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ABSTRACT 
We describe a trainable computer vision system enabling the automated analysis of complex 
mouse behaviors. We provide software and a very large manually annotated video database used 
for training and testing the system. Our system outperforms leading commercial software and 
performs on par with human scoring, as measured from the ground-truth manual annotations of 
thousands of clips of freely behaving animals. We show that the home-cage behavior profiles 
provided by the system is sufficient to accurately predict the strain identity of individual animals 
in the case of two standard inbred and two non-standard mouse strains. Our software should 
complement existing sensor-based automated approaches and help develop an adaptable, 
comprehensive, high-throughput, fine-grained, automated analysis of rodent behavior.  
 
INTRODUCTION 
Automated quantitative analysis of mouse behavior will play a significant role in comprehensive 
phenotypic analyses – both on the small scale of detailed characterization of individual gene 
mutants and on the large scale of assigning gene function across the entire mouse genome 
(Auwerx, Avner et al. 2004). One of the key benefits of automating behavioral analyses arises 
from inherent limitations of human assessment: namely cost, time, and reproducibility. Although 
automation in and of itself is not a panacea for neurobehavioral experiments (Crabbe, Wahlsten 
et al. 1999), it allows for addressing an entirely new set of questions about mouse behavior. 
Indeed, the significance of alterations in home cage behavior has recently gained attention as an 
effective means to detect perturbations in neural circuit function – both in the context of disease 
detection and more generally to measure food consumption and activity parameters (Dell'Omo, 
Vannoni et al. 2002; Chen, Steele et al. 2005; Steele, Jackson et al. 2007; Goulding, Schenk et al. 
2008; Roughan, Wright-Williams et al. 2008). Another benefit of automated analysis of behavior 
is the ability to conduct experiments on time scales that are orders of magnitude larger than 
traditionally assayed. For example, reported tests of grooming behavior span time scales of the 
order of minutes (Greer and Capecchi 2002; McFarlane, Kusek et al. 2008) whereas an 
automated analysis will allow for analysis of this behavior over hours or even days. Most 
previous automated systems  (e.g., (Noldus, Spink et al. 2001; Dell'Omo, Vannoni et al. 2002; 
Jackson, Tallaksen-Greene et al. 2003; Goulding, Schenk et al. 2008), see also Supplementary 
Text online) have relied on the use of sensors to monitor behavior. However the physical 
measurements obtained from these sensor-based approaches limit the complexity of the behavior 
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that can be measured. This problem remains even for expensive commercial systems using 
transponder technologies such as the IntelliCage system by NewBehavior Inc. While such 
systems can be effectively used to monitor the locomotion activity of an animal as well as other 
pre-programmed activities via operant conditioning units located in the corners of the cage, they 
cannot be directly used to study natural behaviors such as grooming, hanging or rearing. 

Recent advances in computer vision and machine learning yielded robust computer vision 
systems for the recognition of objects (Viola and Jones 2001; Dalal and Triggs 2005) and human 
actions (see ref. (Moeslund, Hilton et al.) for review). The use of vision-based approaches is 
already bearing fruit for the automated tracking (Khan, Balch et al. 2005; Fry, Rohrseitz et al. 
2008; Veeraraghavan, Chellappa et al. 2008) and recognition of behaviors in insects (Branson, 
Robie et al. 2009; Dankert, Wang et al. 2009). Several open-source and commercial computer-
vision systems for the tracking of animals have been developed (e.g., ref. (Noldus, Spink et al. 
2001; Spink, Tegelenbosch et al. 2001; Branson and Belongie 2005), see also Supplementary 
Text online). Such systems are particularly suitable for studies involving spatial measurements 
such as the distance covered by an animal or its speed. These tracking techniques have the same 
limitations as the sensor-based approaches and are not suitable for the analysis of fine animal 
behaviors such as micro-movements of the head, grooming or rearing.  

A few computer-vision systems for the recognition of rodent behaviors have been recently 
described, including a commercial system (CleverSys, Inc) and two prototypes from academic 
groups (Dollar, Rabaud et al. 2005; Xue and Henderson 2009). They have not been tested yet in 
a real-world lab setting using long uninterrupted video sequences and containing potentially 
ambiguous behaviors or at least comprehensively evaluated against human manual annotations 
on large databases of video sequences using different animals and different recording sessions.  
In this paper, we describe a trainable, general-purpose, automated, quantitative and potentially 
high-throughput system for the behavioral analysis of rodents in their home-cage. We 
characterize its performance against human labeling and other systems. We make available 
ready-to-use software (under the GPL license). We also provide a very large database of 
manually annotated video sequences of mouse behaviors, in an effort to motivate further work 
and set benchmarks for evaluating progress in the field. 

Our system, which is a development based on a computational model of motion processing in the 
primate visual cortex (Giese and Poggio 2003; Jhuang, Serre et al. 2007), consists of a few main 
steps:  first a video input sequence is converted into a representation suitable for the accurate 
recognition of the underlying behavior based on the detection of space-time motion templates. 
After this pre-processing step a statistical classifier is trained from labeled examples with 
manually annotated behaviors of interest and used to analyze automatically new recordings 
containing hours of freely behaving animals. The full system provides an output label (behavior 
of interest) for every frame of a video-sequence. The resulting time sequence of labels can be 
further used to construct ethograms of the animal behavior and fit statistical models to 
characterize behavior. As a proof of concept we trained the system on eight behaviors of interest 
(eat, drink, groom, hang, micro-move, rear, rest and walk, see Fig. 1 for an illustration) and 
demonstrate that the resulting system performs on par with humans for the scoring of these 
behaviors. Using the resulting system, we analyze the home-cage behavior of several mouse 
strains, including the commonly used strains C57Bl/6J, DBA/2J, the BTBR strain that displays 
autistic-like behaviors, and a wild-like strain CAST/EiJ. We characterize differences in the 
behaviors of these strains and use these profiles to predict the strain type of an animal blindly. 
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RESULTS 
System overview 
Our system (Supplementary software online) consists of three separate modules: (1) a video 
database, (2) a feature computation module, and (3) a classification module. We recorded a large 
database of video sequences of mice in their home cage using a consumer grade camcorder. 
These videos were then manually hand scored and used to train a computer vision system to 
recognize behaviors of interest. In this system, a set of about 300 distinct motion features that are 
based on a biological model of motion analysis in the primate cortex (Giese and Poggio 2003; 
Jhuang, Serre et al. 2007) are computed to convert an input video sequence into a representation, 
which is then used for the automated recognition of the animal’s behavior by a statistical 
classifier.  

Video database  
We video recorded singly housed mice from an angle perpendicular to the side of the cage (see 
Fig. 1 for examples of video frames). In order to create a robust detection system we varied the 
camera angles as well as the lighting conditions by placing the cage in different positions with 
respect to the overhead lighting. In addition, we used many mice of different size, gender, and 
coat color. Several investigators were trained to score the mouse behavior using two different 
scoring techniques. The first type of annotations denoted as the ‘clipped database’ included only 
clips scored with very high stringency, seeking to annotate only the best and most exemplary 
instances of particular behaviors. Through this style of annotation we created more than 9,000 
short clips, each containing a unique annotation. To avoid errors, this database was then curated 
by a second set of human annotators who watched all 9,000 clips again, retaining only the most 
accurate and unambiguous assessments, leaving 4,200 clips (26,2360 frames corresponding to 
about 2.5 hours) from 12 distinct videos to train and tune the motion feature extraction module of 
our computer algorithm described below. This database is significantly larger than the currently 
publicly available dataset (Dollar, Rabaud et al. 2005), which contains only 5 behaviors (eating, 
drinking, grooming, exploring and resting) for a total of 435 clips. 

The second database, called the ‘full database’ involved labeling every frame (with less 
stringency than in the clipped database) for 12 unique videos corresponding to over 10 hours of 
continuously annotated video.  This database was used to train and test the classification module 
of our computer algorithm described below. Databases such as this are not currently available. 
By making such database available to reliably estimate and compare the performance of vision-
based systems, we hope to further motivate the development of such computer vision systems for 
behavioral phenotyping applications.  Fig. S1 shows the distribution of labels for the clipped and 
the full database.  

Feature computation 
Motion features. The hierarchical architecture used here to pre-process raw video sequences (see 
Fig. 2 inset A) and extract motion features (see Fig. 2 inset C) is adapted from our previous work 
for the recognition of biological motion (Jhuang, Serre et al. 2007). The system is based on the 
organization of the dorsal stream of the visual cortex, which has been critically linked to the 
processing of motion information (see ref. (Born and Bradley 2005) for a recent review). Details 
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of the implementation are described in the Supplementary Methods online. A hallmark of the 
system is its hierarchical architecture, which builds a loose collection of 3-D space-time video 
patches (called interchangeably “motion-features” in the following) and centered on each frame 
of a video sequence. The model starts with an array of spatio-temporal filters tuned to 4 
directions of motion and modeled after motion-sensitive (simple) cells in the primary visual 
cortex (V1) (Simoncelli and Heeger 1998) (S1/C1 layers, see Fig. 2 inset D). The architecture 
then extracts space-time motion primitives centered at every frame of an input video sequence 
via a hierarchy of processing stages, whereby features become increasingly complex and 
invariant with respect to 2D transformations. These motion features (see Fig. 2 inset F) are 
obtained by combining the response of V1-like afferent motion units that are tuned to different 
directions of motion (see Fig. 2 inset E and Supplementary Methods for details).  

The output of this hierarchical pre-processing module consists of a basic dictionary of about 300 
space-time motion features (S2/C2 layers, see Fig. 2 inset D) that can be used by a statistical 
classifier to reliably classify every frame of a video sequence into a behavior of interest. This 
basic dictionary of motion-feature templates corresponds to discriminant motion features as 
learned from a training set of videos containing behaviors of interest (the ‘clipped database’) via 
a feature selection technique (see Supplementary Methods).  

Training of the motion feature computation module. To optimize the performance of the system 
for the recognition of mouse behaviors, several key parameters of the model were adjusted. The 
parameters of the spatio-temporal filters in the first stage (e.g., their preferred speed tuning and 
direction of motion, the nature of the non-linear transfer function used, the video resolution, etc) 
were adjusted so as to maximize performance on the ‘clipped database’. This was done by 
training and testing a multi-class Support Vector Machine (SVM) classifier on single frames via 
a leave-one-out procedure (see Methods) as performed previously (Jhuang, Serre et al. 2007).  

Position- and velocity-based feature computation. In addition to the motion features described 
above, we computed an additional set of features derived from the instantaneous location of the 
animal in the cage (see Fig. 2 inset C). To derive these features, we first computed a bounding 
box for the animal by subtracting off the video background. For a static camera as used here, the 
video background can be well approximated by a median frame obtained after computing the 
median value across all frames (day and night frames under red lights were processed in separate 
videos). Position- and velocity-based measurements were estimated based on the 2D coordinates  
(x,y) of this bounding box for every frame. These included the position and the aspect ratio of the 
bounding box (indicating whether the animal is in a horizontal or vertical position), the distance 
of the animal from the feeder as well as the instantaneous velocity and acceleration. Fig. 2 (inset 
C) provides a description of the 10 position- and velocity-based features. 

Frame-based evaluation of the system. In order to evaluate the quality of our motion features for 
the recognition of high-quality unambiguous behavior we trained and tested a linear Support 
Vector Machine (SVM) classifier on single frames from the clipped database (using the all-pair 
multi-class classification strategy). This approach does not rely on the temporal context of 
behaviors beyond the computation of low-level motion signals and classifies each frame 
independently. On the clipped database, we find that such a system led to 93% accuracy (motion 
features alone; chance level 12.5% for 8-class classification, see Supplementary Methods online 
for a comparison with a representation computer vision system). Performance here was estimated 
based on a leave-one-out procedure, whereby the clips from all except one video are used to train 
the system while performance is evaluated on the clips from the remaining video. The procedure 
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is repeated n times for all videos and the average performance is reported (see Methods for 
details). This suggests that the representation provided by the dictionary of 300 motion features 
is suitable for the recognition of the behaviors of interest even under conditions where the 
temporal structure of the underlying temporal sequence is completely discarded. We also found 
that the addition of the position- and velocity-based features led to an improvement in 
recognition for behaviors that are dependent upon the location of the animal with respect to the 
environment (e.g., drinking occurs at the water bottle spout while eating occurs at the food bin 
by our definitions). 
Classification module 
Performing a reliable phenotyping of an animal requires more than the mere detection of 
stereotypical non-ambiguous behaviors. In particular, the present system aims at classifying 
every frame of a video sequence even for those frames that are difficult to categorize. For this 
challenging task, the temporal context of a specific behavior becomes an essential source of 
information; thus, learning an accurate temporal model for the recognition of actions becomes 
critical (see Supp. Fig. 3 for an illustration). Here we used a Hidden Markov Support Vector 
Machine (HMMSVM, see Fig. 2 inset G) (Altun, Tsochantaridis et al. 2003; Tsochantaridis, 
Hofmann et al. 2004; Tsochantaridis, Joachims et al. 2005; Joachims, Finley et al. 2009), which 
is an extension of the popular Support Vector Machine classifier for sequence tagging. This 
temporal model was trained on manually labeled examples extracted from about 10 hours of 
continuously scored video sequences from 12 separate videos from the ‘full database’ as 
described above. 

A comparison between the resulting system and a leading commercial software (HomeCageScan 
2.0, CleverSys, Inc) for mouse home cage behavior classification against human manual scoring 
is provided in Table I (see Methods for details) and Figure 3. Here we considered two sets of 
manual annotations: one that denoted ‘set A’, where every frame has been scored by one human 
annotator.  As described above this set contains over 10 hours of videos containing different 
mice (different coat color, size, gender, etc) recorded at different times during day and night 
during 12 separate sessions. In addition, we considered a small subset of this database (denoted 
‘set B’) corresponding to many short random segments from each of the 12 videos manually 
annotated by pairs of randomly selected annotators from a pool of 12 annotators (about 5-10 min 
in length for a total of about 1.6 hours). ‘Set B’ allowed us to evaluate the agreement between 
two independent labelers, which we estimated to be 71.6% (frame by frame agreement between 
both annotators). This level of agreement sets the upper bound of performance from the system 
since it relies completely on these manual annotations to learn to recognize behaviors. Overall 
we found that our system achieves 71.0% agreement with manual annotations on set B, a result 
significantly higher than the HomeCageScan 2.0 (56.0%) system and on par with humans 
(71.6%). Fig. 3 shows confusion matrices for the inter-human agreement, the proposed computer 
system and the HomeCageScan system. 

Characterizing the home-cage behavior of diverse inbred mouse strains 
To demonstrate the applicability of this vision-based approach to large-scale phenotypic analysis, 
we characterized the home-cage behavior of four strains of mice, including the wild-like strain 
CAST/EiJ, the BTBR strain, which is a potential model of autism (McFarlane, Kusek et al. 2008) 
as well as two of the most popular inbred mouse strains C57Bl/6J and DBA/2J. We video 
recorded n=7 mice of each strain during one 24-hour session, encompassing a complete light-
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dark cycle. An example of an ethogram obtained over a 24-hour continuous recording period for 
one of the CAST-EiJ (wild-like) strain is shown in Fig. 2 (inset G). One obvious feature was that 
the level of activity of the animal decreased significantly during the day (12-24 hr) as compared 
to night time (0-12hr). The mean activity peak of the CAST/EiJ mice shows a much higher night 
activity peak in terms of walking and hanging than any of the other strains tested (Fig. 4). As 
compared to the CAST/EiJ mice, DBA/2J strain showed an equally high level of walking at the 
beginning of video recording but this activity quickly dampened to that of the other strains 
C57Bl/6J and BTBR. We also found that the resting behavior of this CAST/EiJ strain differed 
significantly from the others: while all four strains tended to rest for the same total amount of 
time (except BTBR which rested significantly more than C57Bl/6J), we found that the CAST/EiJ 
tended to have resting bouts that lasted almost three times longer than those of any other strain 
(Fig. 5A-B). 

As BTBR mice have been reported to hyper-groom (McFarlane, Kusek et al. 2008) we next 
examined the grooming behavior of BTBR mice. Following the study of McFarlane et al. 
(McFarlane, Kusek et al. 2008), which scored grooming manually, our system detected that the 
BTBR strain spent approximately 900 seconds grooming compared to the C57Bl/6J mice which 
spend a little more than 600 seconds grooming (Fig. 5C). These values were reproduced by a 
human observer scoring the same videos (Fig. 5C).  Here we show that using our system we 
were able to reproduce the key results that the BTBR strain grooms more than the C57Bl/6J 
strain when placed in a novel cage environment as in McFarlane et al. Note that in the present 
study the C57Bl/6J mice were approximately 90 days old (+/- 7 days) while the BTBR mice 
were approximately 80 days old (+/-7 days). In the McFarlane study younger mice were used 
(and repeated testing was performed), but our results essentially validate their findings.  

Prediction of strain-type based on behavior 
To visualize the similarities/dissimilarities between patterns of behaviors exhibited by all 28 
individual animals used in our behavioral study, we performed a non-metric Multidimensional 
Scaling (MDS). These patterns of behaviors correspond to the relative frequency of each of the 8 
behaviors of interest over a 24-hour period (see Methods for details). Fig. 5D shows the 
resulting 28 data-points each corresponding to a different animal projected along the first 3 
dimensions returned by the MDS analysis. Already in this relatively low dimensional space, 
individual animals tend to cluster by strains suggesting that different strains exhibit unique 
patterns of behaviors that are characteristic of their strain-type. To quantify this statement, we 
trained a linear SVM classifier directly on the patterns of behaviors predicted by the system (see 
Methods). Using a leave-one-animal-out procedure, we found that the resulting classifier was 
able to predict the strain of all animals with an accuracy of 90%. Fig. 5E shows a confusion 
matrix for the corresponding classifier that indicates the probability with which an input pattern 
of behavior (along the rows) was classified as each of the 4 strains (along the columns). The 
higher probabilities along the diagonal and the lower off-diagonal values indicate successful 
classification for all strains. 

 
DISCUSSION 
In this paper we describe the development and implementation of a trainable computer vision 
system capable of capturing the behavior of a single mouse in the home-cage environment. 
Importantly, as opposed to several proof-of-concept computer vision studies (Dollar, Rabaud et 
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al. 2005; Jhuang, Serre et al. 2007), our system has been demonstrated with a “real-world” 
application, characterizing the behavior of several mouse strains and discovering strain-specific 
features.  We provide software as well as the large database that we have collected and annotated 
in hope that it may further encourage the development of similar vision-based systems.  

The search for “behavioral genes” requires cost effective and high-throughput methodologies to 
find aberrations in normal behaviors (Tecott and Nestler 2004). From the manual scoring of 
mouse videos (see ‘full database’ above), we have estimated that it requires about 22 person 
hours of work to manually score every frame of a one-hour video. Thus, we estimate that the 24-
hour behavioral analysis conducted above with our system for the 28 animals studied would have 
required almost 15,000 person hours (i.e., almost 8 years of work for one person working full-
time) of manual scoring. An automated computer-vision system permits behavioral analysis that 
would simply be impossible using manual scoring by a human experimenter. The system is 
currently not real-time (it takes about 10 sec to process 1 sec of video). We were able, however, 
to obtain real-time performance with an initial system implementation ported to a GPU (NVIDIA 
GTX 295) (Mutch & Poggio, in prep). 

In principle, our approach can be extended to other behaviors such as dyskinetic behaviors in the 
study of Parkinson’s disease models, seizures for the study of epilepsy, or even wheel running 
behavior in the context of a normal home cage repertoire. Future developments of our learning 
and vision approach could deal with the quantitative characterization of social behavior 
involving two or more freely behaving animals. In conclusion, our study shows the promise of 
learning-based and vision-based-techniques in complementing existing approaches towards a 
complete quantitative phenotyping of complex behavior. 
 
METHODS 
Mouse strains, behavioral experiment, and data collection 
All experiments involving mice were approved by the MIT and Caltech committees on animal 
care. For generating training and testing data we used a diverse pool of hybrid and inbred mice of 
varying size, age, gender, and coat color (both black and agouti coat colors). In addition, varied 
lighting angles and conditions, using ‘light’ and ‘dark’ recording conditions where we used dim 
red lighting (30 Watt bulbs) to allow our cameras to detect the mice but without substantial 
circadian entrainment effects. JVC digital video cameras (GR-D93) were connected to a PC 
workstation (Dell) via a Hauppauge WinTV video card. Using this setup we collected greater 
than 24 distinct MPEG-2 video sequences (from one to several hours in length) used for training 
and testing the system. For processing by the computer vision system, all videos were down-
sampled to a resolution of 320x240 pixels. This means that the throughput of our system could 
be increased by video recording 4 cages at a time using a two by two arrangement with a 
standard 640x480 pixel VGA video resolution. A separate collection of videos of the mouse 
strains (n=28 videos) was collected for the validation experiment performed Caltech, using 
different recording conditions. All mouse strains were purchased from the Jackson Laboratory 
(Bar Harbor, Maine), including C57Bl/6J (stock 000664), DBA/2J (000671), CAST/EiJ 
(000928), and BTBR T+tf/J (002282). Mice were singly housed for 1-3 days before being video 
recorded. On the recommendation of Jackson Laboratories, the CAST/EiJ mice (n=7) were 
segregated from our main mouse colony and housed in a quiet space where they were only 
disturbed for husbandry 2-3 times per week.  
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Data annotation  
Training videos were annotated using a freeware subtitle editing tool, Subtitle Workshop 
freeware subtitle editing tool from UroWorks available at 
http://www.urusoft.net/products.php?cat=sw&lang=1.  A team of twelve investigators was 
trained to annotate mouse home cage behaviors. Behaviors of interest included: drinking, eating, 
grooming (defined by a fore- or hind-limbs sweeping across the face or torso, typically the 
animal is reared up), hanging (defined by a grasping of the wire bars with the fore-limbs and/or 
hind-limbs with at least two limbs off the ground), rearing (defined by an upright posture and 
forelimbs off the ground, and standing against a wall cage), resting (defined by inactivity or 
nearly complete stillness), walking (defined by ambulation) and micro-movements (defined by 
small movements of the animal’s head). For the ‘full database’ to be annotated, every hour of 
videos took about 22 hours of manual labor for a total of 230 hours of work. For the ’clipped 
database’ it took approximately 50 hours (9 hrs/hr of video) to manually score 9,600 clips of a 
single behavior (corresponding to 5.4 hours of clips compiled from around 20 hours of video). 
We performed second screening to remove ambiguous clips (leading to 4,200 clips remaining) 
such that the human-to-human agreement in terms of this library is very close to 100%. This 
second screening took around 40 hours for the 2.5 hour long ‘clipped dataset’. 

Training and testing the system  
The results in Table 1 were obtained using a leave-one-out cross-validation procedure. This 
consists in using all except one videos to train the system and the left out video to evaluate the 
system and repeating this procedure (n=12) times for all videos. Such procedure has been shown 
to provide the best estimate of the performance of a classifier and is standard in computer vision. 
This guarantees that the system is not just recognizing memorized examples but generalizing to 
previously unseen examples. The accuracy of the system was measured on a frame-by-frame 
basis except on the ‘clipped dataset’ where a single label was obtained for an entire sequence 
consisting of a single behavior via voting across frames.  

Comparison with the commercial software  
In order to compare our system with the leading commercial software HomeCageScan 2.0 
(CleverSys Inc), we manually matched the 38 output labels from the HomeCageScan to the 8 
behaviors used in the present work. For instance, actions such as ‘slow walking’, ‘walking left’ 
and ‘walking right’ were all re-assigned to the ‘walking’ label to match against our annotations. 
With the exception of ‘jump’, we matched all other HomeCageScan output behaviors to one of 
our 8 behaviors of interest (see Table S1 for a listing of the correspondences used between the 
labels of the HomeCageScan and our system). As with the UCSD system, it is possible that 
further fine-tuning of HomeCageScan parameters could have improved upon the accuracy of the 
scoring. 

Statistical analysis 
To detect differences among the 4 strains of mice ANOVAs were conducted for each type of 
behavior independently and Tukey’s post-hoc test was used to test pair-wise significances. All 
post-hoc tests were Bonferroni corrected for multiple comparisons. For testing significance of 
grooming we used a Student’s T test as we were only comparing between two groups (C57Bl/6J 
and BTBR) and we used a one-tailed test because we predicted that BTBR would groom more 
than C57Bl/6J.  
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Mouse strain comparisons 
Patterns of behaviors were computed from the system output by considering 4 non-overlapping 
6-hour long behavioral windows (corresponding to the first and second halves of the day and 
night periods) and calculating the distribution of behaviors across these windows. The resulting 
8-dimensional histogram vectors were then concatenating to obtain one single 32-dimensional 
vector for each animal. To visualize the data, we computed a dissimilarity matrix by calculating 
the Euclidean distance between all pairs of points and performed an unsupervised 
Multidimensional Scaling (MDS) analysis on the corresponding dissimilarity matrix.  This was 
done using the matlab command 'mdscale' with the Kruskal's normalized stress1 normalization 
criterion.  

In addition we conducted a pattern classification analysis on the patterns of behaviors by training 
and testing an SVM classifier directly on the 32-dimensional vectors. This supervised procedure 
was conducted using a leave-one-animal out approach, whereby 27 animals were used to train a 
classifier to predict the strain of the animal (CAST/EiJ, BTBR, C57Bl/6J or DBA/2J). The 
classifier was then evaluated on the remaining animal. The procedure was repeated 28 times 
(once for each animal) and performance averaged across runs. 
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Figure Legends 
Figure 1: Snapshots taken from representative videos for the eight home-cage behaviors of 
interest. 

 
Figure 2: Overview of the proposed system for monitoring the home-cage behavior of mice. The 
computer vision system consists of several modules. (A) A background subtraction procedure is 
first applied to an input video to compute a mask for pixels belonging to the animal vs. the cage. 
Two types of features are then computed: (C) Position- and velocity-based features as well as 
(D) space-time motion features. Position- and velocity-based features are computed directly from 
the segmentation mask based on the instantaneous location of the animal in the cage. In order to 
speed-up the computation of the motion-features (panel D) is performed on a sub-window 
centered on the animal and derived from the segmentation mask (panel B). ). These motion 
features are obtained by combining the response of V1-like afferent motion units that are tuned 
to different directions of motion (see inset E). The output of this hierarchical pre-processing 
module consists of a basic dictionary of about 300 space-time motion features that is then passed 
to a statistical classifier (called HMMSVM, see panel F and text for details) to reliably classify 
every frame of a video sequence into a behavior of interest. (F) Hidden Markov Model Support 
Vector Machine. (G) Ethogram of a single BTBR mouse From the sequence of labels obtained 
from the computer software from a 24-hr continuous recording session for one of the wild-like 
mice an ethogram can be computed. The inset on the left provides a zoomed in version 
corresponding to the first 30 minutes of recording. The animal is highly active as a human 
experimenter just placed the mouse in a new cage prior to starting the video recording. The 
animal’s behavior alternates between ‘walking’, ‘rearing’ and ‘hanging’ as it explores its new 
cage. 

 

Figure 3: Confusion matrices for comparing the system to human scoring and human to human 
scoring. The confusion matrix for the computer system (A) was obtained by measuring the 
agreement between the system (row) and one arbitrarily chosen human scorer (column); the 
confusion matrix for human (B) was obtained by measuring the agreement between two 
independent scorers; and the confusion matrix for HCS (“commercial system”) (C) was obtained 
by measuring agreement between the software and one arbitrarily chose human scorer (column). 

 

Figure 4: Patterns of behaviors obtained for ‘walking’ and ‘hanging’ behaviors for each of the 
four strains of mice. The CAST/EiJ (wild-like) strain is much more active than the three other 
strains as measured by their hanging and walking behaviors. Shaded areas correspond to 95% 
confidence intervals and the darker line corresponds to the mean. The intensity of the colored 
bars on the top corresponds to the number of strains that exhibit a statistically significant 
difference with the corresponding strain (indicated by the color of the bar). The intensity of one 
color is proportional to (N-1), where N is the number of groups whose mean is significantly 
different from the corresponding strain of the color. For example, CAST/EiJ at time 0 to time 7 
for walking is significantly higher than the three other strains so N is 3 and the red is the highest 
intensity. 
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Figure 5:  (A) Average total resting time for the four strains of mice. (B) Average duration of 
resting bouts. While all strains tend to spend roughly the same total amount of time sleeping, the 
CAST/EiJ tends to sleep fewer longer stretches. Mean +/- SEM are shown, *P<0.01 by ANOVA 
with Tukey’s post test. (C) Average grooming duration exhibited by the BTBR strain as 
compared to the C57Bl/6J strain over one hour.  Here we show that using the computer system 
we were able to match manual scoring by an experimenter and reproduce the key result from the 
study by McFarlane et al (McFarlane, Kusek et al. 2008) demonstrating the propensity of the 
BTBR strain to groom more than a control C57Bl/6J. Mean +/- SEM are shown, *P<0.05 by 
Student’s T test, one-tailed. (P = 0.04 for System and P =0.0254 for Human). Characterizing the 
genotype of individual animals based on the patterns of behavior measured by the computer 
system. (D) Multi-Dimensional Scaling (MDS) analysis performed on the distributions of 
behavior types measured over 4 (6 hour-long) windows. The MDS analysis reveals that animals 
tend to cluster into strains (with the exception of 2 BTBR mice that tended to behave more like 
DBA/2J). (E) Pattern classification analysis performed on the distributions of behavior types 
measured over 4 (6 hour-long) windows. Using an SVM classifier on the patterns of behavior we 
were able to predict the genotype of individual animals with accuracy of 90% (chance level is 
25% for this 4-class classification problem). The confusion matrix shown here indicates the 
probability with which an input pattern of behavior (along the rows) was classified as each of the 
4 alternative strains (along the columns). The higher probabilities along the diagonal and the 
lower off-diagonal values indicate successful classification for all categories. For example, the 
value of 1 for C57Bl/6J means that this strain was perfectly classified. 

 

 

 

Table 1: System evaluation on the ‘full database’ for the recognition of 8 behaviors. Numbers 
correspond to accuracy measured by % correct (chance level is 12.5% for the 8-class 
classification problem).  
 

 Our system  CleverSys 
commercial system Human 

Frames annotated by 2 
independent labelers 
(~ 1.6 hrs of video) 

71.0 % 56.0 % 71.6 % 

All frames  
(> 10 hrs of video) 69.5 % 57.4 %  
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SUPPLEMENTARY TEXT 
Sensor-based approaches. Previous automated systems (e.g., (Noldus, Spink et al. 2001; 
Dell'Omo, Vannoni et al. 2002; Jackson, Tallaksen-Greene et al. 2003; Zorrilla, Inoue et al. 
2005; Goulding, Schenk et al. 2008)) have relied for the most part on the use of sensors to 
monitor behavior. Popular sensor-based approaches include the use of PVDF sensors (Megens, 
Voeten et al. 1987), infrared sensors (Tamborini, Sigg et al. ; Casadesus, Shukitt-Hale et al. 
2001; Dell'Omo, Vannoni et al. 2002; Tang and Sanford), RFID transponders (Lewejohann, 
Hoppmann et al. 2009) as well as photobeams (Goulding, Schenk et al. 2008). Such approaches 
have been successfully applied to the analysis of coarse locomotion activity as a proxy to 
measure global behavioral states such as active vs. resting. Other studies have successfully used 
sensors for the study of food and water intake (Gannon, Smith et al. 1992; Zorrilla, Inoue et al. 
2005). However the physical measurements obtained from these sensor-based approaches limit 
the complexity of the behavior that can be measured. This problem remains even for commercial 
systems using transponder technologies such as the IntelliCage system (NewBehavior Inc). 
While such systems can be effectively used to monitor the locomotion activity of an animal as 
well as other pre-programmed activities via operant conditioning units located in the corners of 
the cage, such systems alone cannot be used to study natural behaviors such as grooming, 
sniffing, rearing, etc. 
 
Video-based approaches. One of the possible solutions to address the problems described above 
is to rely on vision-based techniques. In fact such approaches are already bearing fruit for the 
automated tracking (Khan, Balch et al. 2005; Fry, Rohrseitz et al. 2008; Veeraraghavan, 
Chellappa et al. 2008) and recognition of behaviors in insects (Branson, Robie et al. 2009; 
Dankert, Wang et al. 2009). Several open-source and commercial computer-vision systems for 
the tracking of rodents have been developed (van Lochem, Buma et al. 1998; Noldus, Spink et al. 
2001; Spink, Tegelenbosch et al. 2001; Twining, Taylor et al. 2001; Branson and Belongie 2005; 
Zurn, Jiang et al. 2007; Leroy, Stroobants et al. 2009). As for sensor-based approaches, such 
systems are particularly suitable for studies involving coarse locomotion activity based on spatial 
measurements such as the distance covered by an animal or its speed (Millecamps, Jourdan et al. 
2005; de Visser, van den Bos et al. 2006; Bonasera, Schenk et al. 2008; Donohue, Medonza et al. 
2008). Video-tracking based approaches tend to be more flexible and much more cost efficient. 
However, as in the case of sensor-based approaches, these systems alone are not suitable for the 
analysis of fine animal activities such as grooming, sniffing or rearing.  

The first effort to build an automated computer vision system for the monitoring of rodent 
behavior was initiated at USC. As part of this SmartVivarium project, an initial computer-vision 



system was developed for both the tracking (Branson and Belongie 2005) of the animal as well 
as the recognition of five behaviors (eating, drinking, grooming, exploring and resting, see ref. 
(Dollar, Rabaud et al. 2005)). Xue & Henderson recently described an approach (Xue and 
Henderson 2006; Xue and Henderson 2009) for the analysis of rodent behavior however the 
system was only tested on synthetic data (Henderson and Xue) and a very limited number of 
behaviors. Overall, none of the existing systems (Dollar, Rabaud et al. 2005; Xue and Henderson 
2006; Xue and Henderson 2009) have been tested in a real-world lab setting using long 
uninterrupted video sequences and containing potentially ambiguous behaviors or at least 
evaluated against human manual annotations on large databases of video sequences using 
different animals and different recording sessions. Recently a commercial system 
(HomeCageScan by CleverSys, Inc) was also introduced and the system was successfully used in 
several behavioral studies (Chen, Steele et al. 2005; Steele, Jackson et al. 2007; Goulding, 
Schenk et al. 2008; Roughan, Wright-Williams et al. 2008). Such commercial products typically 
rely on relatively simple heuristics such as the position of the animal in the cage to infer 
behavior. They thus remain limited in their scope (tracking of simple behaviors) and error-prone 
(see ref. (Steele, Jackson et al. 2007) and Table 1 for a comparison against our manual 
annotations). In addition, the software packages are proprietary: there is no simple way for the 
end user to improve its performance or to customize it to specific needs.  

 

SUPPLEMENTARY METHODS 
System Overview. Figure S1 provides an overview of the computer vision system used. The 
system takes as input a video sequence recorded from a video camera. It then converts every 
frame of a video sequence into a representation, which is suitable for the recognition of 
behaviors. This representation is based on a feature vector, where each coefficient of this vector 
corresponds to the degree of similarity between stored 3D space-time motion templates learned 
from the set of behaviors of interest and the current frame. An action label is then obtained for 
every frame of a video by passing this feature vector to a temporal model for classification. The 
temporal model used here is a hidden Markov Support Vector Machine (HMMSVM) (Altun, 
Tsochantaridis et al. 2003; Tsochantaridis, Hofmann et al. 2004; Tsochantaridis, Joachims et al. 
2005; Joachims, Finley et al. 2009), which is an extension of the popular Support Vector 
Machine classifier developed by Vapnik (Vapnik 1995) in the 90’s, for sequence tagging. This 
temporal model was trained using manually labeled examples extracted from the video database 
denoted ‘full database’ in the main text. This database involved labeling every frame for 12 
videos (from different mice recorded in different conditions) for a total of 10.4 hours of 
annotated video. The output of the system is thus a label corresponding to a specific behavior of 
interest for every frame of a video sequence. 
The learning of the basic dictionary of 3D space-time motion-feature templates as well as the 
feature computation and the temporal model are described in detail in the following sections.  
The approach taken here builds directly on the work by Jhuang et al. (Jhuang, Serre et al. 2007) 
(which itself builds on the work by Giese & Poggio (Giese and Poggio 2003)). The system is 
based on the organization of the dorsal stream of the visual cortex and was shown to compete 
with state-of-the-art computer vision systems. The system is organized hierarchically: Low-level 
features are first extracted at the bottom layer and progressively transformed to become 
increasingly complex and invariant. This is done through successive S and C stages of 
processing (see (Jhuang, Serre et al. 2007) for details). In the S1 stage, feature maps are obtained 



by convolving an input sequence with a spatio-temporal filter bank (9 pixels x 9 pixels x 9 
frames) tuned to four different directions of motion. This linear stage was followed by a non-
linear contrast normalization whereby the filter response was divided by the L1 norm of the 
corresponding patch of image. This results in four distinct S1 maps for every input frame where 
each map corresponds to one direction of motion and the value of each pixel on these maps is 
directly proportional to the amount of motion presented in the corresponding direction. The 
nature of the non-linearity contrast normalization (i.e., L1 vs. L2 vs. no-normalization), the 
number of motion directions used and the resolution of the input video sequences were carefully 
optimized in a preliminary experiment carried on a subset of the clipped database. 
Beyond this initial S1 stage, processing is then hierarchical: alternating between a template 
matching (S layers) and a max pooling operation (C layers) gradually increases feature 
complexity and translation invariance. That is, at the C1 stage some tolerance to small 
deformations is obtained via a local max operation over neighborhoods of S1 units (8x8 cells). 
Next, template matching is performed over the C1 maps, creating thousands of S2 maps. At each 
position a patch of C1 units centered at that position is compared to each of d prototype patches. 
Each prototype corresponds to a vector of size 4n2 obtained by cropping an n × n (n = 4, 8, 12, 
16) patch of C1 units at a given location and all 4 orientations. These d prototype patches 
represent the intermediate-level features of the model, and are randomly sampled from the C1 
layers of the training images in an initial feature-learning stage. At the top of the hierarchy, a 
vector of d position invariant C2 features is obtained by computing a global max for each of the 
d S2 feature maps.  
To select a more discriminant dictionary of motion patterns (and speed up the overall system), 
we applied a feature selection technique called zero-norm SVM (Weston, Mukherjee et al.) on 
the initial set of d C2 features. This was done by computing the feature responses for the original 
set of d C2 features for frames randomly selected from the ‘clipped’ database. Selection was then 
done in multiple rounds: In each round, an SVM classifier was trained on the pool of C2 features 
and the training set was re-weighted using the weights of the trained SVM. Typically this leads 
to sparser SVM weights at each stage leading to a final set of d’=300 features from an original 
set of d=12,000 features. 
 
Comparison with a benchmark computer vision system. The computer vision system used 
here for benchmark is the system developed by Dollar, Rabaud, Cottrell, & Belongie at the 
University of California (San Diego) as part of the SmartVivarium project (Belongie, Branson et 
al. 2005). The system has been shown to outperform several other computer vision systems on 
several standard computer vision databases and was tested for both the recognition of human and 
rodent behaviors (Dollar, Rabaud et al. 2005). The authors graciously provided the source code 
for their system. Training and testing of the corresponding system was done in the same way as 
for our system using a leave-one-out procedure using the ‘clipped dataset’ (see manuscript). Here 
we attempted to maximize the performance of the system by tuning some of the key parameters 
such as the number of features and the resolution of the videos used. Nevertheless we found that 
the default parameters (50 features and a 320x240 video resolution as used for our system) led to 
the best performance (81% vs. 93% for our system). It is possible however that further 
refinement of the corresponding algorithm could nevertheless improve its performance.  
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SUPPLEMENTARY FIGURES 
 

 
Figure S1: Distribution of behavior labels for the ‘clipped database’ over the number of clips (a) and total time (b). 
 
 
 
 
 
 

 
Figure S2: Distribution of behavior labels on the ‘full database’ annotated by one scorer (Set A) vs. set B (a subset 
of Set A), which was annotated by two scorers to evaluate the agreement between two independent scorers. 
  
   



 
Figure S3:  Single frames are ambiguous. Each row corresponds to a short video clip. While the leftmost frames 
(red bounding box) all look quite similar, they each correspond to a different behavior (text on the right side). 
Because of this ambiguity, frame-based behavior recognition is unreliable and temporal models that integrate the 
local temporal context over adjacent frames are needed for robust behavior recognition. 
 



 
HCS label System label 
Drink Drink 
Chew 
Eat 

Eat 

Groom Groom 
Hang Cuddled 
Hang Vertically 
Hang Vertically From Hang Cuddled  Hang 
Hang Vertically From Rear Up 
Remain Hang Cuddled 
Remain Hang Vertically 

Hang 

Awaken 
Pause 
Remain Low 
Sniff 
Twitch 

Micro-move 

Come Down 
Come Down From Partially Reared 
Come Down To Partially Reared 
Stretch Body 
Land Vertically 
Rear Up 
Rear up From Partially Reared 
Rear up To Partially Reared 
Remain Partially Reared 
Remain Rear Up 

Rear 

Sleep 
Stationary 

Rest 

Circle 
Turn 
Walk Left 
Walk Right 
Walk Slowly 

Walk 

Dig 
Forage 
Jump 
Repetitive Jumping 
Unknown Behavior 
Urinate 

Unknown Behavior 

 
Supplementary Table S1: HomeCage commercial system evaluation: Correspondence used for the labels. 
 




