

Abstract

In classical machine learning, regression is treated as a black box process of identifying a suitable function from a hypothesis set without attempting to gain insight into the mechanism connecting inputs and outputs. In the natural sciences, however, finding an interpretable function for a phenomenon is the prime goal as it allows to understand and generalize results. This paper proposes a novel type of function learning network, called equation learner (EQL[÷]), that can learn analytical expressions and is able to extrapolate to unseen domains. It is implemented as an end-to-end differentiable feed-forward network and allows for efficient gradient based training. Due to sparsity regularization concise interpretable expressions can be obtained. Applied to robot control, we can identify the dynamics equations after 2 random trials good enough to control a cart-pendulum to swing up and balance.

At a glance

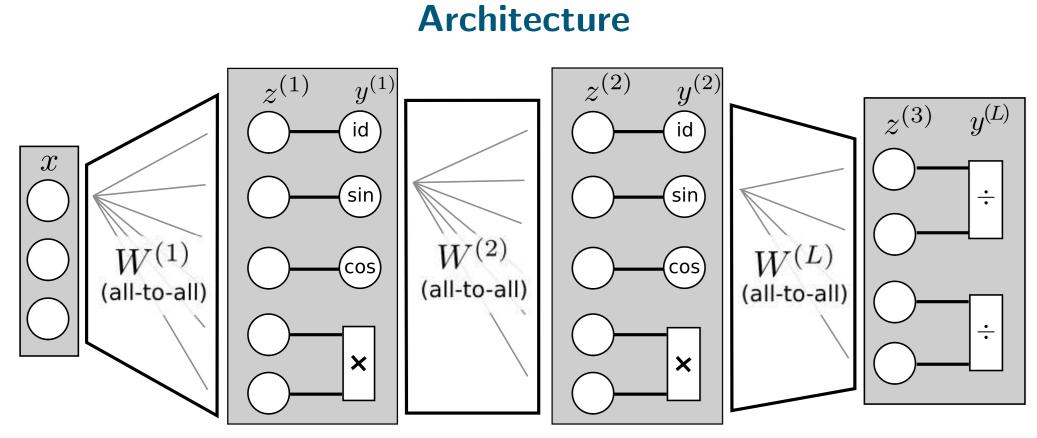
What: finding the simplest descriptive formula for data Why:

- to extrapolate to new situations,
- to dissect outcomes into causal pathways,
- to be efficient on evaluation

Example: a robot can make predictions about movements outside the experienced domain, e.g. for higher velocities.

How: differentiable network with analytic base functions, sparsity regularization and special model selection.

Network for function extrapolation



Network architecture of the proposed Equation Learner with divisions (EQL⁺ for 3 layers (L = 3) and one neuron per type.

Each layer has:

 \bigcirc a linear all-to-all mapping to an intermediate representation z

- unary units implementing: identity , sine, and cosine
- binary units: multiplication of two inputs
- The final layer computes the regression values as division.

georg.martius@tuebingen.mpg.de>

Learning Equations for Extrapolation and Control

 1 Max Planck Institute for Intelligent Systems, Tuebingen, Germany 2 IST Austria, Klosterneuburg, Austria georg.martius@tuebingen.mpg.de

Training

Objective

We use a Lasso-like objective (L_2 loss and L_1 regularization):

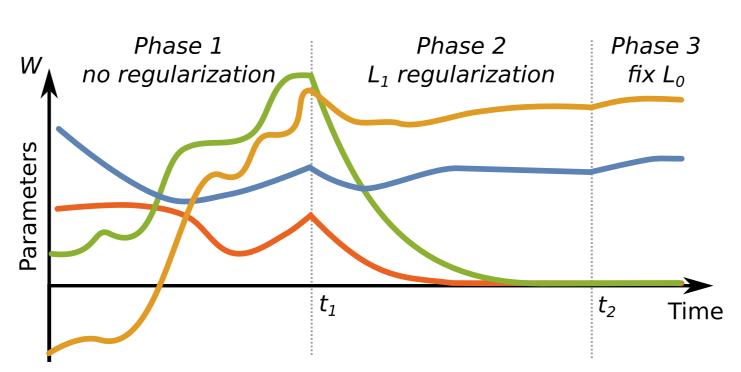
$$\mathcal{L}(D) = \frac{1}{N} \sum_{i=1}^{|D|} \|\psi(x_i) - y_i\|^2 + \lambda \sum_{l=1}^{L} |W^{(l)}|_1$$

with network $\psi(x)$ and apply a stochastic gradient descent (Adam [1]) with mini-batches.

Learning/Regularization stages

Training is split into phases, because:

- \bigcirc plain L_1 regularization leads often to premature convergence to suboptima
- result is always trade-off between error and regularization term



- Phase 1: no regularization $(\lambda = 0)$
- Phase 2: L_1 regularization ($\lambda > 0$)

• Phase 3: limit L_0 norm: $\{w = 0 \mid |w| < 0.001, w \in W^{1...L}\}$ Division is regularized: one-sided and cut-off threshold $\theta = 1/\sqrt{t}$

> $h^{ heta}(a,b) := \begin{cases} rac{a}{b} & ext{if } b > \theta \end{cases}$ otherwise

Model selection

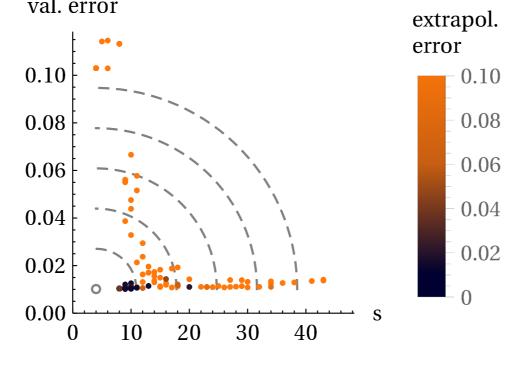
How to find the "right" formula?

1) Without any data from extrapolation domain:

Occams razor: the **simplest** formula is most likely the right one.

 \implies Pick the instance with lowest complexity (# units) and lowest validation error

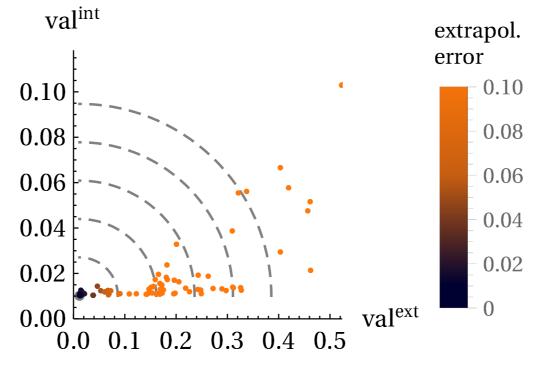
kin-4-end dataset: extrapolation performance depending on validation error and sparsity s. Circle arcs indicate the L_2 norm iso-lines (normalized)



Use also validation error on few extrapolation points (here 40).

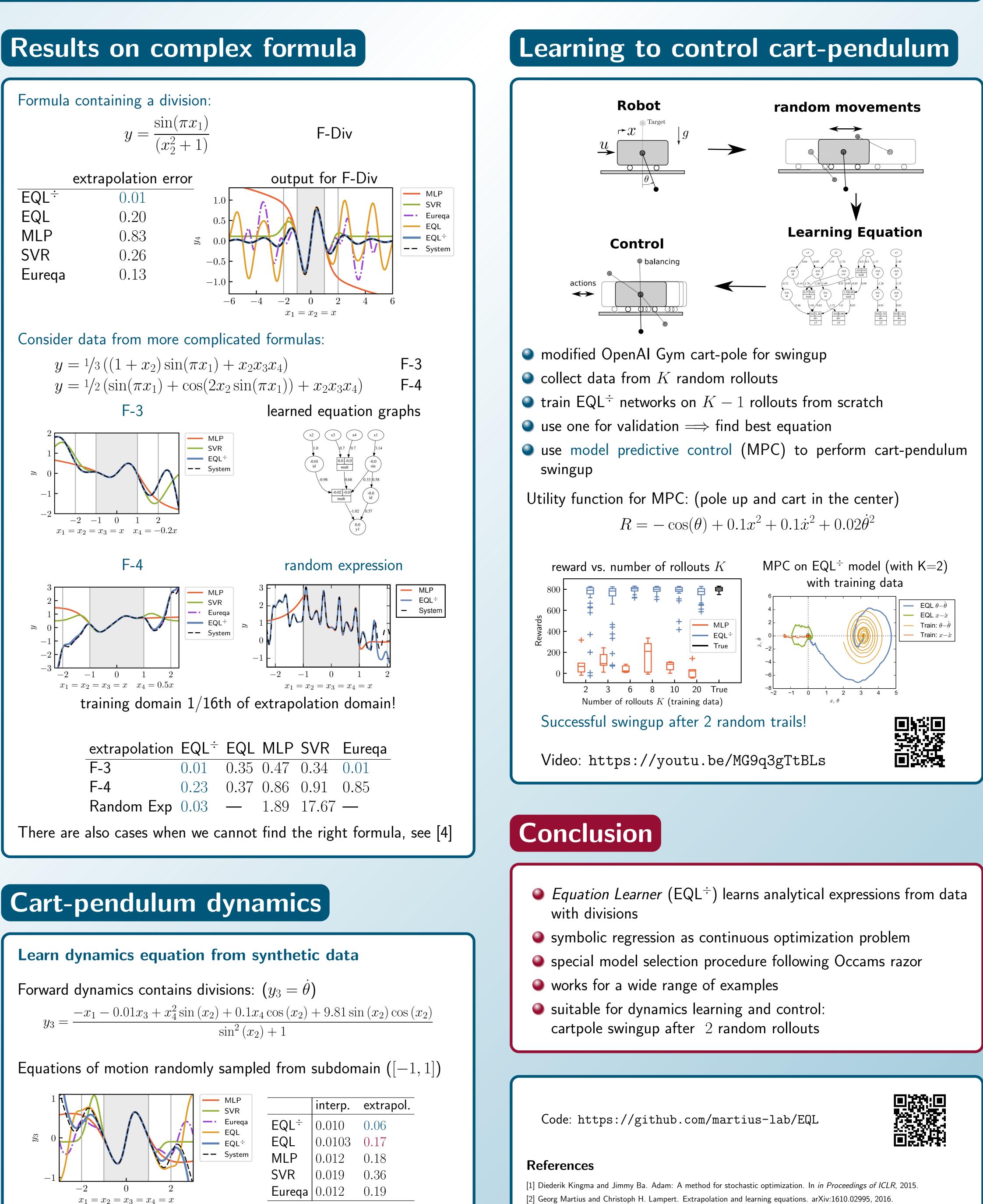
Pick instance with \implies lowest validation in interpolation and extrapolation

as above but using validation error in both domains. Circle arcs indicate the L_2 norm iso-lines (normalized).

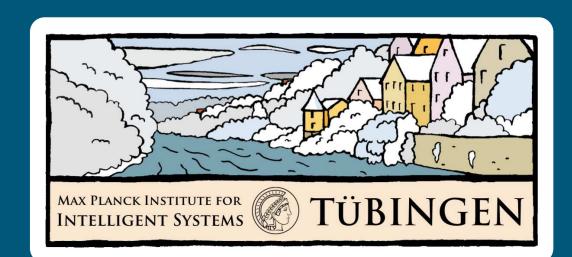


Subham Sekhar Sahoo^{1,3}, Christoph Lampert², and Georg Martius¹

³ IIT, Kharagpur, India



Great extrapolation, but needs to be realizable!



- [2] Georg Martius and Christoph H. Lampert. Extrapolation and learning equations. arXiv:1610.02995, 2016.
- [3] Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. Science, 324(5923):81-85, 2009. [4] Subham S. Sahoo, Christoph H. Lampert and Georg Martius. Learning equations for extrapolation and control. ICML 2018 Stockholm, Sweden, 2018