

Towards markerless shape and motion capture of animals

Silvia Zuffi, Angjoo Kanazawa, Michael J. Black

Motion capture of animals

Nature, Oct 2019

- Semi-automatic methods for 2D joints tracking
- Generic, easy to use
- Behavior analysis

A.Mathis et al., DeepLabCut: markerless pose estimation of user-defined body parts with deep learning, Nature Neuroscience, 2018

Motion capture of animals

- 3D marker-based systems
- Specific, require trained animals
- Biomechanical studies, animation

CAMERA

Animatrik

Animal markerless mocap

Goal: 3D motion capture of wild animals + shape

©National Geographic

Animal shape capture

Animal shape capture

Human markerless mocap

N. Kolotouros, G. Pavlakos, M. J. Black, K. Daniilidis, Learning to Reconstruct 3D Human Pose and Shape via Model-fitting in the Loop, ICCV2019 A. Kanazawa, J. Y. Zhang, P. Felsen, J. Malik, Learning 3D Human Dynamics from Video, CVPR2019

M. Loper et al., SMPL: a Skinned Multi-Person Linear Model, Siggraph2015

Skinned Multi-Animal Linear model
A 3D shape model representing articulation and shape variation across different species

From 3D data

S. Zuffi, A. Kanazawa, D. Jacobs, M.J. Black, 3D Menagerie: Modeling the 3D Shape and Pose of Animals, CVPR 2017

Learn a 3D shape space from images [Cashman and Fitzgibbon 2012]

Component-wise modeling [Ntouskos et al. 2015]

Learning 3D deformation of animals [Kanazawa et al. 2016]

Balloon shapes [Vincente and Agapito 2013]

None of these learned from 3D and designed with the goal of being a tool for pose and shape estimation from images

Training set

Taxidermy: over smooth, hard to handle ("do not touch!"), not accurate

Toys: detailed, easy to get, handle and scan

Requirements for learning a 3D articulated shape model

Per-vertex correspondence

All in a reference pose

How to align a wolf to a hippo?

The have different shape and pose!

GLoSS registration

1. Model-based registration: obtain pose estimate and shape approximation

2. Model-free registration: obtain accurate shape and correspondence

SMAL shape space

 $\mathbf{v}_{shape}(\beta) = \mathbf{v}_{template} + B_s\beta$

Fit to images

Manual segmentation and manually annotated keypoints

Fit to video

Automatic segmentation and manually annotated keypoints

Real cheetah

SMAL fit

Application of SMAL

Automatic segmentation and keypoints detection from silhouette

B. Biggs, T. Roddick, A. Fitzgibbon, R. Cipolla, Creatures great and SMAL: Recovering the shape and motion of animals from video, ACCV2019

Estimate pose and shape from images "in the wild"

- Direct regression from RGB
- Supervised, training based only on synthetic data

S. Zuffi, A. Kanazawa, T. Berger-Wolf, M.J. Black, 3D Safari: Learning to Estimate Zebra Pose, Shape, and Texture from Images "In the Wild", ICCV 2019

- Predict texture:
 - Hypothesis: predicting texture helps in the task of pose and shape estimation

©Julien Tabet

The Grevy's zebra

S. Zuffi, A. Kanazawa, T. Berger-Wolf, M.J. Black, 3D Safari: Learning to Estimate Zebra Pose, Shape, and Texture from Images "In the Wild", ICCV 2019

The Grevy's zebra

https://zebra.wildbook.org/ First census of the Grevy's zebra with photographs of ordinary citizens

Mpala Research Center, Kenya

SMAL+Refinement (SMALR)

2. Model-free shape Refinement

1. SMAL model fitting

S. Zuffi, A. Kanazawa, M.J.Black, Lions and Tigers and Bears: Capturing Non-Rigid, 3D, Articulated Shape from Images, CVPR2018

Animal avatars with SMALR

Grevy's zebra avatars

Multiple images of the same subject

3D model

Texture map

Synthetic dataset from avatars

Synthetic

Real

Shape predictor: $\mathbf{v}_{shape}(f_s) = \mathbf{v}_{template} + \mathbf{dv}$ $\mathbf{dv} = Wf_s + b$ SMAL model: $\mathbf{v}_{shape}(\beta) = \mathbf{v}_{template} + B_s \beta$

$$L_{train} = L_{mask}(S_{gt}, S) + L_{kp_{2D}}(K_{2D,gt}, K_{2D}) + L_{cam}(f_{gt}, f) + L_{img}(I_{input}, I, S_{gt}) + L_{pose}(\theta_{gt}, \theta) + L_{trans}(\gamma_{gt}, \gamma) + L_{shape}(\mathbf{dv}_{gt}, \mathbf{dv}) + L_{uv}(\mathbf{uv}_{gt}, \mathbf{uv}) + L_{tex}(T_{gt}, T) + L_{dt}(\mathbf{uv}, S_{gt})$$

Results on test set

Unsupervised optimization

Minimize reconstruction loss wrt the latent features, fixing all the decoders

Unsupervised optimization

Results

Method		PCK@0.05	PCK@0.1	IoU
(A)) SMAL (gt kp and seg)	92.2	99.4	0.463
(B) feed-forward on synthetic		etic 80.4	97.1	0.423
(C) opt features		62.3	81.6	0.422
(D) opt variables		59.2	80.6	0.418
(E) opt features bg img		59.7	80.5	0.416
(F) feed-forward pred.		59.5	80.3	0.416
(G) no texture		52.3	76.2	0.401
(H) noise bbox		58.7	79.9	0.415
		Texture prediction helps!	Better to optimize features) e over
No texture	With texture		No textur	e v

With texture

Towards markerless shape and motion capture of animals

Silvia Zuffi, Angjoo Kanazawa, Michael J. Black

