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 Neurobehavioural analysis of mouse phenotypes requires the monitoring of mouse behaviour 

over long periods of time. In this study, we describe a trainable computer vision system enabling 

the automated analysis of complex mouse behaviours. We provide software and an extensive 

manually annotated video database used for training and testing the system. Our system 

performs on par with human scoring, as measured from ground-truth manual annotations of 

thousands of clips of freely behaving mice. As a validation of the system, we characterized 

the home-cage behaviours of two standard inbred and two non-standard mouse strains. From 

these data, we were able to predict in a blind test the strain identity of individual animals with 

high accuracy. Our video-based software will complement existing sensor-based automated 

approaches and enable an adaptable, comprehensive, high-throughput, fi ne-grained, automated 

analysis of mouse behaviour.         
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 A
utomated quantitative analysis of mouse behaviour will 
have a signifi cant role in comprehensive phenotypic analy-
ses — both on the small scale of detailed characterization of 

individual gene mutants and on the large scale of assigning gene 
function across the entire mouse genome 1 . One key benefi t of auto-
mating behavioural analysis arises from inherent limitations of 
human assessment, namely, cost, time and reproducibility. Although 
automation in and of itself is not a panacea for neurobehavioural 
experiments 2 , it allows for addressing an entirely new set of ques-
tions about mouse behaviour and to conduct experiments on time 
scales that are orders of magnitude larger than those traditionally 
assayed. For example, reported tests of grooming behaviour span 
time scales of minutes 3,4 , whereas an automated analysis will allow 
for analysis of this behaviour over hours or even days and weeks. 

 Indeed, the signifi cance of alterations in home-cage behaviour 
has recently gained attention as an eff ective means of detecting per-
turbations in neural circuit function — both in the context of disease 
detection and more generally to measure food consumption and 
activity parameters 5 – 10 . Previous automated systems (see refs   8, 9, 
11, 12 and  Supplementary Note ) rely mostly on the use of simple 
detectors such as infrared beams to monitor behaviour. Th ese sen-
sor-based approaches tend to be limited in the complexity of the 
behaviour that they can measure, even in the case of costly com-
mercial systems using transponder technologies 13 . Although such 
systems can be used eff ectively to monitor locomotor activity and 
perform operant conditioning, they cannot be used to study home-
cage behaviours such as grooming, hanging, jumping and smaller 
movements (termed  ‘ micromovements ’  below). Visual analysis is a 
potentially powerful complement to these sensor-based approaches 
for the recognition of such fi ne animal behaviours. 

 Advances in computer vision and machine learning over the last 
decade have yielded robust computer vision systems for the recog-
nition of objects 14,15  and human actions (see Moeslund  et al.  16  for 
review). In fact, the use of vision-based approaches is already bear-
ing fruit for the automated tracking 17 – 19  and recognition of behavi-
ours in insects 20,21 . Several open-source and commercial computer 
vision systems for the recognition of mouse behaviour have also 
been developed (see study by Xue and Henderson 22 , and Dollar 
 et al.  23  and  Supplementary Note ). However, these systems are not 
widely used, exhibit similar limitations to sensor-based approaches 
and/or are cost prohibitive. 

 In this paper, we describe a trainable, general-purpose, auto-
mated and potentially high-throughput system for the behavioural 
analysis of mice in their home cage. Developed from a computa-
tional model of motion processing in the primate visual cortex 24,25 , 
the computer system is trained with labelled examples with manu-
ally annotated behaviours of interest and used to automatically ana-
lyse new recordings containing hours of freely behaving animals. 
As a proof of concept, we trained the system on common mouse 
behaviours and demonstrated that the resulting system performs 
on par with humans for the scoring of these behaviours. Using the 
resulting system, we analysed the home-cage behaviour of several 
mouse strains, including the commonly used strains C57BL / 6J, 
DBA / 2J, the BTBR strain that displays autistic-like behaviours, as 
well as a wild-derived strain CAST / EiJ. We characterize diff erences 
in the behaviours of these strains and use these profi les to predict 
the strain type of an animal.  

 Results 
 Our system (available as  Supplementary Soft ware ) consists of three 
separate modules: (I) a video database, (II) a feature computation 
module and (III) a classifi cation module. Th e latest soft ware can be 
found at  http://cbcl.mit.edu/soft ware-datasets/hueihan/index.html .  

  Video database   .   We video recorded a large database of video 
sequences of singly housed mice in their home cages from an 

angle perpendicular to the side of the cage (see  Fig. 1  for examples 
of video frames) using a consumer grade camcorder. To create a 
robust recognition system, we varied the lighting conditions by 
placing the cage in diff erent positions with respect to the over-
head lighting. In addition, we used many mice of diff erent size, 
gender and coat colour. We considered eight behaviours of inter-
est, which included drinking, eating, grooming, hanging, rearing, 
walking, resting and micromovements of the head. Several inves-
tigators were trained to score mouse behaviour using two diff erent 
scoring techniques. 

 Th e fi rst set of annotations, denoted the  ‘ clipped database ’  ( http://
serre-lab.clps.brown.edu/projects/mouse_behavior/ ), included only 
clips scored with very high stringency, seeking to annotate only the 
best and most exemplary instances of particular behaviours. A pool 
of eight annotators ( ‘ Annotator group 1 ’ ) manually hand-scored 
more than 9,000 short clips, each containing a unique annota-
tion. To avoid errors, this database was then curated by one of the 
annotators who watched all 9,000 clips again, retaining only the 
most unambiguous assessments, leaving 4,200 clips (262,360 frames 
corresponding to about 2.5   h) from 12 distinct videos (recorded at 
12 separate sessions) to train and tune the feature computation 
module of the proposed system, as described below. 
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  Figure 1    |         Home-cage behaviours for training the system. Snapshots taken 

from representative videos for the eight home-cage behaviours of interest.  
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 Th e second set of annotations, called the  ‘ full database ’ , involved 
labelling every frame (with less stringency than in the  ‘ clipped data-
base ’ ) for 12 unique videos (diff erent from the 12 videos used in 
the  ‘ clipped database ’ ) corresponding to over 10   h of continuously 
annotated video ( http://serre-lab.clps.brown.edu/projects/mouse_
behavior/ ). Again, two sets of annotators were used to correct mis-
takes and ensure that the annotation style was consistent through-
out the whole database. Th is database was used to train and test the 
classifi cation module of the computer system. Th e distribution of 
behaviour labels for the  ‘ clipped database ’  and the  ‘ full database ’  
is shown in  Supplementary Figures S1a – b  and  Supplementary 
Figures S1c – d,  respectively.   

  Computation and evaluation of motion and position features   . 
  Th e architecture used here to preprocess raw video sequences 
( Fig. 2a,b ) and extract motion features ( Fig. 2c ) is adapted from pre-
vious work for the recognition of human actions and biological 
motion 25 . To speed up the system, the computation of the motion 
features was limited to a subwindow centred on the animal ( Fig. 2b ), 

the location of which can be computed from the foreground pixels 
obtained by subtracting off  the video background ( Fig. 2a ). For a static 
camera as used here, the video background can be well approximated 
by a median frame in which each pixel value corres ponds to the median 
grey value computed over all frames for that pixel location (day and 
night frames under red lights were processed in separate videos). 

 Th e computation of motion features is based on the organiza-
tion of the dorsal stream of the visual cortex, which has been linked 
to the processing of motion information (see study by Born and 
Bradley 26  for a recent review). Details about the implementation are 
provided in the  Supplementary Methods . A hallmark of the system 
is its hierarchical architecture: Th e fi rst processing stage corres-
ponds to an array of spatio-temporal fi lters tuned to four diff erent 
directions of motion and modelled aft er motion-sensitive (simple) 
cells in the primary visual cortex (V1) 27  (S1 / C1 layers,  Fig. 2d ). 
Th e architecture then extracts space-time motion features centred 
at every frame of an input video sequence via multiple processing 
stages, whereby features become increasingly complex and invariant 
with respect to two-dimensional transformations as one moves up 
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             Figure 2    |         Overview of the proposed system for monitoring the home-cage behaviour of mice. The computer vision system consists of a feature 

computation module ( a  –  f ) and a classifi cation module ( g ). ( a ) A background subtraction procedure is fi rst applied to an input video to compute a 

foreground mask for pixels belonging to the animal versus the cage. ( b ) A subwindow centred on the animal is cropped from each video frame based 

on the location of the mouse (see  Supplementary Method ). Two types of features are then computed: ( c ) space-time motion features and ( f ) position- 

and velocity-based features. To speed up the computation, motion features are extracted from the subwindow ( b ) only. These motion features are derived 

from combinations of the response of afferent units that are tuned to different directions of motion as found in the mammalian primary visual 

cortex ( d ,  e ). ( f ) Position- and velocity-based features are derived from the instantaneous location of the animal in a cage. These features are computed 

from a bounding box tightly surrounding the animal in the foreground mask. ( g ) The output of this feature computation module consists of 310 features 

per frame that are then passed to a statistical classifi er, SVMHMM (Hidden Markov Model Support Vector Machine), to reliably classify every frame of a 

video sequence into a behaviour of interest. ( h ) An ethogram of the sequence of labels predicted by the system from a 24-h continuous recording session 

for one of the CAST / EiJ mice. The red panel shows the ethogram for 24   h, and the light blue panel provides a zoomed version corresponding to the fi rst 

30   min of recording. The animal is highly active, as it was just placed in a new cage before starting the video recording. The animal ’ s behaviour alternates 

between  ‘ walking ’ ,  ‘ rearing ’  and  ‘ hanging ’  as it explores the new cage.  
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the hierarchy. Th ese motion features are obtained by combining the 
response of V1-like aff erent motion units that are tuned to diff erent 
directions of motion ( Fig. 2e ). 

 Th e output of this hierarchical preprocessing module consists 
of a dictionary of about 300 space-time motion features (S2 / C2 
layers,  Fig. 2e ) that are obtained by matching the output of the S1 / C1 
layers with a dictionary of motion-feature templates. Th is basic dic-
tionary of motion-feature templates corresponds to discriminative 
motion features that are learnt from a training set of videos contain-
ing labelled behaviours of interest (the  ‘ clipped database ’ ), through 
a feature selection technique. 

 To optimize the performance of the system for the recognition 
of mouse behaviours, several key parameters of the model were 
adjusted. Th e parameters of the spatio-temporal fi lters in the fi rst 
stage (e.g., their preferred speed tuning and direction of motion, the 
nature of the nonlinear transfer function used, the video resolution 
and so on) were adjusted so as to maximize performance on the 
 ‘ clipped database ’ . 

 To evaluate the quality of these motion features for the recog-
nition of high-quality unambiguous behaviours, we trained and 
tested a multiclass Support Vector Machine (SVM) on single iso-
lated frames from the  ‘ clipped database ’  using the all-pair multiclass 
classifi cation strategy. Th is approach does not rely on the temporal 
context of measured behaviours beyond the computation of low-
level motion signals and classifi es each frame independently. On the 
 ‘ clipped database ’ , we fi nd that such a system leads to 93 %  accuracy 
(as the percentage of correctly predicted clips, chance level is 12.5 %  
for an eight-class classifi cation), which is signifi cantly higher than 
the performance of a representative computer vision system 23  (81 % ) 
trained and tested under the same conditions (see  Supplementary 
Methods ). Performance was estimated on the basis of a leave-one-
video-out procedure, whereby clips from all except one video are 
used to train the system, whereas performance is evaluated on the 
clips from the remaining video. Th e procedure was repeated for all 
videos; we report the overall accuracy. Th is suggests that the repre-
sentation provided by the dictionary of motion-feature templates is 
suitable for the recognition of the behaviours of interest even under 
conditions in which the global temporal structure (i.e., the temporal 
structure beyond the computation of low-level motion signals) of 
the underlying temporal sequence is discarded. 

 In addition to the motion features described above, we computed 
an additional set of features derived from the instantaneous loca-
tion of the animal in the cage ( Fig. 2f ). Position- and velocity-based 
measurements were estimated on the basis of the two-dimensional 
coordinates ( x ,  y ) of the foreground pixels ( Fig. 2a ) for every frame. 
Th ese included the position and aspect ratio of the bounding box 
around the animal (indicating whether the animal is in a horizontal 
or vertical posture), the distance of the animal to the feeder, as well 
as its instantaneous velocity and acceleration.  Figure 2f  illustrates 
some of the key features used (see  Supplementary Table S1  for a 
complete list).   

  Classifi cation module   .   Th e reliable phenotyping of an animal 
requires more than the mere detection of stereotypical non-ambigu-
ous behaviours. In particular, the present system aims at classify-
ing every frame of a video sequence, even for those frames that are 
ambiguous and diffi  cult to categorize. For this challenging task, 
the temporal context of a specifi c behaviour becomes an essential 
source of information; thus, learning an accurate temporal model 
for the recognition of actions becomes critical (see  Supplementary 
Fig. S2  for an illustration). In this study we used a Hidden Markov 
Model Support Vector Machine (SVMHMM,  Fig. 2g ) 28,29 , which is 
an extension of the SVM classifi er for sequence tagging. Th is tem-
poral model was trained on the  ‘ full database ’  as described above, 
which contains manually labelled examples of about 10   h of con-
tinuously scored video sequences from 12 distinct videos. 

 Assessing the accuracy of the system is a critical task. Th ere-
fore, we made two comparisons: (I) between the resulting system 
and commercial soft ware ( HomeCageScan 2.0 ,  CleverSys Inc. ) for 
mouse home-cage behaviour classifi cation and (II) between the sys-
tem and human annotators. Th e level of agreement between human 
annotators sets a benchmark for the system performance, as the 
system relies entirely on human annotations to learn to recognize 
behaviours. To evaluate the agreement between two sets of labellers, 
we asked a set of four human annotators ( ‘ Annotator group 2  ’  ) inde-
pendent from  ‘ Annotator group 1 ’  to annotate a subset of the  ‘ full 
database ’ . Th is subset (denoted  ‘ set B ’ ) corresponds to many short 
random segments from the  ‘ full database ’ ; each segment is about 
5 – 10   min in length and they add up to a total of 1.6   h of annotated 
video.  Supplementary Figure S1d  shows the corresponding distribu-
tion of labels for  ‘ set B ’  and confi rms that  ‘ set B ’  is representative of 
the  ‘ full database ’  ( Supplementary Fig. S1c ). 

 Performance was estimated using a leave-one-video-out proce-
dure, whereby all but one of the videos was used to train the system, 
and performance was evaluated on the remaining video. Th e proce-
dure was repeated  n     =    12 times for all videos and the performance 
averaged. We found that our system achieves 77.3 %  agreement with 
human labellers on  ‘ set B ’  (averaged across frames), a result sub-
stantially higher than the HomeCageScan 2.0 (60.9 % ) system and 
on par with humans (71.6 % ), as shown in  Table 1 . For all the com-
parisons above, the annotations made by the  ‘ Annotator group 1 ’  
were used as ground truth to train and test the system because these 
annotations underwent a second screening and were therefore more 
accurate than the annotations made by the  ‘ Annotator group 2 ’ . Th e 
second set of annotations made by the  ‘ Annotator group 2 ’  on  ‘ set B ’  
was only used for measuring the agreement between independent 
human annotators. It is therefore possible for a computer system to 
appear more  ‘ accurate ’  than the second group of annotators, which 
is in fact what we observed for our system.  Table 1  also shows the 
comparison between the system and commercial soft ware on the 
 ‘ full database ’ . 

  Figure 3  shows the confusion matrices between the compu-
ter system and  ‘ Annotator group 1 ’  ( Fig. 3a ), between  ‘ Annotator 
group 1 ’  and  ‘ Annotator group 2 ’  ( Fig. 3b ), as well as between the 
HomeCageScan system and  ‘ Annotator group 1 ’  ( Fig. 3c ). A confu-
sion matrix is one way to visualize the agreement between two enti-
ties, wherein each entry ( x ,  y ) of the matrix represents the probability 
that the fi rst entity (say  ‘ Annotator group 1 ’ ) will label a specifi c 
behaviour as   x   and the second entity (say the computer system ) as   y  . 
For instance, two entities with perfect agreement would exhibit a 1 
value along every entry along the diagonal and 0 everywhere else. 
In  Figure 3a  for example, the matrix value along the fourth row and 
fourth column indicates that the computer system correctly classi-
fi es 92 %  of the  ‘ hanging ’  behaviours as labelled by a human observer, 
whereas 8 %  of the behaviours are incorrectly classifi ed as  ‘ eating ’  
(2 % ), rearing (5 % ) or others (less than 1 % ). Th ese numbers are also 
refl ected in the colour codes used, with red / blue corresponding to 
better / worse levels of agreement. We also observed that adding the 

    Table 1      |    Accuracy of the system. 

    

  Our system

  

  CleverSys 
commercial 

system  

  Human 
( ‘  Annotator 

group 2  ’ )  

    ‘ Set B ’  (1.6   h 
of video) 

 77.3 %  /  76.4 %    60.9 %  /  64.0 %    71.6 %  /  75.7 %   

    ‘ Full database ’  
(over 10   h of video) 

 78.3 %  /  77.1 %    61.0 %  /  65.8 %     

     Accuracies are reported as averaged across frames / across behaviours (underlined numbers, 
computed as the average of the diagonal entities in  Figure 3  confusion matrix; chance level is 
12.5% for an eight-class classifi cation problem).   
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position- and velocity-based features led to an improvement in the 
system ’ s ability to discriminate between visually similar behaviours 
and for which the location of the animal in the cage provides criti-
cal information (see  Supplementary Methods  and  Supplementary 
Fig. S3 ). For example, drinking (versus eating) occurs at the water 
bottle spout, whereas hanging (versus rearing) mice have at least 
two limbs off  the ground. Examples of automated scoring of videos 
by the system are available as  Supplementary Movies 1 and 2 . 

 How scalable is the proposed approach to new behaviours? How 
diffi  cult would it be to train the proposed system for the recogni-
tion of new behaviours or environments (e.g., outside the home cage 
and / or using a camera from a diff erent viewpoint?). Th e main aim 
of this study was to build a system that generalizes well with many 
diff erent laboratory settings. For this reason, we collected and anno-
tated a large data set of videos. Sometimes, however, it might be 
advantageous to train a more  ‘ specialized ’  system very quickly from 
very few training examples. 

 To investigate this issue, we systematically evaluated the per-
formance of the system as a function of the amount of training vid-
eos available for training.  Figure 4a  shows that a relatively modest 
amount of training data (that is, as little as 2   min of labelled video for 
each of the 11 training videos) is indeed suffi  cient for robust perform-
ance (correspond to 90% of the performance obtained using 30 min 
of annotations for each video). In addition, in such cases in which 
generalization is not required, an effi  cient approach would be to train 
the system on the fi rst few minutes of a video and then let the system 
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        Figure 3    |         Confusion matrix of the system. Confusion matrices evaluated 

on the doubly annotated  ‘ set B ’  to compare the agreement between 

( a ) the system and human scoring, ( b ) human to human scoring and 

( c ) the CleverSys system to human scoring. Each entry ( x ,  y ) in the 

confusion matrix is the probability with which an instance of a behaviour 

 x  (along rows) is classifi ed as type  y  (along column), and which is 

computed as (number of frames annotated as type  x  and classifi ed as type 

 y ) / (number of frames annotated as type  x ). As a result, values sum to a 

value of 1 in each row. The higher probabilities along the diagonal and the 

lower off-diagonal values indicate successful classifi cation for all categories. 

Using the annotations made by the  ‘ Annotator group 1 ’  as ground truth, the 

confusion matrix was obtained for measuring agreement between ground 

truth (row) with system (computer system), with the  ‘ Annotator group 2 ’  

(human) and with baseline software ( CleverSys commercial system ). For a 

less cluttered visualization, entries with values less than 0.01 are not shown. 

The colour bar indicates the percentage agreement, with more intense 

shades of red indicating agreements close to 100 %  and lighter shades of 

blue indicating small percentages of agreement.  
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training the system. For each leave-one-out trial, the system is trained on 
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complete the annotation on the rest of the video.  Figure 4b  shows that 
by using a representative set of only 3   min of video data, the system is 
already able to achieve 90 %  of its peak level. Near peak performance 
can be achieved using 10   min of a single video for training.   

  Characterizing the home-cage behaviour of mouse strains   .   To 
demonstrate the applicability of this vision-based approach to large-
scale phenotypic analysis, we characterized the home-cage behavi-
our of four strains of mice, including the wild-derived strain CAST /
 EiJ, the BTBR strain, a potential model of autism 4 , as well as two of 
the most popular inbred mouse strains C57BL / 6J and DBA / 2J. We 
video recorded  n     =    7 mice of each strain during one 24-h session, 
encompassing a complete light – dark cycle. An example of an etho-
gram containing all the eight behaviours obtained over a 24-h con-
tinuous recording period for one of the CAST / -EiJ (wild-derived) 
strains is shown in  Figure 2h . One obvious feature was that the 
level of activity of the animal decreased signifi cantly during the day 
(12 – 24   h) as compared with night time (0 – 12   h). In examining the 
hanging and walking behaviours of the four strains, we noted a dra-
matic increase in activity of CAST / EiJ mice during the dark phase, 
which show prolonged walking ( Fig. 5a ) and a much higher level of 
hanging activity ( Fig. 5b ) than any of the other strains tested. Com-
pared with CAST / EiJ mice, the DBA / 2J strain showed an equally 

high level of hanging at the beginning of the dark phase but this 
activity quickly dampened to that of the other strains, C57BL / 6J and 
BTBR. We also found that the resting behaviour of this CAST / EiJ 
strain diff ered signifi cantly from the others: whereas all four strains 
tended to rest for the same total amount of time (except BTBR, 
which rested signifi cantly more than C57BL / 6J), we found that 
CAST / EiJ tended to have resting bouts (a continuous duration with 
one single label) that lasted almost three times longer than those of 
any other strain ( Fig. 6a,b ). 

 As BTBR mice have been reported to hypergroom 4 , we next 
examined the grooming behaviour of BTBR mice. In the study by 
McFarlane  et al.  4 , grooming was scored manually during a 10-min 
session starting immediately aft er a 10-min habituation period 
following the placement of the animal in the new environment. 
Under the same conditions, our system detected that the BTBR 
strain spent approximately 150   s grooming compared with C57BL /
 6J mice, which spent a little more than 85   s grooming ( Fig. 6c ). Th is 
behavioural diff erence was reproduced by two more human observ-
ers ( ‘ H ’  and  ‘ A ’ ) who scored the same videos ( Fig. 6c ). Using annota-
tor  ‘ H ’  as the ground truth, the frame-based accuracy of the system 
versus annotator  ‘ A ’  was 90.0% versus 91.0 % . Th is shows that the 
system can reliably identify grooming behaviours with nearly the 
same accuracy as a human annotator. Note that in this study C57BL /
 6J mice were approximately 90 days old ( ±  7 days), whereas BTBR 
mice were approximately 80 days old ( ±  7 days). In the McFarlane 
 et al.  4  study, younger mice were used (and repeated testing was 
performed), but our results essentially validate their fi ndings.   

  Prediction of strain type based on behaviour   .   We characterized 
the behaviour of each mouse with a 32-dimensional vector called 
the  ‘ pattern of behaviour ’ , corresponding to the relative frequency 
of each of the eight behaviours of interest, as predicted by the sys-
tem, over a 24-h period. To visualize the similarities / dissimilarities 
between patterns of behaviours exhibited by all 28 individual animals 
(7 mice  ×  4 strains) used in our behavioural study, we performed a 
principal component analysis.  Figure 6d  shows the resulting 28 data 
points, each corresponding to a diff erent animal, projected onto the 
fi rst three principal components. Individual animals tend to cluster 
by strains even in this relatively low-dimensional space, suggesting 
that diff erent strains exhibit unique patterns of behaviour that are 
characteristic of their strain types. To quantify this statement, we 
trained and tested a linear SVM classifi er directly on these patterns 
of behaviour.  Figure 6e  shows a confusion matrix for the resulting 
classifi er that indicates the probability with which an input strain 
(along the rows) was classifi ed as each of the four strains (along the 
columns). Th e higher probabilities along the diagonal and the lower 
off -diagonal values indicate successful classifi cation for all strains. 
Using a leave-one-animal-out procedure, we found that the result-
ing classifi er was able to predict the strain of all animals with an 
accuracy of 90 % .   

  Application of the system to additional mouse behaviours   .   We 
next asked whether the proposed system could be extended to the 
recognition of additional behaviours beyond the eight standard 
behaviours described above. We collected a new set of videos for an 
entirely new set of behaviours corresponding to animals interacting 
with  ‘ low profi le ’  running wheels ( Fig. 7a ). Th e  ‘ wheel-interaction 
database ’  contains 13 fully annotated 1-h-long videos taken from six 
C57BL / 6J mice. Here, we consider four actions of interest:  ‘ running 
on the wheel ’  (defi ned by having all four paws on the wheel, with 
the wheel rotating),  ‘ interacting with the wheel but not running ’  
(any behaviour on the wheel other than running),  ‘ awake but not 
interacting with the wheel ’  and  ‘ resting outside the wheel ’ . Using the 
same leave-one-video-out procedure and accuracy formulation, as 
used before for the  ‘ full database ’ , the system achieves 93 %  accuracy. 
Th e confusion matrix shown in  Figure 7b  indicates that the 
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   Figure 5    |         Walking and hanging behaviours for the four mouse strains. 
Average time spent for ( a ) the  ‘ walking ’  and ( b )  ‘ hanging ’  behaviours for 

each of the four strains of mice ( n     =    7 animals for each strain) over a 20-h 

period. The plots begin at the onset of the dark cycle, which persists for 11   h 

(indicated by the grey region), followed by 9   h of the light cycle. At every 

15   min of the 20-h period, we computed the total time one mouse spent 

walking or hanging within a 1-h temporal window centred at that current 

time point. The CAST / EiJ (wild-derived) strain is much more active than the 

other three strains, as measured by their walking and hanging behaviours. 

Shaded areas around the curves correspond to 95 %  confi dence intervals and 

the darker curve corresponds to the mean. The coloured bars indicate the 

duration when one strain exhibits a statistically signifi cant difference 

( P     <    0.01 by analysis of variance with Tukey ’ s  post hoc  test) with other strains.  
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system can discriminate between visually similar behaviours, such as 
 ‘ interacting with the wheel but not running ’  and  ‘ running on the 
wheel ’  (see also  Supplementary Movie 3  for a demonstration of 

the system scoring the wheel-interaction behaviours). To under-
stand how many annotated examples are required to reach this 
performance, we repeated the same experiment, each time vary-
ing the number of training examples available to the system. Data 
presented in  Figure 4c  suggest that satisfactory performance can 
be achieved with only 2   min of annotation for each training video, 
corresponding to 90 %  of the performance obtained using 30   min of 
annotations.  Figure 4d  shows that training with very short segments 
collected from a single video seems suffi  cient for robust perform-
ance on the  ‘ wheel-interaction database ’ , but, unlike for the eight 
standard home-cage behaviours, the system performance increases 
linearly with the number of training examples. Th is might be due to 
the large within-class variation of the action  ‘ awake but not inter-
acting with wheel ’ , which combines all actions that are performed 
outside the wheel, such as walking, grooming, eating and rearing, 
within one single category.    

 Discussion 
 Here we describe a trainable computer vision system capable of cap-
turing the behaviour of a single mouse in the home-cage environ-
ment. As opposed to previous proof-of-concept computer vision 
studies 22,23 , our system has been used in a  ‘ real-world ’  application, 
characterizing the behaviour of several mouse strains and discov-
ering strain-specifi c features. Moreover, we demonstrate that this 
system adapts well to more complex environments and behaviours 
that involve additional objects placed in the home cage. We provide 
open-source soft ware and large annotated video databases with the 
hope that it may further encourage the development and bench-
marking of similar vision-based systems. 

 Genetic approaches to understand the neural basis of behaviour 
require cost eff ective and high-throughput methodologies to fi nd 
aberrations in normal behaviours 30 . From the manual scoring of 
mouse videos (see  ‘ full database ’  above), we have estimated that it 
requires approximately 22 person-hours to manually score every 
frame of a 1-h video with high stringency. Th us, we estimate that 
the 24-h behavioural analysis conducted above with our system for 
the 28 animals studied would have required almost 15,000 person-
hours of manual scoring. An automated computer vision system 
permits behavioural analysis that would simply be impossible using 
manual scoring by a human experimenter. By leveraging recent 
advances in graphics processing hardware and exploiting the high-
end graphical processing units available on modern computers, the 
current system runs in real time. 
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      Figure 6    |         Behavioural characterization of four mouse strains. ( a ) The 

average total resting time for each of the four strains of mice over 24   h 

( n     =    7 animals for each strain). ( b ) Average duration of resting bouts 

(defi ned as a continuous duration with one single behaviour). Values of 

mean  ±  s.e.m. are shown,  *  P     <    0.01 by analysis of variance with Tukey ’ s 

 post hoc  test. ( c ) Total time spent grooming exhibited by the BTBR strain 

as compared with the C57BL / 6J strain within 10 – 20   min after placing the 

animals in a novel cage. Values of mean ± s.e.m. are shown,  *  P     <    0.05 by 

Student ’ s  t- test, one-tailed.  P     =    0.04 for system and  P     =    0.0254 for human 

 ‘ H ’ ,  P     =    0.0273 for human  ‘ A ’ ). ( d ,  e ) Characterizing the genotype of 

individual animals on the basis of the patterns of behaviour measured by 

the computer system. The pattern of behaviours for each animal is a 

32-dimensional vector, corresponding to the relative frequency of each of 

the eight behaviours of interest, as predicted by the system, over a 24-h 

period. ( d ) Principal component analysis to visualize the similarities /

 dissimilarities between patterns of behaviours exhibited by all 28 individual 

animals (seven mice × four strains). ( e ) Confusion matrix for a Support 

Vector Machine (SVM) classifi er trained on the patterns of behaviour using 

a leave-one-animal-out procedure. The SVM classifi er is able to predict 

the genotype of individual animals with an accuracy of 90 %  (chance level 

is 25 %  for this four-class classifi cation problem). The confusion matrix 

shown here indicates the probability for an input strain (along the rows) 

to be classifi ed, on the basis of its pattern of behaviour, as each of the four 

alternative strains (along the columns). The higher probabilities along the 

diagonal and the lower off-diagonal values indicate successful classifi cation 

for all categories. For example, the value of 1.0 for the C57BL / 6J strain 

means that all C57BL / 6J animals were correctly classifi ed as such.  
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   Figure 7    |         Extension of the system to wheel running and investigatory 
behaviours. ( a ) Snapshots taken from the  ‘ wheel-interaction database ’  

for the four types of interaction behaviours of interest: resting outside the 

wheel, awake but not interacting with the wheel, running on the wheel and 

interacting with (but not running on) the wheel. ( b ) Confusion matrices 

for the system (column) versus human scoring (row).  
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 In principle, our approach should be extendable to other behav-
iours such as dyskinetic movements in the study of Parkinson ’ s 
disease models or seizures for the study of epilepsy, as well as 
social behaviours involving two or more freely behaving animals. 
In conclusion, our study shows the promise of learning-based and 
vision-based techniques in complementing existing approaches 
towards a quantitative phenotyping of complex behaviour.   

 Methods  
  Mouse strains and behavioural experiment   .   All experiments involving mice 
were approved by the Massachusetts Institute of Technology (MIT)   and Caltech 
committees on animal care. For generating training and testing data, we used a 
diverse pool of hybrid and inbred mice of varying size, age, gender and coat colour 
(both black and agouti coat colours). In addition, we varied the lighting angles 
and used both  ‘ light ’  and  ‘ dark ’  recording conditions (with a 30   W bulb dim red 
lighting to allow our cameras to detect the mice but without substantial circadian 
entrainment eff ects.) A  JVC   digital video camera  (GR-D93) with frame rate 30   fps 
was connected to a  PC workstation  ( Dell ) by means of a Hauppauge WinTV video 
card. Using this setup, we collected more than 24 distinct MPEG-2 video sequences 
(from one to several hours in length) used for training and testing the system. 
For processing by the computer vision system, all videos were downsampled to a 
resolution of 320 × 240 pixels. Th e throughput of the system could thus be further 
increased by video recording four cages at a time using a two-by-two arrangement 
with a standard 640 × 480 pixel VGA video resolution. 

 Videos of the mouse strains ( n     =    28 videos) were collected separately for the 
validation experiment, using diff erent recording conditions (recorded in a diff er-
ent mouse facility). All  mouse strains  were purchased from the  Jackson Labora-
tory , including C57BL / 6J (stock 000664), DBA / 2J (000671), CAST / EiJ (000928) 
and BTBR  T    +    tf  / J (002282). Mice were singly housed for 1 – 3 days before being 
video recorded. On the recommendation of  Jackson Laboratories , CAST / EiJ mice 
( n     =    7) were segregated from our main mouse colony and housed in a quiet place 
where they were only disturbed for husbandry 2 – 3 times per week. Th is may have 
infl uenced our behavioural measurements, as the other three mouse strains were 
housed in a diff erent room. Th e mice used for the running wheel study were 
3-month-old  C57BL / 6J males  also obtained from  Jackson Laboratories .   

  Data annotation   .   Training videos were annotated using a freeware subtitle-editing 
tool,  Subtitle Workshop  by  UroWorks  (available at  http://www.urusoft .net/
products.php?cat=sw & lang=1 ). A team of eight investigators ( ‘ Annotator group 
1 ’ ) were trained to annotate eight typical mouse home-cage behaviours. Th e four 
annotators in the  ‘ Annotator group 2 ’  were randomly selected from the  ‘ Annotator 
group 1 ’  pool. Behaviours of interest included drinking (defi ned by the mouse ’ s 
mouth being juxtaposed to the tip of the drinking spout), eating (defi ned by the 
mouse reaching and acquiring food from the food bin), grooming (defi ned by the 
forelimbs or hindlimbs sweeping across the face or torso, typically as the animal is 
reared up), hanging (defi ned by grasping of the wire bars with the forelimbs and / or 
hindlimbs, with at least two limbs off  the ground), rearing (defi ned by an upright 
posture and forelimbs off  the ground), resting (defi ned by inactivity or nearly com-
plete stillness), walking (defi ned by ambulation) and micromovements (defi ned by 
small movements of the animal ’ s head or limbs). For the  ‘ full database ’  to be anno-
tated, every hour of video took about 22   h of labour for a total of 264   h of work. For 
the  ‘ clipped database ’ , it took approximately 110   h (9   h / h of video) to manually score 
9,600 clips of a single behaviour (corresponding to 5.4   h of clips compiled from 
around 20   h of video). We performed secondary screening to remove ambiguous 
clips, leaving 4,200 clips for which the human-to-human agreement is very close to 
100 % . Th is second screening took around 25   h for the 2.5-h-long  ‘ clipped database ’ . 
 Supplementary Figures S1a – b  and  Supplementary Figures S1c – d  show the distribu-
tion of labels for the  ‘ clipped database ’  and the  ‘ full database ’ , respectively.   

  Training and testing the system   .   Th e evaluation on the  ‘ full database ’  and  ‘ set B ’  
shown in  Table 1  was obtained using a leave-one-out cross-validation procedure. 
Th is consists of using all but one of the videos to train the system and using the 
video left  out to evaluate the system, repeating this procedure  n     =    12 times for all 
videos. System predictions for all the frames are then concatenated to compute the 
overall accuracy as (total number of frames correctly predicted by the system) /
 (total number of frames) and the human-to-human agreement as (total number of 
frames correctly labelled by  ‘ Annotator group 2 ’ ) / (total number of frames). Here, 
a prediction or label is considered  ‘ correct ’  if / when it matches the annotations 
generated by the  ‘ Annotator group 1 ’ . Such a procedure provides the best estimate 
of the future performance of a classifi er and is standard in computer vision. Th is 
guarantees that the system is not just recognizing memorized examples but general-
izing to previously unseen examples. For the  ‘ clipped database ’ , a leave-one-video-
out procedure is used whereby clips from all except one video are used to train the 
system and testing is performed on clips of the remaining video. Th is procedure 
is repeated  n     =    12 times for all videos. A single prediction is obtained for each clip 
(each clip has a single annotated label) by voting across frames, and predictions for 
all the clips of all videos are then concatenated to compute the overall accuracy as 
(number of total clips corrected predicted by the system) / (number of total clips). 

 In addition to measuring the overall performance of the system as above, 
we also used a confusion matrix to visualize the system ’ s performance on each 
behavioural category in  Figures 3, 6e and 7b . A confusion matrix is a common 
visualization tool used in multiclass classifi cation problems 23 . Each row of the 
matrix represents a true class, and each column represents a predicted class. Each 
entry ( x ,  y ) in the confusion matrix is the probability that an instance of label  x  
(along the rows) will be classifi ed as instance of label  y  (along the columns), as 
computed by (number of instances annotated as type  x  and classifi ed as type  y ) / 
(number of instances annotated as type  x ). Here, the frame predictions are 
obtained by concatenating the predictions for all videos, as described above. Th e 
higher probabilities along the diagonal and the lower off -diagonal values indicate 
successful classifi cation for all behavioural types. For example, in  Figure 3a , 94 %  
of the frames annotated as  ‘ rest ’  are classifi ed correctly by the system, and 5 %  are 
misclassifi ed as  ‘ groom ’ .   

  Comparison with the commercial software   .   To compare the proposed system 
with available commercial soft ware, the  HomeCageScan 2.0  ( CleverSys Inc. ), 
we manually matched the 38 output labels from the HomeCageScan to the eight 
behaviours used in the present work. For instance, actions such as  ‘ slow walking ’ , 
 ‘ walking left  ’  and  ‘ walking right ’  were all reassigned to the  ‘ walking ’  label to match 
against our annotations. With the exception of very few behaviours (e.g.,  ‘ jump ’ , 
 ‘ turn ’  and  ‘ unknown behaviour ’ ), we were able to match all HomeCageScan output 
behaviours to one of our eight behaviours of interest (see  Supplementary Table S2  
for a listing of the correspondences used between the labels of the HomeCageScan 
and our system). It is possible that further fi ne-tuning of HomeCageScan param-
eters could have improved upon the accuracy of the scoring.   

  Statistical analysis   .   To detect diff erences among the four strains of mice, analysis 
of variances were conducted for each type of behaviour independently and Tukey ’ s 
 post hoc  test was used to test pairwise signifi cances. All  post hoc  tests were Bonfer-
roni corrected for multiple comparisons. For the grooming behaviour, a one-tailed 
Student ’ s  t- test was used, as only two groups (C57BL / 6J and BTBR) were being 
compared and we had predicted that BTBR would groom more than C57BL / 6J.   

  Mouse strain comparisons   .   Patterns of behaviour were computed from the 
system output by segmenting the system predictions for a 24-h video into four 
non-overlapping 6-h-long segments (corresponding to the fi rst and second halves 
of the day and night periods) and calculating a histogram for the eight types of 
behaviour for each video segment. Th e resulting eight-dimensional (one dimension 
for each of the eight behaviours) vectors were then concatenated to obtain a single 
32-dimensional vector (eight dimensions  ×  four segments) for each animal. To 
visualize the data, we performed a principal component analysis directly on these 
32-dimensional vectors. 

 In addition, we conducted a pattern classifi cation analysis on the patterns of behavi-
our by training and testing an SVM classifi er directly on the 32-dimensional vectors. 
Th is supervised procedure was conducted using a leave-one-animal-out approach, 
whereby 27 animals were used to train a classifi er to predict the strain of the remaining 
animal (CAST / EiJ, BTBR, C57BL / 6J or DBA / 2J). Th e procedure was repeated 28 times 
(once for each animal). Accuracy measures for the four strain predictions were then 
computed as (number of animals correctly classifi ed) / (number of animals).                         
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