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1. Qualitative results

Comparison of SMPL, SMPL+H & SMPL-X: In Sec-
tion 4.2 of the main paper, in Table 1 we present a quanti-
tative comparison between different models with different
modeling capacities. In Fig. A.1 we present a similar com-
parison for SMPL (left), SMPL+H (middle) and SMPL-X
(right) for an image of the EHB dataset. For fair compar-
ison we fit all models with a variation of SMPLify-X to a
single RGB image. The figure reflects the same findings
as Table 1 of the paper, but qualitatively; there is a clear
increase in expressiveness from left to right, as model gets
richer from body-only (SMPL) to include hands (SMPL+H)
or hands and face (SMPL-X).

Holistic vs part models: In Section 4.2 and Fig. 5 of
the main paper we compare our holistic SMPL-X model to
the hand-only approach of [24] on EHB. Figure A.2 shows
a similar qualitative comparison, this time on the data of
[24]. To further explore the benefit of holistic reasoning, we
also focus on the head and we compare SMPL-X fitting to a
head-only method by fitting FLAME [16] to 2D keypoints
similar to our method. The context of the full body sta-
bilizes head estimation for occlusions or non-frontal views
(see Fig. A.3). This benefit is also quantitative, where the
holistic SMPL-X improves over the head-only fitting by
17% in our EHF dataset in terms of vertex-to-vertex error.

Failure cases: Figure A.4 shows some representative
failure cases; depth ambiguities can cause wrong estima-
tion of torso pose or wrong ordinal depth estimation of body
parts due to the simple 2D re-projection data term. Fur-
thermore, occluded joints leave certain body parts uncon-
strained, which currently leads to failures. We plan to ad-
dress this in future work, by employing a visibility term in
the objective.

2. Collision Penalizer

In Section 3.4 of the paper we describe the collision pe-
nalizer. For technical details and visualizations the reader

Figure A.1. Comparison of SMPL (left), SMPL+H (middle)
and SMPL-X (right) on the EHB dataset, using the male mod-
els. For fair comparison we fit all models with a variation of
SMPLify-X to a single RGB image. The results show a clear in-
crease in expressiveness from let to right, as model gets richer from
body-only (SMPL) to include hands (SMPL+H) or hands and face
(SMPL-X).

is redirected to [4, 28], but for the sake of completion we
include the mathematical formulation also here.

We first detect a list of colliding triangles C by employ-
ing Bounding Volume Hierarchies (BVH) [27] and compute
local conic 3D distance fields Ψ : R3 → R+ defined by the
triangles C and their normals n ∈ R3. Penetrations are then
penalized by the depth of intrusion, efficiently computed by
the position in the distance field. For two colliding triangles
fs and ft intrusion is bi-directional; the vertices vt ∈ R3 of
ft are the intruders in the distance field Ψfs of the receiver
triangle fs and are penalized by Ψfs(vt), and vice-versa.
Thus, the collision term EC is defined as

EC(θ) =
∑

(fs(θ),ft(θ))∈C

{ ∑
vs∈fs

‖ −Ψft(vs)ns‖2+

∑
vt∈ft

‖ −Ψfs(vt)nt‖2
}
.

(1)



Figure A.2. Comparison of the hands-only approach of [24] (mid-
dle row) against SMPLify-X with the male SMPL-X (bottom row).
Both approaches depend on OpenPose [23]. In case of good 2D
detections both perform well (left group). In case of noisy detec-
tions (right group) fitting a holistic model is more robust.

Figure A.3. Fitting SMPL-X (right) versus FLAME (middle). For
minimal occlusions and frontal views (top) both methods perform
well. For moderate (middle) or extreme (bottom) occlusions the
body provides crucial context and improves fitting (bottom: miss-
ing FLAME model indicates a complete fitting failure).

For the case where ft is the intruder and fs is the receiver
(similarly for the opposite case) the cone for the distance

Figure A.4. Failure cases for SMPLify-X with the female SMPL-X
for expressive RGB images similar to the ones of Figures 1 and 2
of the main paper. In the left case, 2D keypoints are reasonable, but
due to depth ambiguities the torso pose is wrong, while the head
shape is under-estimated. In the right case, the arms and hands
are occluded and due to lack of constraints the arm and hand pose
is wrong. The ordinal depth for feet is estimated wrongly, while
similarly to the left case the torso pose and head shape are not
estimated correctly. Left: Input RGB image. Middle : Intermediate
2D keypoints from OpenPose. Right: SMPL-X fittings overlaid on
the RGB image.

field Ψfs is defined as

Ψfs(vt) =

{
|(1− Φ(vt))Υ(nfs · (vt − ofs))|2 Φ(vt) < 1

0 Φ(vt) ≥ 1

(2)
where ofs ∈ R3 is the circumcenter and rfs ∈ R>0 the
radius of the circumcircle for the receiver triangle. The term

Φ(vt) =
‖(vt − ofs)− (nfs · (vt − ofs))nfs‖
− rfsσ (nfs · (vt − ofs)) + rfs

(3)

projects the vertex vt onto the axis of the cone defined by
the triangle normal nfs and going through the circumcenter
ofs . It then measures the distance to it, scaled by the radius
of the cone at this point. If Φ(v) < 1 the vertex is inside the
cone and if Φ(v) = 0 the vertex is on the axis. The term

Υ(x) =


−x+ 1− σ x ≤ −σ
− 1−2σ

4σ2 x
2 − 1

2σx+ 1
4 (3− 2σ) x ∈ (−σ,+σ)

0 x ≥ +σ
(4)

measures how far the projected point is from the circumcen-
ter to define the intensity of penalization. For Υ(x) < 0 the
projected point is behind the triangle. For x ∈ (−σ,+σ)
the penalizer is quadratic, while for x > |σ| it becomes lin-
ear. The parameter σ also defines the field of view of the
cone. In contrast to [4, 28] that use mm unit and σ = 0.5,
we use m unit and σ = 0.0001. For the resolution of our
meshes, we empirically find that this value allows for both
penalizing penetrations, as well as for not over-penalizing
in case of self-contact, e.g. arm resting on knee.

As seen in Fig. A.5, for certain parts of the body, like the
eyes, toes, armpits and crotch, as well as neighboring parts



Figure A.5. For certain parts of the body, like the eyes, toes,
armpits and crotch, as well as neighboring parts in the kinematic
chain, there is either always or frequently self-contact. The tri-
angles for which collisions are detected are highlighted with red
(left, middle). Since the model does not model deformations due
to contact, for simplicity we just ignore collisions for these areas
(right).

in the kinematic chain, there is either always or frequently
self-contact. For simplicity, since the model does not model
deformations due to contact, we simply ignore collisions for
neighboring parts in these areas. Our empirical observations
suggest that collision detection for the other parts resolves
most penetrations and helps prevent physically implausible
poses. Figure A.6 shows the effect of the collision penalizer,
by including or excluding it from optimization, and depicts
representative success and failure cases.

For computational efficiency, we developed a custom
PyTorch wrapper operator for our CUDA kernel based on
the highly parallelized implementation of BVH [14].

3. Optimization
In Section 3.6 of the paper we present the main informa-

tion about optimizing our objective function, while in the
following we present omitted details.

To keep optimization tractable, we use a PyTorch im-
plementation and the Limited-memory BFGS optimizer (L-
BFGS) [22] with strong Wolfe line search. We use a learn-
ing rate of 1.0 and 30 maximum iterations. For the anneal-
ing scheme presented in Section 3.6 we take the following
three steps. We start with high regularization to mainly re-
fine the global body pose, (γb = 1, γh = 0, γf = 0) and
gradually increase the influence of hand keypoints to refine
the pose of the arms (γb = 1, γh = 0.1, γf = 0). After con-
verging to a better pose estimate, we increase the influence
of both hands and facial keypoints to capture expressivity
(γb = 1, γh = 2, γf = 2). Throughout the above steps the
weights λα, λβ , λE in the objective function E start with
high regularization that progressively lowers to allow for
better fitting. The only exception is λC that progressively

Figure A.6. Effect of the collision penalizer. The colliding trian-
gles are highlighted to show penetrations at the end of optimization
with SMPLify-X without (middle) and with (right) the collision
term in the objective function. The top row shows a successful
case, were optimization resolves most collisions and converges in
a physically plausible pose that reflects the input image. The bot-
tom row shows a failure case, for which arm crossing causes a lot
of collisions due to self-touch. The final pose (right) is still phys-
ically plausible, but optimization gets trapped in a local minima
and the pose does not reflect the input image.

increases while the influence of hands and facial keypoints
gets stronger inEJ , thus bigger pose changes and more col-
lisions are expected.

Regarding the weights of the optimization, they are set
empirically and the exact parameters for each stage of the
optimization will be released with our code. For more intu-
ition we performed sensitivity analysis by perturbing each
weight λ separately by up to ±25%. This resulted to rel-
ative changes smaller than 6% in the vertex-to-vertex error
metric, meaning that our approach is robust for significant
weight ranges and not sensitive to fine-tuning. The detailed
results are presented in Fig. A.7.

4. Quantitative evaluation on “Total Capture”
In the main paper we present a curated dataset called Ex-

pressive hands and faces dataset (EHF) with ground-truth
shape for bodies, hands and faces together.

Since the most relevant model is Frank [13], we also use
the “Total Capture” dataset [8] of the authors, focusing on
the “PtCloudDB” part that includes pseudo ground-truth for



Figure A.7. Sensitivity of the weights for the different terms
of the optimization. Each weight λ is perturbed separately up
to ±25%. The relative changes in the vertex-to-vertex error are
smaller than 6%, indicating that our approach is robust for signifi-
cant weight ranges and not sensitive to fine-tuning.

SMPLify-X using

Error Joints Alignment Joints GT 2D pred 2D

Body Body 92.6 117.5
Body+H+F Body 101.2 136.2
Body+H+F Body+H+F 71.2 93.4

Table A.1. Quantitative results on the selected frames from CMU
Panoptic Studio, using SMPLify-X on the 2D re-projection of the
ground-truth 3D joints, and the 2D joints detected by OpenPose
respectively. The numbers are mean 3D joint errors after Pro-
crustes alignment. First, we evaluate the error on the body-only
keypoints after Procrustes alignment with the ground-truth body-
only keypoints (row 1). Then, we consider the same alignment
using body-only keypoints, but we evaluate the joint error across
all the body+hands+face keypoints (row 2). Finally, we align the
prediction using all body+hands+face keypoints and we report the
mean error across all of them (row 3).

all body, face and hands. This pseudo ground-truth is cre-
ated with triangulated 3D joint detection from multi-view
with OpenPose [23]. We curate and pick 200 images, ac-
cording to the degree of visibility of the body in the im-
age, interesting hand poses and facial expressions. In the
following, we refer to this data as “total hands and faces”
(THF) dataset. Figure A.8 shows qualitative results on part
of THF. For each group of images the top row shows a refer-
ence RGB image, the middle row shows SMPLify-X results
using pseudo ground-truth OpenPose keypoints (projected
on 2D for use by our method), while the bottom row shows
SMPLify-X results using 2D OpenPose keypoints estimated
with [23]. Quantitative results for this dataset are reported
in Table A.1.

5. Quantitative evaluation on Human3.6M
In the main manuscript (Table 1), we demonstrated that

evaluating the reconstruction accuracy using 3D body joints
is not representative of the accuracy and the detail of a

Method Mean (mm) Median (mm)

SMPLify [5] 82.3 69.3
SMPLify-X 75.9 60.8

Table A.2. Quantitative results on the Human3.6M dataset [10].
The numbers are mean 3D joint errors after Procrustes alignment.
We use the evaluation protocol of [5].

method’s reconstruction. However, many approaches do
evaluate quantitatively based on 3D body joints metrics, so
here we compare our results with SMPLify [5] to demon-
strate that our approach is not only more natural, expres-
sive and detailed, but the results are also more accurate in
the common metrics. In Table A.2 we present our results
using the Human3.6M [10] dataset. We follow the same
protocol as [5] and we report results after Procrustes align-
ment with the ground-truth 3D pose. Even though there
are several factors that improve our approach over SMPLify
and this experiment does not say which is more important
(we direct the reader to the ablative study in Table 2 of the
main manuscript for this), we still outperform the original
SMPLify using this crude metric based on 3D joints.

6. Qualitative evaluation on MPII

In Fig. A.14 we present qualitative results on the MPII
dataset [3]. For this dataset we also include some cases with
low resolution, heavily occluded or cropped people.

7. Model

In Section 3.1 of the main manuscript we describe the
SMPL-X model. The model shape space is trained on the
CAESAR database [26]. In Fig. A.9 we present the per-
centage of explained variance as a function of the number
of PCA components used. All models explain more than
95% of the variance with 10 principle components.

We further evaluate the model on a held out set of 180
alignments of male and female subjects in different poses.
The male model is evaluated on the male alignments, the
female model is evaluated on the female alignments, while
the gender neutral is evaluated on both male and female
alignments. We report the model alignment vertex-to-vertex
(v2v) mean absolute error as a function of the number of
principle components used, shown in Fig. A.10.

8. VPoser

In Section 3.3 of the main manuscript we introduce a
new parametrization of the human pose and a prior on this
parameterization, also referred to as VPoser. In this Sec-
tion we present further details on the data preparation and
implementation.



Figure A.8. Qualitative results on some of the data of the “total capture” dataset [8], focusing on the “PtCloudDB” part that includes
pseudo ground-truth for all body, face and hands. We curate and pick 200 images, according to degree of body coverage in the image
and interesting hand poses and facial expressions. We refer to this data as “total hands and faces” dataset (THF). Top row: Reference
RGB image. Middle row: SMPLify-X results using pseudo ground-truth OpenPose keypoints (3D keypoints of [8] estimated from multi-
view and projected on 2D). Bottom row: SMPLify-X results using 2D OpenPose keypoints estimated with [23]. Gray color depicts the
gender-specific model for confident gender detections. Blue is the gender-neutral model that is used when the gender classifier is uncertain.



Figure A.9. Cumulative relative variance of the CAESAR dataset
explained as a function of the number of shape coefficients for
three SMPL-X models: male, female, gender neutral model.

Figure A.10. Evaluating SMPL-X generalization on a held out
test set of male and female 3D alignments.

8.1. Data preparation

We use SMPL pose parameters extracted from human
motion sequences of CMU [7], Human3.6M [10], and
PosePrior [2] as our dataset. These parameters were orig-
inally released by [19, 21]. Subsequently, we hold out pa-
rameters for Subjects 9 and 11 of Human3.6M as our test
set. We randomly select 5% of the training set as our vali-
dation set and use that to make snapshots of the model with
minimum validation loss. We choose matrix rotations for
our pose parameterization.

R ∈ [−1, 1]207

Dense - 207 × 512
LReLU - 0.2

Dropout - 0.25

Dense - 512 × 512
LReLU - 0.2

Σ(R)
Dense - 512 × 32

µ(R)
Dense - 512 × 32

Z ∼ N (µ(R),Σ(R))

Dense - 32 × 512
LReLU - 0.2

Dropout - 0.25

Dense - 512 × 512
LReLU - 0.2

Dense - 512 × 207
tanh

R̂ ∈ [−1, 1]207

(a) Train mode.

Z ∼ N (0, I) ∈ R32

Dense - 32 × 512
LReLU - 0.2

Dropout - 0.25

Dense - 512 × 512
LReLU - 0.2

Dense - 512 × 207
tanh

R̂ ∈ [−1, 1]207

inv. Rodrigues

Raxis angle ∈ R69

SMPLHF

(b) Test mode.

Figure A.11. VPoser model in different modes. For training the
network consists of an encoder and a decoder. For testing we use
the latent code instead of the body pose parameters, i.e. θb, of
SMPL-X, which are described in Section 3.1 of the main paper.
By “inverse Rodrigues” we note the conversion from a rotation
matrix to an axis-angle representation for posing SMPL-X.

Figure A.12. Gender classifier results on the test set. From left to
right column: Successful predictions, predictions discarded due to
low confidence(< 0.9), failure cases.

8.2. Implementation details

For implementation we use TensorFlow [1] and later port
the trained model and weights to PyTorch [25]. Figure A.11
shows the network architecture during training and test
time. We use only fully-connected layers, with LReLU [20]
non-linearity and keep the encoder and decoder symmet-



ric. The encoder has two dense layers with 512 units each,
and then one dense layer for mean and another for variance
of the VAE’s posterior Normal distribution. The decoder
weights have the same shape as the encoder, only in re-
verse order. We use the ADAM solver [15], and update
the weights of the network to minimize the loss defined in
Eq. 5 of the main manuscript. We empirically choose the
values for loss weights as: c1 = 0.005, c2 = 1.0− c2, c3 =
1.0, c4 = 1.0, c5 = 0.0005. We train for 60 epochs for each
of the following learning rates: [5e−4, 1e−4, 5e−5].

After training, the latent space describes a manifold of
physically plausible human body poses, that can be used for
efficient 2D-to-3D lifting. Figure A.13 shows a number of
random samples drawn from the latent space of the model.

9. Gender lassifier
Figure A.12 shows some qualitative results of the gender

classifier on the test set.

9.1. Training data

For training data we employ the LSP [11], LSP-
extended [12], MPII [3], MS-COCO [18], LIP [17] datasets,
respecting their original train and test splits. To curate our
data for gender annotations we collect tight crops around
persons and keep only the ones for which there is at least
one visible joint with high confidence for the head, torso
and for each limb. We further reject crops with size smaller
than 200× 200 pixels. The gathered samples are annotated
with gender labels using Amazon Mechanical Turk. Each
image is annotated by two Turkers and we keep only the
ones with consistent labels.

9.2. Implementation details

For implementation we use Keras [6] with Tensor-
Flow [1] backend. We use a pretrained ResNet18 [9] for
feature extraction and append fully-connected layers for our
classifier. We employ a cross entropy loss, augmented with
an L2 norm on the weights. Each data sample is resized to
224 × 224 pixels to be compatible with the ResNet18 [9]
architecture. We start by training the final fully-connected
layers for two epochs with each of the following learning
rate values [1e−3, 1e−4, 1e−5, 1e−6]. Afterwards, the en-
tire network is finetuned end-to-end for two epochs using
these learning rates [5e−5, 1e−5, 1e−6, 1e−7]. Optimiza-
tion is performed using Adam [15].
Disclosure: MJB has received research gift funds from Intel, Nvidia,
Adobe, Facebook, and Amazon. While MJB is a part-time employee of
Amazon, his research was performed solely at, and funded solely by, MPI.
MJB has financial interests in Amazon and Meshcapade GmbH.



Figure A.13. Random pose samples from the latent space of VPoser. We sample from a 32 dimensional normal distribution and feed the
value to the decoder of VPoser; shown in Figure A.11b. SMPL is then posed with the decoder output, after conversion to an axis-angle
representation.



Figure A.14. Qualitative results of SMPLify-X with SMPL-X on the MPII dataset [3]. In this figure we also include images with some
heavily occluded or cropped bodies. Gray color depicts the gender-specific model for confident gender detections. Blue is the gender-
neutral model that is used when the gender classifier is uncertain or when cropping does not agree with the filtering criterion described in
ubsection 9.1.



Figure A.15. Results of SMPLify-X fitting for the LSP dataset. For each group of images we compare two body priors; the top row shows
a reference RGB image, the bottom row shows results of SMPLify with VPoser, while the middle row shows results for which VPoser is
replaced with the GMM body pose prior of SMPLify [5]. To eliminate factors of variation, for this comparison we use the gender neutral
SMPL-X model.
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