least 100 trials per method (10 for the opt1
method, which takes a very long time to compute). We attempt to create a benchmark
that is as fair as possible, by starting all methods with the same hyperpriors, giving
each the same number of data points and horizons, etc. We also present a table
summarizing the final results in Table 5.2, in terms of RMSE and percentage of the
evaluation space explored. We pick the systems in this benchmark with an eye
on what is often used in reinforcement learning, since this paradigm is related to
our project, hence, mostly robots and other rigid-body dynamical systems. When
choosing the physical parameters of each simulation, we try to pick a realistic system,
and to find a problem which is neither too easy to solve (all methods will be able
to explore efficiently) nor too hard (none of the presented methods will yield good
results). Something in between will be the most interesting for comparing and
differentiating between all presented methods.

To obtain these box plots, we linearly interpolate between the results of all 100
runs for each method, and compute mean and standard deviation. Note that all the
optimal control methods can also be used with the added control cost α||ut||L2 as
described in 4.2.3, if control costs need to be maintained low or for regularization
purposes, or by adding any other costs to the optimization procedure.

5.2. Benchmark results 69

TABLE 5.1: List of the methods compared in the benchmark. We give
each version an abbreviation to for lighter notations.

Method Planning horizon Important
parameters

Abbreviation

Standard system
identification
signals

No planning Holding time 15 or
10 PRBS, APRBS and

chirps

Greedy M = 1 Cost: Hk(xk, uk)
greedy

Separated search
and control

100 N = 3 or 4, true
dynamics for

control

sep1

Separated search
and control

100 N = 3 or 4,
estimated

dynamics for
control

sep2

Separated search
and control

15 or 10 N = 20 to 42, true
dynamics for

control

sep3

Separated search
and control

15 or 10 N = 20 to 42,
estimated

dynamics for
control

sep4

Optimal control, re-
ceding horizon

15 or 10 Cost:
∑M−1

i=0 Hk(x̂k+i, uk+i)
opt1

Optimal control,
plan and apply

15 or 10 Cost:
∑M−1

i=0 Hk(x̂k+i, uk+i)
opt2

Greedy switch 15 or 10 η, cost:
∑M−1

i=0 Hk(x̂k+i, uk+i)
switch1

Receding horizon
switch

15 or 10 η, cost:
∑M−1

i=0 Hk(x̂k+i, uk+i)
switch2

5.2.1 Methods to compare

The methods we compare in this benchmark are presented in Table 5.1. Hereafter, we
use the numbers and abbreviations given there to designate those methods.

The experiments are either 300 or 420 time steps long, and M = 15 is used for all
systems, except the cheetah (M = 10). We always show two versions of the separated
search and control method, one with about 100 time steps between locations (so
N = 3 or N = 4), and one with the same horizon as the optimal control method for a
fair comparison (so N = 20 for 300 time steps and M = 15, N = 27 for 420 time steps
and M = 15, N = 30 for 300 time steps and M = 10 and N = 42 for 420 time steps
and M = 10).

5.2.2 Pendulum

The pendulum is the first system on which we test our different strategies, as it is
easy to understand and interpret (see illustration in Figure 3.1). As seen in previous
sections and among others in Figure 4.3, the quality of the exploration mostly depends
on whether a swing-up was achieved. The final RMSE lies around 2 if one was

70 Chapter 5. Experimental results

opt1
greedy
PRBS
APRBS
chirp
opt2
switch1
switch2
sep1
sep2
sep3
sep4

FIGURE 5.6: Box plots of RMSE and computations over time, with the
pendulum simulations. We compare all methods listed in 5.2.1. We ob-
serve opt1 produces the best results, since a swing-up is almost always
achieved, but (opt2) exhibits the best trade-off between computation

time and RMSE.

achieved, 4 to 5 otherwise if large oscillations have been observed, and higher if
they were smaller. We show the benchmark results for this system in Figure 5.6. In
our conditions with U = [−3.5; 3.5], no swing-up can be achieved with the greedy
procedure, instead it necessitates some long-term planning. The classic system
identification methods and the greedy one rarely achieve a swing-up, but the optimal
control method with receding horizon almost always does. however, it comes at high
computational costs; the plan and apply version achieves the best trade-off between
computation and performance here. Both switches with η = 0.3 perform similarly as
opt2. The separated search and control method performs reasonably for 20 locations
but not as much for only 3; in both cases using the true dynamics for controller yields
an increase in performance as expected, but it is not enough to achieve a swing-up.
Another set of experiments with shorter running times (300 time steps instead of 420)
was also produced, and showed coherent results.

As the pendulum system is easy to learn and very binary in terms of performance
(either a swing-up is achieved or not), it is quite easy to differentiate between the
active learning strategies presented here. We expect that this difference will be less
clear for the other systems in the benchmark since the error results will be more
continuous, but that the overall hierarchy of performance will stay consistent.

5.2. Benchmark results 71

5.2.3 Two-link planar manipulator

Testing the two-link planar robot (see illustration in Figure 5.1) is a good way to scale
up from the pendulum simulations. Here again, the final RMSE mostly depends on
whether or not a swing-up was achieved with the first arm. We run these simulations
with U = [−5; 5] and observe results that are a bit more surprising. The optimal
control trajectory (opt2) and the switches with η = 0.75 perform well, but PRBS is
able to reach errors that are almost as low. The performance of PRBS can be explained
by the fact that this is a rigid-body, toque-controlled system. Hence, most states are
linear in the control input; this explains why a method such as PRBS, that explores X
well through high inputs, while not exploring U (the only values seen for training are
±umax), can still produce accurate predictions. We also observe (opt2) with a receding
horizon is not as efficient as with the pendulum. The separated search and control
baseline performs reasonably, but the solution with only few locations (N = 3) and
known dynamics for control is surprisingly good, better than the same method with
many locations (N = 20). Both these observations seem to indicate that with this
system, control trajectories that go in one direction for a long time are more efficient
than fast-reacting strategies. The change in hierarchy of the different strategies shows
that the type of system greatly influences the efficiency of one particular active
learning strategy; while model-based strategies, such as the separated search and
control and the optimal control approaches, are able to consistently produce good
results.

Running shorter simulations gave coherent results.

5.2.4 OpenAI double inverted pendulum on a cart

The version of the double inverted pendulum on a cart (DIPC) used in OpenAI Gym
(see illustration in Figure 5.3) is very lightly damped, and the automatic resetting
starts it with the pendulum balancing on top of the cart. The actuation power is quite
large compared to the difficulty of actuating the system, therefore, planning is not
necessary for exploring the whole state space. We start by resetting the system at the
stable equilibrium (pendulum down) and limiting U to [−0.3; 0.3], but as shown in
Figure 5.8, this is not enough: the system is still very easy to explore, which explains
why all the exploration strategies obtain the same result and error at the end.

In order to cope with this problem, we create our own Gym environment based on
the DIPC, but add a joint damping parameter of value 8, and use U = [−1; 1]. Now
that the system is more damped and harder to actuate, we are able to differentiate
between the different methods, as illustrated in Figure 5.9. This time, chirps are the
naive solution that perform best, and the separated search and control method does
not show very good performance. The greedy solution is also surprisingly good. This
can be explained by the nature of the system: with a damped pendulum, it becomes
necessary to use the oscillations of the pendulum itself to push it higher, instead
of reaching high speeds on the rail and just take the tip of the pendulum up with
speed. Hence, pushing the cart in one direction for a long time in order to reach high
speeds, like PRBS or the separates search and control methods attempt to do it, does
not produce large oscillations. Instead, finding the right frequency and oscillating in
one spot with the cart can take the pendulum much higher, though no swing-up is
achieved in this case either. This type of behavior is naturally closer to the greedy
method and chirp signals, which explains why they perform better than with other
systems. The optimal control method and its switched versions with η = 0.13 adapt
to the new system and are also able to leverage its properties by producing fast and

72 Chapter 5. Experimental results

opt1
greedy
PRBS
APRBS
chirp
opt2
switch1
switch2
sep1
sep2
sep3
sep4

FIGURE 5.7: Box plots of RMSE and computations over time, with sim-
ulations of the two-link planar manipulator. We compare all methods
listed in 5.2.1. We observe opt1 and its variants produce good results,

but PRBS is also able to achieve low error.

large oscillations. Again, the plan and apply version of the optimal control method
achieves the best trade-off between performance and computation time, though all
of its version (plan and apply, receding horizon, and two switches) end up with the
same error. The separated search and control method with few locations does not
reach very low error, but it performs better with more locations. Interestingly, for
this system the results are slightly better when using estimated dynamics than true
dynamics for control.

A second set of simulations with shorter running time was also made, and showed
coherent results.

5.2.5 Unicycle

The simulations of the unicycle (see illustration in Figure 5.2) also produce interesting
results. This time, it seems the system is hard to actuate for all benchmarked methods
with U = [−0.05; 0.05]. The only ones that keep a high error is the separated search
and control method with few locations. This method, most of all with estimated
dynamics for control, is overfitting a lot, probably because it does not manage to
actuate the unicycle much and only makes it turn around itself. This can be explained
by the fact that taking a control decision only every 100 steps is too low with this
system. Indeed, this type of constrained system can be quite hard to explore, since
little actuation power is available, and the system tends to turn around itself instead

5.2. Benchmark results 73

FIGURE 5.8: Box plots of RMSE and computations over time, with
the original double inverted pendulum on a cart simulations. The
system is very lightly damped and very light, therefore, easy to actuate
and explore. Hence, all exploration methods converge to the same
solution with approximately the same rate. (No legend, we only want

to demonstrate all methods perform similarly.)

of going forward if the control input is not aligned with its forward direction. This is
the case in the simulations, where it seems easy to make the unicycle turn but hard
for all methods to make it go forward and backwards. As illustrated in Figure 5.10,
in the end the optimal control method and its variants still reach the lowest error.
A more detailed view, the same plot but without the separated search and control
method, is available in Figure 5.10 also.

5.2.6 OpenAI half cheetah

In order to demonstrate the scalability and power of the proposed methods, we also
study high dimensional examples in this benchmark. Gym’s half cheetah model has
dx = 18 states and du = 6 controls, and requires a certain degree of coordination of
the inputs in order to explore the state space (see illustration in Figure 5.3). Indeed,
the RMSE drops significantly when the model manages to do a salto and land on
its back, is not the case with all methods when using U = [−0.55; 0.55]. Once it is
on its back, the RMSE can stagnate or even grow again (overfitting) if it does not
move much anymore. The greedy method performs reasonably well with this system,
because its characteristic frequency is lower than for the other systems, which is
why we use M = 10 and not M = 15 here. This also reduces the computational
overhead of dealing with such a high-dimensional system. The methods based on
optimal control perform best again, but this time the plan and apply version is not
the most efficient, since waiting 10 time steps between GP updates is probably be too
long for such a complex model. On the other hand, both switches are able to reach
good performance with reasonable computation costs using η = 1.9. These results
are illustrated in Figure 5.11. With a larger control input, the performance of both
switches was able to reach the error achieved by the receding horizon version, as
a greedy behavior became more efficient overall. For this system as well as for the
pendulum, since the receding horizon version exhibits a lower mean error than the

74 Chapter 5. Experimental results

opt1
greedy
PRBS
APRBS
chirp
opt2
switch1
switch2
sep1
sep2
sep3
sep4

FIGURE 5.9: Box plots of RMSE and computations over time, with our
damped DIPC simulations. We compare all methods listed in 5.2.1,
and observe the best results for the optimal control method and its

variants. Shorter experiments produce coherent results.

plan and apply version, it should be possible to bring both switched methods down
to a lower error by lowering η and allowing for more computations, and vice-versa.

Note that it would necessitate more than 400 data points to properly learn such
a complex system. Clearly, this requires more sophisticated implementations and
serious computational resources, which is out of the scope for this thesis. For example,
reinforcement learning methods used with this system typically need a few hundred
episodes for training, each episode representing a few hundred of our time steps.
And that is just for learning to run with the cheetah, not for learning a full GP model
of it. However, the obtained results show the proposed approaches still produce
sensitive results. Even if the 400 collected data points are far from enough for learning
this system well, the ones produced by the model-based active learning methods are
more informative than the ones produced by the naive methods, which is what we
aim at demonstrating with this benchmark.

5.2.7 OpenAI ant

The ant model available on Gym is high dimensional and quite complex (see illustra-
tion in Figure 5.3), with dx = 29 and du = 8. This makes it very hard to learn with
a GP; we did not manage to find suitable hyperparameters allowing for reasonable
prediction error, which is why we do not explicitly include it in this benchmark.
Another issue was that we had to add damping to the original Gym model in order

https://towardsdatascience.com/training-a-cheetah-to-run-with-deep-reinforcement-learning-6dca2975443a
https://towardsdatascience.com/training-a-cheetah-to-run-with-deep-reinforcement-learning-6dca2975443a

5.2. Benchmark results 75

opt1
greedy
PRBS
APRBS
chirp
opt2
switch1
switch2
sep1
sep2
sep3
sep4

FIGURE 5.10: Box plots of RMSE and computations over time, with
the unicycle. We compare all methods listed in 5.2.1 (top), and all
except for the separated search and control ones (bottom), for a more

detailed view without overfitting.

76 Chapter 5. Experimental results

opt1
greedy
PRBS
APRBS
chirp
opt2
switch1
switch2
sep1
sep2
sep3
sep4

FIGURE 5.11: Box plots of RMSE and computations over time, with
half cheetah simulations. We compare all methods listed in 5.2.1, and
observe the best results for the optimal control method with receding

horizon.

to make it easier to learn for the GP, and then the ant tended to fall on its back, and to
not be able to get back up again, which forced us to restart the simulation in that case.
However, we did run all proposed methods on this system, hence, showing they can
scale up to this system. The exploration results were encouraging, and seemed to
indicate that the model-based methods explore the input space more than the naive
ones. Similarly to the half cheetah model, learning an accurate GP model of this
complex system is a non trivial task itself and is out of scope for this thesis. However,
the obtained results show the data gathered by the model-based exploration methods
is more informative than naively generated data.

5.2.8 Table comparison of final results

We sum up the final RMSE, and percentage of visited state space for each method on
each benchmark system in Table 5.2. These results are coherent with the box plots
shown in previous sections, and the overall hierarchy of methods is consistent. This
is done for the longer simulations, those with 420 time steps, except for the two-link
robot, for which the simulations with 420 time steps are not finished yet, hence, the
results are for 300 time steps. We observe that the lowest error is always achieved
by one of the variants of the optimal control-based method. Overall, all its versions
reach a low error and a high exploration percentage, which seems coherent with the
observed behavior. However, we also observe that high exploration percentage and

5.2. Benchmark results 77

low error do not always go together: though they are correlated, sometimes a higher
exploration percentage was reached by another method with RMSE almost as low,
such as for the two-link robot or the unicycle. This can be explained by the fact that it
is not only important to explore X in order to obtain accurate predictions, but also to
explore U and discover coordinated behaviors, which is less often the case with other
methods.

TABLE 5.2: Comparing the results on all benchmark systems for all
methods. The systems tested are described above (pendulum, two-
link robot, double inverted pendulum on a cart (DIPC), unicycle and
ant), and the abbreviations of the different methods are given in Table
5.1. We show the final RMSE (mean and standard deviation), and
the percentage of explored space on the evaluation grid. Recall these
results are averaged over at least 10 trials for opt1, at least 100 trials

for all others.

Method used System tested

Final RMSE Pendulum Two-link DIPC Unicycle Cheetah
PRBS 5.7± 2.6 5.5± 1.1 2.00± 0.15 3.29± 0.95 5.1± 0.3
APRBS 10.2± 0.4 9.7± 1.2 2.16± 0.19 3.57± 0.94 5.8± 0.1
chirps 9.0± 1.0 11.5± 0.2 2.00± 0.19 4.21± 0.64 5.6± 0.3
greedy 10.1± 0.2 11.3± 0.1 1.88± 0.14 4.22± 0.69 5.4± 0.4
sep1 8.2± 3.4 6.1± 2.2 2.58± 0.10 4.02± 1.67 5.9± 0.1
sep2 10.0± 1.5 9.1± 3.0 2.44± 0.26 6.73± 3.67 5.5± 0.4
sep3 5.4± 2.5 6.5± 1.5 2.09± 0.20 3.51± 1.63 5.8± 0.1
sep4 5.8± 2.4 6.9± 1.7 2.06± 0.18 3.14± 1.14 5.1± 0.5
opt1 1.4± 0.5 6.2± 1.3 1.79± 0.12 2.87± 0.73 4.2± 0.6
opt2 2.5± 2.0 5.4± 0.7 1.79± 0.09 3.05± 0.67 4.8± 0.6
switch1 2.1± 1.4 5.6± 0.9 1.81± 0.11 2.93± 0.55 4.7± 0.7
switch2 2.4± 1.8 5.3± 0.7 1.78± 0.11 3.00± 0.60 4.8± 0.7
Explored %

PRBS 22.1± 11.0% 49.2± 8.5% 67.4± 8.2% 65.8± 7.3% 50.7± 4.9%
APRBS 8.7± 1.3% 25.0± 6.5% 59.4± 8.0% 62.3± 6.9% 38.4± 3.9%
chirps 14.0± 2.6% 14.8± 3.9% 72.4± 9.0% 41.9± 13.8% 54.4± 9.0%
greedy 10.5± 1.0% 15.7± 1.2% 68.2± 4.6% 51.9± 5.3% 67.2± 3.2%
sep1 17.5± 14.4% 51.6± 12.8% 46.7± 3.5% 65.2± 8.3% 27.3± 1.6%
sep2 10.2± 5.7% 34.9± 11.2% 49.4± 11.1% 56.0± 8.1% 48.1± 7.8%
sep3 23.8± 9.5% 39.1± 7.1% 63.3± 7.0% 66.6± 7.8% 52.7± 3.4%
sep4 22.0± 9.1% 37.7± 8.0% 64.4± 7.5% 66.0± 7.1% 57.2± 4.3%
opt1 46.4± 6.6% 42.6± 6.7% 74.8± 6.5% 65.6± 5.2% 69.1± 3.9%
opt2 37.1± 9.0% 48.2± 7.9% 75.9± 5.3% 66.1± 5.9% 65.3± 3.8%
switch1 37.8± 8.0% 46.5± 7.7% 74.8± 5.7% 65.9± 6.2% 65.6± 3.9%
switch2 38.4± 9.3% 48.1± 7.4% 75.4± 5.9% 65.6± 6.0% 65.7± 3.8%

5.2.9 Conclusion on the benchmark

In the last sections, we presented a benchmark of the active learning methods pro-
posed in this thesis. We compare their performance on five different systems (pen-
dulum, two-link robot, double inverted pendulum on a cart (DIPC), unicycle, half

78 Chapter 5. Experimental results

cheetah). The results are summarized in Table 5.2. Next, we analyze and discuss the
results of this benchmark.

The method based on optimal control (see Section 4.2) performs best in all systems.
Interestingly, the receding horizon version does not always give the best results,
because of the greedy behavior it tends to have if the optimal control is not clear. But
if it is, for example with the pendulum or the half cheetah, then it performs very well.
It usually also has a low variance, but a very high computational price. The plan and
apply version consistently performs well for a reasonable computational burden. If
the chosen horizon M enables long-term planning while still updating the GP often
enough, then this method can explore efficiently since it takes the model explicitly
into account, but still avoid the hurdles of becoming greedy by only updating it every
M steps. The greedy and receding horizon switches perform similarly most of the
time. For systems for which the receding horizon version is more efficient than the
plan and apply version (pendulum, half cheetah), both switches can usually reach
lower error than the plain plan and apply method for similar computational burden.
Overall, we can say that this method performs best, while also being highly versatile,
since it can include other tasks as extra terms in the cost function. Its different versions
also allow some extra degrees of freedom, since depending on the system one of them
can be more efficient than the others, though the plan and apply version is usually a
good guess.

The separated search and control approach (see Section 4.1) can also yield good
results, as shown with the unicycle or the two-link robot. Since this method does not
optimize over the whole control trajectory, but only over a number N of locations to
visit, it performs best with systems that can be explored with slow, long movements in
one direction or the other (driving the the system to a sequence of unknown locations
far apart), instead of fast vibrations like the cheetah or the DIPC. As expected, the
lowest error is reached when the number N of locations to visit is high and the true
dynamics are used for control. However, sometimes estimated dynamics for control
end up reaching higher performance. Overall, it is not as efficient as the optimal
control-based method in general, as discussed in Chapter 4.

The greedy method (see Section 3.2) can give good results and reach low error in
systems with fast dynamics such as the DIPC or the half cheetah (most of all with
higher actuation power), for which vibrating fast can yield good exploration. Because
the greedy behavior causes the generated signal to oscillate fast, it can also yield bad
results when such fast oscillations are not able to actuate the system much (control
frequency too high compared to the system’s characteristic frequency); this is the case
with the pendulum or the two-link robot.

The classic signals from system identification (PRBS, APRBS, chirps; see Section
2.3.1) showed varying performance, depending on the system’s properties. They can
perform well if the frequency is well chosen. They also necessitate little computational
power, since the only bottleneck is training the GP. However, their performance is
not consistent over all systems, and since they do not take the current model into
account, they can perform arbitrarily bad. This behavior is equivalent to an open-
loop controller, while the model-based active learning methods are closed-loop since
they plan depending on the current model. They also do not enable any controlled
behavior, since they cannot take any other considerations into account, such as
control costs for example. In our benchmark, PRBS performed surprisingly well on
average, particularly with the two-link robot. This can be explained by the fact that
it can explore the state space efficiently, since it is always uses high valued controls.
However, it does not explore U : the only values ever generated are ±umax. In our
benchmark, PRBS sometimes still yields low RMSE even without seeing many values

5.2. Benchmark results 79

of U . We suspect that this is because we are only considering systems with rigid-body
dynamics and torque control, for which many states are linear in the control input
(all angle states for torque-controlled systems). Hence, for all systems except the
DIPC, several states are linear in u, which enables accurate predictions even if only
two values of u have been learned. The fact that PRBS performs worse on the only
benchmarked system for which this is not the case, DIPC (not torque-controlled),
supports this interpretation. On top of this, a PRBS-type of behavior is usually not
desirable since it can damage systems; the model-based methods can avoid this issue
by including control costs in the optimization problem they solve. Overall, we can
say that the standard excitation signals from nonlinear system identification are not
versatile tools that are guaranteed to perform well for actively learning nonlinear
dynamical systems. Though PRBS performs surprisingly well in our benchmark, we
believe this is mostly linked to the types of systems that we consider (rigid-body
dynamics with torque control).

81

Chapter 6

Future investigations

In this chapter, we quickly present three ideas that could not be investigated in this
thesis, but that could be interesting for future work on this topic.

6.1 Validation of the learned model on a control task

An interesting way of validating the findings of the benchmark experiments would
be to select the average learned model for each method, then compare the obtained
control performance. We expect that more accurate models, i.e., with lower RMSE,
would yield better control performance. This would be a further metric for differenti-
ating between the proposed method, but from a more practical point of view, since it
would compare how well the learned model can be used for a concrete control task.

We could also compare the results on using control with the learned model to
learning the control task directly from data, with reinforcement learning. It would be
interesting to see on a specific example whether or not this direct approach is more
sample-efficient. Note that in any case, reinforcement learning remains less general.
If a good model of the system has been learned, then it can be used to perform any
control task, while each task needs to be learned (more or less) from scratch with
reinforcement learning.

6.2 Taking other objectives into account

It would also be beneficial to study how the active learning methods developed in
this work can be adapted to take other aspects into account. Adding other terms in
the cost function of the optimization problem enables other considerations than pure
information gain, as we show by adding control costs to the objective. This versatility
of the proposed methods make them suitable for considering related problems, such
as exploration while staying close to a reference strategy, safety-conscious active
learning, or Bayesian optimization, which is an interesting opening for future work.

6.3 What makes a system easy or hard to explore?

As detailed in Chapter 5, we observed that some systems are easier to explore than
others. We identified several properties that characterize this. Intuitively, the model-
based approaches are most efficient at exploring a system if the following characteris-
tics are present:

• Enough damping: a system that is very unstable or has very fast dynamics is
hard to learn, hence, the model often does not enable accurate predictions for
planning. On the other hand, even naive methods can easily explore the whole

82 Chapter 6. Future investigations

state space by adding enough energy into the system. Therefore model-based
methods are not as advantageous in this case;

• No boundary effects, that are hard to capture for GP models. For example,
in the case of the DIPC, with a system that is very lightly damped, banging
against the end of the rail causes several swing-ups, making a PRBS solution
near-optimal since banging in one direction produces swing-ups, which the GP
cannot identify;

• A sampling rate that is reasonable compared to the characteristic frequency of
the system. If the available data is sampled at a rate that is too low compared
to the dynamics of the system, then they do not seem continuous anymore
and do not reflect the physics of the system. But if they are sampled too fast,
then computations soon become very heavy even for just observing a few
milliseconds of the physical system;

• Clear milestones that significantly increase prediction accuracy if they are
reached. This is the case of the swing-up for the pendulum, or the salto for
the cheetah: reaching a certain region of the state space that has very different
dynamics reduces the RMSE significantly. This also means that the direction the
control should take for active learning is quite clear after some local exploration,
hence the obtained behavior is less greedy and more efficient;

• High input dimension: the advantage of the model-based exploration strategies
over the naive (random) ones grows with du the control dimension. Indeed,
in high dimensions visiting interesting regions of the state space requires co-
ordinating the different control inputs, which are all independent in the naive
strategies.

The next question to ask is then naturally: can we characterize theoretically what
makes a system hard or easy to explore?

Exploring a circular manifold A good way to start this theoretical characterization
would be to select a simple dynamical system: one for which the solution in the state
space is a circle, e.g., a pendulum. It would be very interesting to take on the one
hand a very light pendulum and show it is easy to explore the whole state space,
i.e., go around the whole circle, and on the other hand a very heavy pendulum that is
hard to explore. We could then try to investigate, given pendulum parameters and
u ∈ [−umax; umax], bounds for the expected time before a swing-up is managed, with
random control inputs or with our method of trajectory optimization. It would also
be interesting to define distances on the manifolds that are implicitly described by
the solutions of the dynamics equations of the system.

This should be feasible mathematically, but goes out of scope of the primary
objectives of this thesis, therefore we prefer to leave it for future work.

83

Chapter 7

Conclusion

This thesis tackles the problem of actively learning dynamical systems with Gaussian
processes. Efficient methods already exist for actively learning static GPs. However,
adding dynamics constrains the problem. Instead of being able to sample directly
any data points considered informative by the active learning procedure, it is then
necessary to drive the system to a certain state in order to sample data there. Hence,
the aim of the dynamic active learning strategy is to generate informative control
inputs, that excite the system and drive it to unknown regions of the state space.

Several methods for computing such control trajectories are proposed. First, we
consider standard signals used for system identification. A greedy method that opti-
mizes an information-theoretical criterion is then designed, but its greedy behavior
does not enable efficient exploration of the input space. Therefore, a separate search
and control method is considered, which enables long-term planning and leverages
the property of submodularity. It consists in computing informative locations to visit,
then driving the system there. Theoretical guarantees on the suboptimality of the
sequence of locations to visit can be derived. However, these guarantees do not hold
in practice, and the data between the locations is not included in the analysis. Hence,
a more efficient approach based on optimal control is proposed, which optimizes
over the whole control trajectory and generates highly informative inputs. Several
versions of this method are developed, by either running it in a receding horizon
fashion, or applying the whole trajectory before re-planning. The receding time ver-
sion often yields better performance, but is also computationally heavier. We develop
an event-trigger switch that leverages both the performance and the computation
aspect, by switching between a greedy or receding horizon behavior and a plan and
apply strategy.

The performance of the proposed methods is evaluated on a numerical benchmark.
We compare all strategies on five systems: an inverted pendulum, a two-link robot
manipulator, a double inverted pendulum on a cart, a unicycle, and a half cheetah
model. These systems are standard, have varying degrees of complexity, and come
among others from OpenAI Gym. This benchmark experimentally shows the power
and the performance of the strategy based on optimal control, and offers an interesting
comparison between model-free and model-based active learning methods.

This thesis is part of a larger research question. As the interest for data analytics
and learning grows, the control community also becomes more interested in using
statistical inference for learning systems. Hence, the problem of generating informa-
tive data for learning dynamical systems, which means exploring their input and
state spaces, is also gaining attention. This thesis aims at providing some insights on
how to actively learning dynamical systems, and on the importance of exploration
for efficient learning.

85

Bibliography

[1] A. Fabisch, C. Petzoldt, M. Otto, and F. Kirchner, “A survey of behavior learning
applications in robotics - State of the art and perspectives”, pp. 1–38, 2018.

[2] D. Nguyen-Tuong and J. Peters, “Model learning for robot control: A survey”,
Cognitive Processing, vol. 12, pp. 319–340, 2011.

[3] T. Graepel, “AlphaGo - Mastering the game of go with deep neural networks
and tree search”, Nature, vol. 529, pp. 484–489, 2016.

[4] M. Deisenroth and C. Rasmussen, “PILCO: A model-based and data-efficient
approach to policy search”, Proceedings of the International Conference on Machine
Learning - ICML 2011, vol. 91, pp. 465–472, 2011.

[5] M. Green and J. B. Moore, “Persistence of excitation in linear systems”, Systems
and Control Letters, vol. 7, pp. 351–360, 1986.

[6] J. Schoukens and L. Ljung, “Nonlinear system identification: A user-oriented
roadmap”, arXiv 1902.00683, pp. 1–121, 2019.

[7] A. Emery and A. V. Nenarokomov, “Optimal experiment design”, Measurement
Science and Technology, vol. 9, pp. 864–876, 1998.

[8] A. Jain, T. Nghiem, M. Morari, and R. Mangharam, “Learning and control using
Gaussian processes”, Proceedings of the ACM/IEEE International Conference on
Cyber-Physical Systems - ICCPS 2018, pp. 140–149, 2018.

[9] N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger, “Information-theoretic
regret bounds for Gaussian process optimization in the bandit setting”, IEEE
Transactions on Information Theory, vol. 58, pp. 3250–3265, 2012.

[10] M. Hesse, J. Timmermann, E. Hüllermeier, and A. Trächtler, “A reinforcement
learning strategy for the swing-up of the double pendulum on a cart”, Proceed-
ings of the International Conference on System-Integrated Intelligence - ICSII 2018,
pp. 15–20, 2018.

[11] A. Krause, A. P. Singh, and C. Guestrin, “Near-optimal sensor placements in
Gaussian processes: Theory, efficient algorithms and empirical studies”, Journal
of Machine Learning Research, vol. 9, pp. 235–284, 2008.

[12] A. Krause and C. Guestrin, “Nonmyopic active learning of Gaussian processes”,
Proceedings of the International Conference on Machine Learning - ICML 2007,
pp. 449–456, 2007.

[13] J. Binney, A. Krause, and G. S. Sukhatme, “Informative path planning for an
autonomous underwater vehicle”, Proceedings of the IEEE International Conference
on Robotics and Automation - ICRA 2010, pp. 4791–4796, 2010.

[14] C. Zimmer, M. Meister, and D. Nguyen-Tuong, “Safe active learning for time-
series modeling with Gaussian processes”, Proceedings of the Conference on Ad-
vances in Neural Information Processing Systems - NeurIPS 2018, 2018.

[15] C. Rasmussen and C. Williams, Gaussian processes for machine learning. MIT
Press, 2006.

86 Bibliography

[16] D. K. Duvenaud, “Automatic model construction with Gaussian processes”,
PhD thesis, University of Cambridge, 2014.

[17] I. Steinwart and A. Christmann, Support Vector Machines. Springer, New York,
NY, 2008.

[18] J. Quiñonero-Candela and C. E. Rasmussen, “A unifying view of sparse ap-
proximate Gaussian process regression”, Journal of Machine Learning Research,
vol. 6, pp. 1939–1959, 2005.

[19] M. A. Álvarez, D. Luengo, M. K. Titsias, and N. D. Lawrence, “Variational
inducing kernels for sparse convolved multiple output Gaussian processes”,
arXiv 0912.3268, pp. 1–22, 2009.

[20] O. Nelles, Nonlinear system identification, 1st ed. Springer-Verlag Berlin Heidel-
berg, 2001.

[21] C. Guestrin, A. Krause, and A. P. Singh, “Near-optimal sensor placements
in Gaussian processes”, Proceedings of the International Conference on Machine
Learning - ICML 2005, vol. 1, pp. 265–272, 2005.

[22] N. Srinivas, A. Krause, S. Kakade, and M. Seeger, “Gaussian process optimiza-
tion in the bandit setting: No regret and experimental design”, Proceedings of the
International Conference on Machine Learning - ICML 2010, pp. 1015–1022, 2010.

[23] A. Singh, A. Krause, C. Guestrin, W. Kaiser, and M. Batalin, “Efficient planning
of informative paths for multiple robots”, Proceedings of the International Joint
Conference on Artifical intelligence - IJCAI 2007, pp. 2204–2211, 2007.

[24] T. H. Summers, F. L. Cortesi, and J. Lygeros, “On submodularity and controlla-
bility in complex dynamical networks”, IEEE Transactions on Control of Network
Systems, vol. 3, pp. 91–101, 2016.

[25] I. Yang, S. A. Burden, R. Rajagopal, S. S. Sastry, and C. J. Tomlin, “Approxima-
tion algorithms for optimization of combinatorial dynamical systems”, IEEE
Transactions on Automatic Control, vol. 61, pp. 2644–2649, 2016.

[26] T. Koller, F. Berkenkamp, M. Turchetta, and A. Krause, “Learning-based model
predictive control for safe exploration”, Proceedings of the IEEE Conference on
Decision and Control - CDC 2018, 2018.

[27] A. Doerr, C. Daniel, D. Nguyen-Tuong, A. Marco, S. Schaal, T. Marc, and S.
Trimpe, “Optimizing long-term predictions for model-based policy search”,
Proceedings of the Conference on Robot Learning - CoRL 2017, vol. 78, pp. 227–238,
2017.

[28] A. Doerr, C. Daniel, M. Schiegg, D. Nguyen-Tuong, S. Schaal, M. Toussaint,
and S. Trimpe, “Probabilistic recurrent state-space models”, Proceedings of the
International Conference on Machine Learning - ICML 2018, J. Dy and A. Krause,
Eds., pp. 1280–1289, 2018.

[29] T. Xu, Q. Liu, L. Zhao, and J. Peng, “Learning to explore with meta-policy
gradient”, Proceedings of the International Conference on Machine Learning - ICML
2018, 2018.

[30] J. Umenberger, M. Ferizbegovic, T. B. Schön, and H. Hjalmarsson, “Robust
exploration in linear quadratic reinforcement learning”, arXiv 1906.01584, 2019.

[31] M. Ferizbegovic, J. Umenberger, H. Hjalmarsson, and T. B. Schön, “Learning
robust LQ-controllers using application oriented exploration”, IEEE Control
Systems Letters, vol. 4, pp. 19–24, 2019.

Bibliography 87

[32] D. F. Griffiths and D. J. Higham, Numerical methods for Ordinary Differential
Equations. Springer, London, 2010.

[33] D. Q. Mayne, E. C. Kerrigan, E. J. Van Wyk, and P Falugi, “Tube-based robust
nonlinear model predictive control”, International Journal of Robust and Nonlinear
Control, vol. 21, pp. 1341–1353, 2011.

[34] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approxima-
tions for maximizing submodular set functions-I”, Mathematical Programming,
vol. 14, pp. 265–294, 1978.

[35] A. Krause and C. Guestrin, “Near-optimal nonmyopic value of information
in graphical models”, Proceedings of the Conference on Uncertainty in Artificial
Intelligence - UAI 2005, pp. 324–331, 2005.

[36] D. Golovin and A. Krause, “Adaptive submodularity: Theory and applications
in active learning and stochastic optimization”, Journal of Artificial Intelligence
Research, vol. 42, pp. 427–486, 2011.

[37] Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential dynamic
programming”, Proceedings of the IEEE International Conference on Robotics and
Automation - ICRA 2014, pp. 1168–1175, 2014.

[38] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of complex
behaviors through online trajectory optimization”, Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems - IRS 2012, pp. 4906–
4913, 2012.

[39] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi – A
software framework for nonlinear optimization and optimal control”, Mathe-
matical Programming, 2018.

[40] A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming”, Mathematical
Programming, vol. 106, pp. 25–57, 2005.

[41] L. Wang, Model predictive control system design and implementation using MATLAB.
Springer, London, 2009.

[42] R. Findeisen, F. Allgöwer, and L. T. Biegler, Assessment and future directions of
nonlinear model-predictive control. Springer, Berlin, Heidelberg, 2007.

[43] B. Belousov, H. Abdulsamad, M. Schultheis, and J. Peters, “Belief space model
predictive control for approximately optimal system identification”, Tech. Rep.,
2019. [Online]. Available: https://www.ias.informatik.tu-darmstadt.de/
uploads/Team/BorisBelousov/rldm19_belousov.pdf.

[44] S. Sodhani, A. Goyal, T. Deleu, J. Tang Mila, Y. Bengio, and S. Levine, “Learning
powerful policies by using consistent dynamics model”, Proceedings of the Work-
shop on "Structure and Priors in Reinforcement Learning" at the 2019 International
Conference on Learning Representations - ICLR 2019, pp. 1–6, 2019.

[45] T. Wang, X. Bao, I. Clavera, J. Hoang, Y. Wen, E. Langlois, S. Zhang, G. Zhang, P.
Abbeel, and J. Ba, “Benchmarking model-based reinforcement learning”, arXiv
1907.02057, pp. 1–25, 2019.

[46] A. Wächter, “Short tutorial: Getting started with ipopt in 90 minutes”, Dagstuhl
Seminar, Combinatorial Scientific Computing, 2009.

https://www.ias.informatik.tu-darmstadt.de/uploads/Team/BorisBelousov/rldm19_belousov.pdf
https://www.ias.informatik.tu-darmstadt.de/uploads/Team/BorisBelousov/rldm19_belousov.pdf

	Abstract
	Résumé
	Contacts
	Introduction
	Foundations
	Context and notation
	The learning framework
	Gaussian processes for machine learning
	Design choices and limitations

	Generating informative data
	System identification and notions from classic control theory
	Active sampling for Gaussian processes

	A related paradigm: reinforcement learning
	Basic concepts for reinforcement learning
	Policy search for Gaussian processes
	Explicit exploration for reinforcement learning

	Problem formulation and greedy method
	General formulation
	Simplified problem: the greedy method
	Implementation and tests
	Influence of the cost function

	Conclusion on the greedy method

	Two main methods and their theoretical analysis
	Separated search and control
	Submodularity
	Sketch of the approach
	Submodularity: from static to dynamic
	First tests

	Optimal control for information maximization
	Mathematical formulation
	Influence of the planning horizon
	Adding other costs
	Advantages and limitations of the method

	Event-triggered switch between exploration and exploitation
	Greedy switch
	Receding-horizon switch

	Conclusion on the main methods

	Experimental results
	Experimental set-up
	Dynamics tested
	CasADi, Ipopt, and the code
	Metrics
	Reducing the variance of the learning results

	Benchmark results
	Methods to compare
	Pendulum
	Two-link planar manipulator
	OpenAI double inverted pendulum on a cart
	Unicycle
	OpenAI half cheetah
	OpenAI ant
	Table comparison of final results
	Conclusion on the benchmark

	Future investigations
	Validation of the learned model on a control task
	Taking other objectives into account
	What makes a system easy or hard to explore?

	Conclusion
	Bibliography

