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Our main paper proposed a method for joint reconstruc-
tion of hands and objects. Below we present complemen-
tary analysis for hand-only reconstruction in Section A and
object-only reconstruction in Section B. Section C presents
implementation details.

A. Hand pose estimation

We first present an ablation study for the different losses
we defined on the MANO hand model (Section A.1). Then,
we study the latent hand representation (Section A.2). Fi-
nally, we validate our hand pose estimation branch and
demonstrate its competitive performance compared to the
state-of-the-art methods on a benchmark dataset (Sec-
tion A.3).

A.1. Loss study on MANO

As explained in Section 3.1 of the main paper, we define
three losses for the differentiable hand model while training
our network: (i) vertex positions LVHand

, (ii) joint positions
LJ , and (iii) shape regularization Lβ . The shape is only
predicted in the presence of Lβ . In the absence of shape
regularization, when only sparse keypoint supervision is
provided, predicting β without regularizing it produces ex-
treme deformations of the hand mesh, and we therefore fix
β to the average hand shape.

Table A.1 summarizes the contribution of each of these
losses. Note that the dense vertex supervision is available
on our synthetic dataset ObMan, and not available on the
real datasets FHB [5] and StereoHands [19].

We find that predicting β while regularizing it with Lβ
significantly improves the mean end-point-error on key-
points. On the synthetic dataset ObMan, we find that adding
LV yields a small additional improvement. We therefore
use all three losses whenever dense vertex supervision is
available, and LJ in conjunction with Lβ when only key-
point supervision is provided.

ObMan FHB StereoHands

LJ 13.5 28.1 11.4
LJ + Lβ 11.7 26.5 10.0
LVHand

14.0 - -
LVHand

+ Lβ 12.0 - -
LVHand

+ LJ + Lβ 11.6 - -

Table A.1: We report the mean end-point error (mm) to
study different losses defined on MANO. We experiment
with the loss on 3D vertices (LVHand

), 3D joints (LJ ), and
shape regularization (Lβ). We show the results of training
and testing on our synthetic ObMan dataset, as well as the
real datasets FHB [5] and StereoHands [19].

A.2. MANO pose representation

As described in Section 3.1 of the main paper, our hand
branch outputs a 30-dimensional vector to represent the
hand. These are the 30 first PCA components from the 45-
dimensional full pose space. We experiment with different
dimensionality for the latent hand representation and sum-
marize our findings in Table A.2. While low-dimensionality
fails to capture some poses present in the datasets, we do not
observe improvements after increasing the dimensionality
more than 30. Therefore, we use this value for all experi-
ments in the main paper.

#PCA comps. 6 15 30 45

FHB 28.2 27.5 26.5 26.9
StereoHands 13.9 11.1 10.0 10.0
ObMan 23.4 13.3 11.6 11.2

Table A.2: We report the mean end-point error on error on
multiple datasets to study the effect of the number of PCA
hand pose components for the latent MANO representation.
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Figure A.1: Qualitative results on the test sequence of the
StereoHands dataset.

20 25 30 35 40 45 50
Error Thresholds (mm)

0.0

0.2

0.4

0.6

0.8

1.0

3D
 P
C
K

Stereo dataset (2 seq.)

Iqbal et al., auc=0.993
Cai et al., auc=0.993
Ours, auc=0.992
Mueller et al., auc=0.955
Z&B, auc=0.948
CHPR, auc=0.839

Figure A.2: We compare our root-relative 3D hand pose
estimation on Stereohands to the state-of-the-art methods
from Iqbal et al. [10], Cai et al. [1], Mueller et al. [15],
Zimmermann and Brox [20], and CHPR [17].

A.3. Comparison with the state of the art

Using the MANO branch of the network, we can also
estimate the hand pose for images in which the hands
are not interacting with objects, and compare our results
with previous methods. We train and test on the Stere-
oHands dataset [19], and follow the evaluation protocol
of [10, 15, 20] by training on 10 sequences from Stereo-
Hands and testing on the 2 remaining ones. For fair com-
parison, we add a palm joint to the MANO model by av-
eraging the positions of two vertices on the front and back
of the hand model at the level of the palm. Although the
hand shape parameter β allows to capture the variability of
hand shapes which occurs naturally in human populations,
it does not account for the discrepancy between different
joint conventions. To account for skeleton mismatch, we
add a linear layer initialized to identity which maps from
the MANO joints to the final joint annotations.

We report the area under the curve (auc) on the percent-
age of correct keypoints (PCK). Figure A.2 shows that our

differentiable hand model is on par with the state of the art.
Note that the StereoHands benchmark is close to saturation.
In contrast to other methods [1, 10, 15, 17, 20] that only
predicts sparse skeleton keypoints, our model produces a
dense hand mesh. Figure A.1 presents some qualitative re-
sults from this dataset.

B. Object reconstruction
In the following, we validate our design choices for the

object reconstruction branch. We experiment with object
reconstruction (i) in the camera viewpoint (Section B.1) and
(ii) with regularization losses (Section B.2).

B.1. Canonical versus camera view reconstruction

As explained in Section 3.2 of the main paper, we per-
form object reconstructions in the camera coordinate frame.
To validate that AtlasNet [8] can successfully predict ob-
jects in camera view as well as in canonical view, we repro-
duce the training setting of the original paper [8]. We use
the setting where 2500 points are sampled on a sphere and
train on the rendered images from ShapeNet [2]. To obtain
the rotated reference for the object, we apply the ground
truth azimuth and elevation provided with the renderings so
that the 3D ground truth matches the camera view. We use
the original hyperparameters (Adam [12] with a learning
rate of 0.001) and train both networks for 25 epochs. Both
for supervision and evaluation metrics, we report the Cham-
fer distance LVObj

= 1
2 (
∑
pminq‖p−q‖22+

∑
qminp‖q−

p‖22) where q spans the predicted vertices and p spans points
uniformly sampled on the surface of the ground truth object.
We always sample the same number of points on the surface
as there are vertices in the predicted mesh. We find that
both numerically and qualitatively the performance is com-
parable for the two settings. Some reconstructed meshes
in camera view are shown in Figure A.3. For better read-
ability they also multiply the Chamfer loss by 1000. In
order to provide results directly comparable with the orig-
inal paper [8], we also report numbers with the same scal-
ing in Table A.3. Table A.3 reports the Chamfer distances
for their released model, our reimplementation in canonical

Object error

Canonical view [8] 4.87
Canonical view (ours) 4.88
Camera view (ours) 4.88

Table A.3: Chamfer loss (×1000) for 2500 points in the
canonical view and camera view show no degradation from
predicting the camera view reconstruction. We compare our
re-implementation to the results provided by [8] on their
code page https://github.com/ThibaultGROUEIX/AtlasNet.

https://github.com/ThibaultGROUEIX/AtlasNet


Figure A.3: Renderings from ShapeNet models and our cor-
responding reconstructions in camera view.

view, and our implementation in non-canonical view. We
find that our implementation allows us to train a model with
similar performances to the released model. We observe no
numerical or qualitative loss in performance when predict-
ing the camera view instead of the canonical one.

B.2. Object mesh regularization

We find that in the absence of explicit regularization on
their quality, the predicted meshes can be very irregular.
Sharp discontinuities in curvature occur in regions where
the ground truth mesh is smooth, and the mesh triangles
can be of very different dimensions. These shortcomings
can be observed on all three reconstructions in Figure A.3.
Following recent work on mesh estimation from image in-
puts [7, 11, 18], we introduce regularization terms on the
object mesh.
Laplacian smoothness regularization (LL). In order to
avoid unwanted discontinuities in the curvature of the mesh,
we enforce a local prior of smoothness. We use the dis-
crete Laplace-Beltrami operator to estimate the curvature at
each mesh vertex position, as we have no prior on the final
shape of the geometry, we compute the graph laplacianL on
our mesh, which only takes into account adjacency between
mesh vertices. Multiplying the laplacian L by the positions
of the object vertices VObj produces vectors which have the
same direction as the vertex normals and their norm propor-
tional to the curvature. Minimizing the norm of these vector
therefore minimizes the curvature. We minimize the mean
curvature over all vertices in order to encourage smoothness
on the mesh.
Laplacian edge length regularization (LE). LE penalizes
configurations in which the edges of the mesh have different
lengths. The edge regularization is defined as:

LE =
1

|EL|
∑
l∈EL

|l2 − µ(E2L)|, (1)

No reg. LE LL LE + LL

Object error 0.0246 0.0286 0.0258 0.0292

Figure A.4: We show the benefits from each term of the
regularization. Using both the LE and LL in conjunction
improves the visual quality of the predicted triangulation
while preserving the shape of the object.

where EL is the set of edge lengths, defined as the L2 norms
of the edges, and µ(E2L) is the average of the square of edge
lengths.

To evaluate the effect of the two regularization terms
we train four different models. We train a model without
any regularization, two models for which only one of the
two regularization terms are active, and finally a model for
which the two regularization terms are applied simultane-
ously. Each of these models is trained for 200 epochs.

Figure A.4 shows the qualitative benefits of each term.
While edge regularization LE alone already significantly
improves the quality of the predicted mesh, note that un-
wanted bendings of the mesh still occur, for instance in the
last row for the cellphone reconstruction. Adding the lapla-
cian smoothness LL resolves these irregularities. However,
adding each regularization term negatively affects the final
reconstruction score. Particularly we observe that introduc-
ing edge regularization increases the Chamfer loss by 22%
while significantly improving the perceptual quality of the
predicted mesh. Introducing the regularization terms con-
tributes to the coarseness of the object reconstructions, as
can be observed on the third row, where sharp curvatures of
the object in the input image are not captured in the recon-
struction.



C. Implementation details
We give implementation details on our training proce-

dure (Section C.1) and our automatic grasp generation (Sec-
tion C.2).

C.1. Training details

For all our experiments, we use the Adam optimizer [12].
As we observe instabilities in validation curves when train-
ing on synthetic datasets, we freeze the batch normalization
layers. This fixes their weights to the original values from
the ImageNet [16] pre-trained ResNet18 [9].

For the final model trained on ObMan, we first train the
(normalized) object branch using LnObject for 250 epochs,
we start with a learning rate of 10−4 and decrease it to 10−5

at epoch 200. We then freeze the object encoder and the At-
lasNet decoder, as explained in Section 3.2 of the main pa-
per. We further train the full network with LHand +LObject

for 350 additional epochs, decreasing the learning rate from
10−4 to 10−5 after the first 200 epochs.

When fine-tuning from our main model trained on syn-
thetic data to smaller real datasets, we unfreeze the object
reconstruction branch.

For the FHBc dataset, we train all the parts of the net-
work simultaneously with the supervision LHand +LObject

for 400 epochs, decreasing the learning rate from 10−4 to
10−5 at epoch 300.

When fine-tuning our models with the additional contact
loss, LHand+LObject+µCLContact , we use a learning rate
of 10−5. We additionally set the momentum of the Adam
optimizer [12] to zero, as we find that momentum affects
negatively the training stability when we include the contact
loss.

In all experiments, we keep the relative weights between
different losses as provided in the main paper and normalize
them so that the sum of all the weights equals 1.

C.2. Heuristic metric for sorting GraspIt grasps

We use GraspIt [14] to generate grasps for the ShapeNet
object models. GraspIt generates a large variety of grasps
by exploring different initial hand poses. However, some
initializations do not produce good grasps. Similarly to [6]
we filter the grasps in a post-processing step in order to re-
tain grasps of good quality according to a heuristic metric
we engineer for this purpose.

For each grasp, GraspIt provides two grasp quality met-
rics ε and v [4]. Each grasp produced by GraspIt [14] de-
fines contact points between the hand and the object. As-
suming rigid contacts with friction, we can compute the
space of wrenches which can be resisted by the grasp: the
grasp wrench space (GWS). This space is normalized with
relation to the scale of the object, defined as the maximum
radius of the object, centered at its center of mass. The grasp

is suitable for any task that involves external wrenches that
lie within the GWS. v is the volume of the 6-dimensional
GWS, which quantifies the range of wrenches the grasp can
resist. The GWS can further be characterized by the ra-
dius ε of the largest ball which is centered at the origin
and inscribed in the grasp wrench space. ε is the maximal
wrench norm that can be balanced by the contacts for ex-
ternal wrenches applied coming from arbitrary directions. ε
belongs to [0, 1] in the scale-normalized GWS, and higher
values are associated with a higher robustness to external
wrenches.

We require a single value to reflect the quality of the
grasp in order to sort different grasps. We use the norm
of the [ε, v] vector in our heuristic measure of grasp qual-
ity. We find that in the grasps produced by GraspIt, power
grasps, as defined by [3] in which larger surfaces of the hand
and the object are in contact, are rarely produced. To allow
for a larger proportion of power grasps, we use a multiplier
γpalm which we empirically set to 1 if the palm is not in
contact and 3 otherwise. We further favor grasps in which
a large number of phalanges are in contact with the object
by weighting the final grasp score using Np, the number of
phalanges in contact with the object, which is computed by
the software.

The final grasp quality score G is defined as:

G = γpalm
√
Np‖ε, v‖2. (2)

We find that keeping the two best grasps for each object
produces both diverse grasps and grasps of good quality.

D. Qualitative results on CORe50 dataset
We present additional qualitative results on the

CORe50 [13] dataset. We present a variety of diverse input
images from CORe50 in Figure A.5 alongside the predic-
tions of our final model trained solely on ObMan.

The first row presents results on various shapes of light
bulbs. Note that this category is not included in the syn-
thetic object models of ObMan. Our model can therefore
generalize across object categories. The last column shows
some reconstructions of mugs, showcasing the topological
limitations of the sphere baseline of AtlasNet which cannot,
by construction, capture handles.

However, we observe that the object shapes are often
coarse, and that fine details such as phone antennas are not
reconstructed. We also observe errors in the relative posi-
tion between the object and the hand, which is biased to-
wards predicting the object’s centroid in the palmar region
of the hand, see Figure A.5, fourth column. As hard con-
straints on collision are not imposed, hand-object interpen-
etration occurs in some configurations, for instance in the
top-right example. In the bottom-left example we present a
failure case where the hand pose violates anatomical con-
straints. Note that while our model predicts hand pose in



Figure A.5: Qualitative results on CORe50 dataset. We present additional hand-object reconstructions for a variety of object
categories and object instances, spanning various hand poses and object shapes.

a low-dimensional space, which implicitly regularizes hand
poses, anatomical validity is not guaranteed.
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