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Deep Neural Network-Based Cooperative Visual
Tracking Through Multiple Micro Aerial Vehicles

Eric Price , Guilherme Lawless , Roman Ludwig, Igor Martinovic , Heinrich H. Bülthoff,
Michael J. Black , and Aamir Ahmad

Abstract—Multicamera tracking of humans and animals in out-
door environments is a relevant and challenging problem. Our
approach to it involves a team of cooperating microaerial vehi-
cles (MAVs) with on-board cameras only. Deep neural networks
(DNNs) often fail at detecting small-scale objects or those that are
far away from the camera, which are typical characteristics of a
scenario with aerial robots. Thus, the core problem addressed in
this letter is how to achieve on-board, online, continuous, and accu-
rate vision-based detections using DNNs for visual person tracking
through MAVs. Our solution leverages cooperation among multiple
MAVs and active selection of most informative regions of image.
We demonstrate the efficiency of our approach through simula-
tions with up to 16 robots and real-robot experiments involving
two aerial robots tracking a person, while maintaining an active
perception-driven formation. ROS-based source code is provided
for the benefit of the community.

Index Terms—Visual tracking, aerial systems: Perception and
autonomy, multirobot systems.

I. INTRODUCTION

HUMAN/ANIMAL pose tracking and full body pose es-
timation/reconstruction in outdoor, unstructured environ-

ments is a highly relevant and challenging problem. In indoor
settings, applications usually make use of body-mounted sen-
sors, artificial markers and static cameras. While such mark-
ers might still be usable in outdoor scenarios, dynamic ambient
lighting conditions and the impossibility of having environment-
fixed cameras make the overall problem difficult. On the other
hand, body-mounted sensors are not suitable for some kinds of
subjects (e.g., animals in the wild or large crowds of people).
Therefore, our approach to the aforementioned problem involves
a team of micro aerial vehicles (MAVs), tracking subjects by us-
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Fig. 1. Two of our self-designed octocopters cooperatively tracking a person
while maintaining a perception-driven formation. (In box) Closer view of one
octocopter.

ing only on-board monocular cameras and computational units,
without any subject-fixed sensor or marker. Among the several
challenges involved in developing such a system, multirobot
cooperative detection and tracking (MCDT) of a subject’s 3D
position is one of the most important. It is also the main focus
of this letter.

The key component of our MCDT solution is the per-
son detection method suitable for outdoor environments
and marker/sensor-free subjects. Deep convolutional neural
network-based (DNN) person detection methods are, unar-
guably, the state-of-the-art. DNNs have consistently shown to
outperform traditional techniques for object detection [1]. How-
ever, there are only few works that exploit the power of DNNs
for visual object detection on board MAVs. The limitations of
using DNNs on-board an MAV include i) their computational
requirements, ii) high communication bandwidth, if images are
shared and iii) information loss when down-sampling high res-
olution images.

In our approach, the mutual world knowledge about the
tracked person is jointly acquired by the multi-MAV system
during cooperative person tracking. Leveraging this and using
single shot multibox detector (SSD) [3] on a light-weight GPU
(Jetson TX1 [2]), we introduce a method that actively selects
the relevant region of interest (ROI) in images from each MAV
that supplies the highest information content. Our method not
only reduces the information loss incurred by down-sampling
the high-res images, but also increases the chance of the tracked
person being completely in the field of view (FOV) of all MAVs.

The core contributions of this letter are as follows.
� A real-time, continuous and accurate DNN-based multi-

robot cooperative detection and tracking method, which is
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designed and evaluated rigorously for a team of MAVs op-
erating in outdoor environments with only on-board cam-
era perception & computation.

� A method for statistically characterizing the DNN-based
detection measurement noise.

� Fully open source ROS-based implementation of our
method.

In the next section we situate our work within the state-
of-the-art. This is followed by a description of our system
design, theoretical details of our proposed MCDT approach and
characterization of detection measurement noise in Section III.
Section IV and V present our experimental results in real and
simulated scenarios, respectively. Section VI concludes the
article.

II. STATE-OF-THE-ART

Our approach to motion capture in outdoor scenarios involves
multiple MAVs. Unlike [4], where authors use MAV-mounted
depth sensors (Xtion) and stream depth images to a ground
station, we use only on-board RGB cameras and processing.
This allows us to do on-board motion capture in outdoor ambient
light conditions. In this paper, we address the key issue of MCDT
involved in developing such an outdoor motion capture system.

Multirobot cooperative tracking has been researched exten-
sively over the past years [5]–[7]. While the focus of most of
these methods is to improve the tracked target’s pose estimate
by fusing information obtained from teammate robots, recent
methods, e.g., [6], simultaneously improve the localization es-
timates of the poorly localized robots in addition to the tracked
target’s pose, within a unified framework. However, it is hard to
find any cooperative target tracking method that directly facil-
itates detections through cooperation among the robots. In this
letter we do so by sharing independently obtained measurements
among the robots, regarding a mutually observed object in the
world. Using these shared measurements, our MCDT method at
each MAV allows its detector to focus only on the relevant and
most informative ROIs for future detections.

Cooperative tracking of targets using multiple MAVs has also
attracted attention recently [8]–[10]. While some address the
problem of on-board visual detection and tracking using MAVs
[11], they still rely on hand-crafted visual features and traditional
detection approaches. Moreover, cooperation among multiple
MAVs using on-board vision-based detections is not well ad-
dressed. In this letter we address both of these issues by using
a DNN-based person detector that runs on board the MAVs
and sharing the detection measurements among the MAVs to
perform MCDT.

Deep CNN-based detectors currently require the parallel pro-
cessing power of GPUs. For MAVs, light-weight GPUs or
embedded solutions are critical requirements. In [12], Ralla-
palli et al. present an overview of the feasibility of deep neu-
ral network-based detectors for embedded and mobile devices.
Also, several recent works now consider airborne applications
of GPU-accelerated neural networks for computer vision tasks.
However, they mostly evaluate their performance in offline sce-
narios, without a flight capable implementation [13]. On the
other hand, there are some networks suitable for real time de-
tection and localization of arbitrary objects in arbitrary poses
and backgrounds. These include networks, such as, YOLO [14]
or Faster R-CNN [15], which are both outperformed in speed
and detection accuracy by the SSD Multibox [3]. Hence, in our

Fig. 2. Overall architecture of our multi-MAV system.

work we use the latter. Furthermore, we ensure its real-time
operation for a camera of any given resolution. We achieve this
through our cooperative approach involving active selection of
the most informative ROI, a method that is novel to the best of
our knowledge.

III. SYSTEM OVERVIEW AND THE PROPOSED APPROACH

A. System Overview

Our multi-MAV system does not consist of a central compu-
tational unit. Each of our MAVs is equipped with an on-board
CPU and GPU to perform all computations. Although our ar-
chitecture does not depend on a centralized communication net-
work, the field implementation is done through a central wifi
access point. Each MAV runs its own instance of the software
modules (blue and green blocks) as outlined in Fig. 2. The data
shared among MAVs consists of their self-pose estimates and
the detection measurements of the person.

B. Preliminaries

Let there be K MAVs R1 , . . . , RK tracking a person P . Let
the 6D pose of the kth MAV in the world frame at time t be
given by [xRk

t ΦRk
t ] ∈ R6 , obtained using a self-localization

system. xRk
t denotes the 3D position and ΦRk

t represents the 3
orientation angles. The uncertainty covariance matrix associated
to the MAV pose is given as ΣRk

t ∈ R6×6 . Each MAV Rk has
an on-board, monocular, perspective camera, rigidly attached to
the MAV’s body frame. These cameras do not independently
pan, tilt or physically zoom, i.e., they are not attached using a
gimbal. Let the position of the tracked person in the world frame
at time t be given by xP

t ∈ R3 . We assume that the person is
represented by the position of its centroid in the 3D Euclidean
space. The uncertainty covariance matrix associated to it is given
by ΣP

t ∈ R3×3 . Note that all variables are in the world frame
coordinates, unless a left-superscript is used (e.g., I for image
frame).

C. DNN-Based Cooperative Detection and Tracking

Algorithm 1, which is a recursive loop, outlines our CDT
approach for MAV Rk . Each MAV runs an instance of this
algorithm in real time. The algorithm is based on an EKF where
the inputs are the tracked person’s 3D position estimate xP

t−1
at the previous time step t− 1, the covariance matrix ΣP

t−1

associated to that estimate and ROIRk
t−1 , also computed at t− 1.

The other input is the image IRk
t at t. Lines 1–11 correspond to

the iteration of the algorithm at t.



PRICE et al.: DNN-BASED COOPERATIVE VISUAL TRACKING THROUGH MULTIPLE MAVs 3195

Algorithm 1: Cooperative Detector and Tracker (CDT) on
MAV Rk with inputs {xP

t−1 ,Σ
P
t−1 ,ROIRk

t−1 , I
Rk
t }.

1: {zP,Rk
t ,QP,Rk

t } ← DNN person detector
(IRk

t ,ROIRk
t−1).

2: Transmit {[xRk
t ΦRk

t ], ΣRk
t , zP,Rk

t and QP,Rk
t } to

all MAVs Rm ; m = 1, . . . ,K; m �= k

3: Receive {[xRm
t ΦRm

t ], ΣRm
t , zP,Rm

t and QP,Rm
t }

from all other MAVs Rm ; m = 1, . . . , K; m �= k

4: {x̄P
t , Σ̄P

t } ← EKF Prediction {xP
t−1 ,Σ

P
t−1} using

exponentially decelerating state transition model.
5: for m = 1 to K do
6: {xP

t ,ΣP
t } ← EKF Update {x̄P

t , Σ̄P
t , zP,Rm

t ,
QP,Rm

t }
7: end for
8: {x̂P

t+1 , Σ̂
P

t+1} ← Predict for next ROI {xP
t ,ΣP

t }
9: ROIRk

t ← Calculate next ROI{x̂P
t+1 , Σ̂

P

t+1}
10: Update self-pose bias{zP,Rk

t , QP,Rk
t ,xP

t ,ΣP
t }

11: return {xP
t ,ΣP

t ,ROIRk
t }

Line 1 of Algorithm 1 performs the person detection using a
DNN-based detector on a ROI ROIRk

t−1 provided to it from the
previous time step t− 1 and the image IRk

t at the current time
step t. Using raw detection measurements on the image (ex-
plained below), the detection measurement in the world frame
is computed as a mean zP,Rk

t and a noise covariance matrix
QP,Rk

t . The detection is performed on the latest available image
and uses only the GPU. If this resource is busy processing a
previous image, the detection (and therefore the EKF update,
Line 6) is skipped. Note that the detection computation time of
our DNN is independent of the size of the ROI. It operates on a
fixed input size of 300× 300 pixel and takes approximately 250
ms for one detection on our dedicated on-board hardware. To
this end, we scale down the ROI to 300× 300 pixel regardless
of the ROI’s original size before the DNN takes it as input.

Raw detection measurements on the image consist of a set of
rectangular bounding boxes with associated confidence scores
and a noise covariance matrix. To obtain a model of this noise,
we performed a characterization of the DNN-based detector,
explained in Section III-C1. The raw detection measurements
are transformed first to the camera coordinates and finally to the
world coordinates. This transformation incorporates the noise
covariances in the raw detection measurements and the MAV’s
self-pose uncertainty covariance. Note that the raw measure-
ments are in the 2D image plane, where as the final detection
measurements are computed in the 3D world frame. For this,
we make a further assumption on the height of the person being
tracked. We assume that the person’s height follows a distri-
bution H ∼ N (μH , σ2

H ). While we assume that the person is
standing or walking upright in the world frame, the model can
be adapted to consider a varying pose (e.g., sitting down), for
instance, by increasing σ2

H . Finally, the overall transformation
of detections from image frame to world frame measurements
also takes σ2

H into account. For mathematical details regarding
the transformations that include propagating noise/uncertainty
covariances, we refer the reader to [16]. Note that we also do not
assume that the tracked person is on a flat surface. The terrain
could be uneven or sloped. As the 3D world coordinate refers to

the GPS and barometer-derived world coordinate system used
by the MAV to self-localize, the assumption on the human height
distribution suffices to compute the 3D position of the person in
the GPS world coordinate system.

In Lines 2–3 of Algorithm 1 we transmit and receive data
among the robots. This includes self-pose estimates (used for
inter-robot collision avoidance) and the detection measure-
ments, both in the world frame. Line 4 performs the prediction
step of the EKF. Here we use an exponentially decelerating state
transition model. When the algorithm continuously receives
measurements allowing continuous update steps, predictions
behave similar to a constant velocity model. However, when
the detections measurements stop arriving, the exponential
decrease in velocity allows the tracked person’s position
estimate to become stationary. This is an important property of
our CDT approach, as the ROI is calculated from the tracked
person’s position estimate (Line 8). In the case of having
no detection measurements, the uncertainty in the person’s
position estimate would continuously grow, resulting in a larger
ROI. This is further clarified in the explanation of Lines 8–9.

In Lines 5–7 we fuse measurements from all MAVs (including
self-measurements). Since these measurements are in the world
frame, fusion is done by simply performing an EKF update for
each measurement.

In Lines 8–9 of Algorithm 1 lies the key novelty of our ap-
proach. We actively select a ROI ensuring that future detections
are performed on the most informative part of the image, i.e.,
where the person is, while keeping the computational complex-
ity independent of camera image resolution. As the computa-
tional complexity of DNN-based detectors grows very fast with
the image resolution, using our approach we are still able to
use a DNN-based method in real-time and with high detection
accuracy. The ROI is calculated as follows. First (Line 8), using
a prediction model similar to the EKF prediction and the esti-
mates at the current time step (xP

t and ΣP
t ), we predict the state

of the person in the next time step t + 1 as {x̂P
t+1 , Σ̂

P

t+1}. Then,
in Line 9, using the predicted 3D position of the person, we
calculate the position and associated uncertainty of the person’s

head {x̂Ph
t+1 , Σ̂

Ph

t+1} and feet {x̂Pf

t+1 , Σ̂
Pf

t+1}. For this we assume
the height distribution model for a person, as introduced previ-
ously, and that the person is in an upright position. x̂P

t+1 , x̂Ph
t+1

and x̂Pf

t+1 are back-projected onto the image frame along with

the uncertainties and are denoted as {I x̂P
t+1 , I Σ̂

P

t+1} (person’s

center), {I x̂Ph
t+1 , I Σ̂

Ph

t+1} (head) and {I x̂Pf

t+1 , I Σ̂
Pf

t+1} (feet). The
center-top pixel of the ROI is now given by

ROIRk
t {center, top} =

(
I x̂P

t+1 ,
I ŷPh

t+1 + 3 I σ̂y
Ph

t+1

)
(1)

and the the center-bottom pixel given by

ROIRk
t {center,bottom} =

(
I x̂P

t+1 ,
I ŷ

Pf

t+1 − 3 I σ̂y
Pf

t+1

)
,

(2)
where I x̂P

t+1 is the x-axis component of I x̂P
t+1 . I ŷPh

t+1 and I ŷ
Pf

t+1

are the y-axis components of I x̂Ph
t+1 and I x̂Pf

t+1 , respectively.
I σ̂y

Ph

t+1 and I σ̂y
Pf

t+1 are the standard deviations in the y-axis

computed directly from I Σ̂
Ph

t+1 and I Σ̂
Pf

t+1 , respectively. Lastly,
the left and right borders of the ROI are calculated to match
a desired aspect ratio. We chose the aspect ratio (4 : 3) that
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Fig. 3. (a) Detection accuracy w.r.t. the relative person height in the ROI.
Images are divided into bins according to the height. (b) Error distribution of
SSD Multibox detections in X and Y components.

corresponds to the majority of the training images for optimal
detection performance.

Line 10 of Algorithm 1 performs the bias update of the MAV
self-pose. Self-pose estimates obtained using GPS, barometer
and IMU sensors (as is the case of our self-localization system)
often have a time-varying bias [17]. The self-pose biases of each
MAV cause mismatches when fusing detection measurements in
the world frame, which are detrimental to our MCDT approach
because i) the calculated ROI for person detection will be bi-
ased and will often not include the person, and ii) the person’s
3D position estimate will be a result of fusing biased measure-
ments. To truly benefit from our MCDT approach, we track and
compensate the bias in each MAV’s localization system (see
III-A). We track these biases using an approach based on [17].
The difference between a MAV’s own detection measurements
and the tracked estimate (after fusion) is used to update the bias
estimate.

1) Noise Quantification of a DNN-based Object Detector:
Our MCDT approach depends on a realistic noise model of the
person detector. To this end, we performed a noise quantification
of the pre-trained SSD Multibox detector [3]. The output of the
detector is, for each detection, a bounding box, a class label and
a confidence score. The input image size is defined at training
time. We used a pre-trained 300× 300 pixel network (SSD300
trained on the PASCAL VOC 2007 + 12 dataset) in this work.
We quantify the detection noise with respect to (w.r.t.) the size
of the detections, i.e., smaller and distant, or larger and closer
to the camera. To this end, we created an extended test set
from the PASCAL VOC 2007 dataset with varying levels of
downscaling and upscaling of the detected person similar to
SSD’s training data augmentation in the learning phase. We
selected images with a single, non-truncated person to avoid the
detection association problem.

Statistical analysis using the pre-trained person detector in
our extended test set was performed. As the test set has images
of different sizes, we calculate all measures relative to their
image size. Fig. 3(a) shows the detection accuracy, using the
Jaccard index, relative to the person height. It is evident that even
though the detection accuracy for a given minimum confidence
threshold is nearly constant w.r.t. the analyzed ROI, the absolute
error decreases with a smaller ROI. The chance of successful
detection falls significantly for relative sizes below 30% of the
ROI and goes down to zero at 10%, thus forming an upper
boundary for the desired ROI size. This analysis clearly justifies

the necessity of our MCDT approach with active selection of
ROIs.

Further analysis is presented Fig. 3(b), where we show the
relative error in the detected person’s position over all test im-
ages. The error is shown to be well described by a Gaussian
distribution. We performed similar analysis on the errors of
each detection for the top, bottom, left and right-most points
of the detection bounding box at different relative sizes. We
found all noises to be similarly well described by Gaussian dis-
tributions, without significant correlations between them. Thus,
the person detection noise can be well approximated by a con-
stant variance model. The values we obtained for SSD Multibox
detection’s noise variances for each side of the detection bound-
ing boxes, relative to ROIs, are the following. σ2

top = 0.0014,
σ2

bottom = 0.0045, σ2
left = 0.0039 and σ2

right = 0.0035.

D. MPC-Based FC and Obstacle Avoidance Module

The objective of each MAV in our FC is to maintain i) a
pre-specified horizontal (normal to gravity direction) distance
dper to the tracked person, ii) a pre-specified altitude hfix (in
world frame) and iii) its yaw orientation towards the tracked
person. Additionally, each MAV must adhere to the constraints
of i) maintaining a pre-specified collision distance threshold
dcol from every teammate MAV and ii) staying within a pre-
specified bounding box (e.g., legally permitted flyable zone).
Algorithm 2 outlines our FC strategy. Each MAV Rk runs an
instance of Algorithm 2 at every time step t. In line 1, MAV Rk

computes its desired pose x̌Rk
t using simple trigonometry. In line

2, an MPC based planner similar to [18] solves a 3D optimal
control problem (OCP) with receding time horizon of size N .
We consider nominal accelerations [uRk

t (0) · · ·uRk
t (N)]� as

the input vector of the OCP describing the translational motion
of the MAV. The discrete-time state of the OCP consists of the
MAV Rk ’s position xRk

t (n) and velocity ẋRk
t (n). The discrete-

time state-space equations at the nth MPC step (different from
time step t) with sampling time Δt are given by

uRk
t (n)= ẍRk

t (n) (3)
[
xRk

t (n+1)ẋRk
t (n+1)

]�
= A

[
xRk

t (n)ẋRk
t (n)

]�
+BuRk

t (n)
(4)

where A =
[
I3 ΔtI3
03 I3

]
, B =

[
Δt2

2 I3
ΔtI3

]
.

The convex quadratic cost function of the OCP is

JOCP = arg min
u

((
N∑

n=0

(
‖uRk

t (n)‖2ΩC

))

+
∥∥∥∥
[
xRk

t (N+1) ẋRk
t (N+1)

]�
−

[
x̌Rk

t 0
]�∥∥∥∥

2

Ω term

)
,

(5)

subject to the dynamics mentioned above and the following state
and input constraints.

umin ≤ uRk
t (n) ≤ umax (6)

xmin ≤ xRk
t (n) ≤ xmax , ẋmin ≤ ẋRk

t (n) ≤ ẋmax . (7)
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Algorithm 2: MPC-Based Formation Controller and Ob-
stacle Avoidance on MAV Rk with Inputs {xP

t , xRm
t ;m =

1 : K}.
1: {x̌Rk

t } ← Compute Destination Pose {xP
t ,xRk

t ,
dper , hfix}

2: {xRk
t (1)} ← Solve MPC for {x̌Rk

t ,xRk
t }

3: {γRk
t (1)} ← Compute Desired Yaw {xRk

t (1),xP
t }

4: if xRk
t (1) within collision distance threshold (dcol) for

any {xRm
t ;m = 1 : K,m �= k} then

5: {x̂Rk
t (1)} ← Potential field avoidance {xRk

t (1)}
6: {γ̂Rk

t (1)} ← Re-compute Desired Yaw
{x̂Rk

t (1),xP
t }

7: Transmit x̂Rk
t (1), γ̂Rk

t (1) to Low-level Controller.
8: else
9: Transmit xRk

t (1), γRk
t (1) to Low-level Controller.

10: end if

Ωterm and ΩC are the weight matrices for terminal state and
input cost. Terminal state is set to be the computed desired posi-
tion x̌Rk

t and zero velocity. The MPC solver results in the opti-
mal control inputs [uRk

t (0) · · ·uRk
t (N)]� and the corresponding

trajectory [xRk
t (1) ẋRk

t (1) · · ·xRk
t (N + 1) ẋRk

t (N + 1)]� to-
wards the desired position (except the desired yaw). We use
the first step position component xRk

t (1) of the output trajec-
tory as the input to the low-level flight controller (line 9). In line
3, the desired yaw angle is calculated using simple trigonometry
with the next 3D position of the MAV and the current pose of
the person.

The MPC solver considers obstacle-free space. This is done
to avoid non-convexity introduced by considering obstacles di-
rectly within the MPC formulation. Subsequently, to account
for dynamic obstacles in the environment (teammate MAVs),
we use the classical potential-field based obstacle avoidance
algorithm on top of the MPC solution. Lines 3–5 check the
presence of teammate MAVs within a distance threshold dcol of
the MAV Rk to activate the avoidance and re-compute xRk

t (1)
as x̂Rk

t (1). Consequently, desired yaw angle is also recomputed
in line 6. Recall that MAVs communicate their self-pose to
each other over wireless network. Generalization of the avoid-
ance method to static obstacles in the environment would be
straightforward. An alternative approach would be to enforce a
formation geometry that makes the MAVs keep a distance be-
tween each other. However, we did not employ that approach
for two main reasons. First, its formulation will lead to non-
convex constraints and would require a non-convex MPC-based
(NMPC) approach. Second, by following a fixed geometry we
could be limiting the viewpoints of the UAVs from where the
tracked person is visible, e.g., due to static obstacles between
the UAV and the tracked person. Finally, either in line 7 or 9,
way-point commands consisting of the next time-step pose and
desired yaw angle are sent to the low-level flight controller. The
latter is essentially assumed to be a position and yaw controller.

IV. REAL ROBOT EXPERIMENTS AND RESULTS

A. Hardware, Software and the Experimental Setup

To evaluate our approach, we conducted real robot experi-
ments on a team of two self-designed 8-rotor MAVs (see Fig. 1)

TABLE I
TRACKED PERSON’S WORLD-FRAME ESTIMATION ERRORS W.R.T GT

tracking a person. Each MAV is equipped with a 2MP HD cam-
era, a computer with an Intel i7 processor, an NVIDIA Jetson
TX1 embedded GPU and an OpenPilot Revolution1 flight con-
troller board. We use the flight controller’s position and yaw
controller as well as its GPS and IMU-based self-pose estima-
tion (localization) functionalities. Self-pose estimates and IMU
sensor data are updated and logged at 100 Hz.

We also mounted an Emlid Reach differential GPS receiver
on each MAV and 2 such receivers on either shoulder of the
tracked person in order to obtain the ground truth (GT) position
estimates of the MAVs as well as the person. Note that the data
from this differential GPS system was not used online for flight
control or target state estimation during the experiments.

We use a ROS Multi-Master setup over Wifi. Each MAV con-
tinuously captures and stores images from the camera at 40 Hz.
The on-board GPU runs SSD-Multibox [3]. As described in
Section III, ROIs of images down-sampled to 300× 300 pixel
are sent to the GPU. The detection frame rate achieved is
3.89 Hz. Using these detections, each MAV runs Algorithms 1
and the FC, described in the previous section, to achieve a
perception-driven formation in order to accurately track and fol-
low a person walking on the ground with variable speeds and in
varying trajectories. In all flight experiments we set dcol = 5 m,
dper = 6 m and hfix = 6 m above the origin of the experiment
field. Note that our actual implementation of the EKF presented
in Algorithms 1 also has a backtracking capability.

To prevent inter-MAV collisions, communicated teammate
positions are used in the potential field-based method as de-
scribed previously. Moreover, to compensate for their self-pose
inaccuracies, the MAVs need to avoid each other with high
enough distance margin. It is therefore necessary that at least
nearby robots can communicate with enough bandwidth to avoid
colliding with each other. Detection measurements of the per-
son and the MAVs self-pose estimates are very-low-bandwidth
data points. We can therefore assume that congestion will not
occur even in a relatively larger team of MAVs and at least a
percentage of all sent messages reach their destination at all
times.

We performed 2 separate flight experiments. While the first
was performed at twilight and lasted 220 s, the second was
performed at noon for 180 s, both under clear skies. Note that we
obtained very similar person tracking estimates from both MAVs
as there were little issues with inter-MAV communication. Thus,
tracking results from only MAV 1 are discussed.

B. Results and Comparisons w.r.t. Ground Truth

Results of the tracked position estimate of the person from
both flight experiments are presented in Table I, Fig. 4 and in
the accompanying video and multimedia material. The error
is calculated as the difference between the estimated position
by our proposed method online during the flight on-board the

1OpenPilot: http://www.librepilot.org/site/index.html
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Fig. 4. Tracked person’s trajectory comparison for both experiments. (a) Twilight Experiment. (b) Noon Experiment.

TABLE II
MAV 1 LOCALIZATION ERRORS W.R.T GT

MAVs and the corresponding GT obtained by the differential
GPS at each time-step. Let the errors in each dimension of
the person’s position estimate be ex , ey and ez . In Table I,
we present the mean and the variance of i) 3D Euclidean dis-

tance error (
√

e2
x + e2

y + e2
z ) and ii) 2D Euclidean distance er-

ror (
√

e2
x + e2

y ). Accompanying videos display the tracked per-

son’s GT (in green) and the estimated trajectories (in blue) with
3-sigma error bounds (in pink).

From Tables II and III, it is evident that the error in the self-
pose estimate of the MAVs is high. This is mainly due to the
fact that during flight experiments, the MAVs compute a (biased)
self pose estimate based on their regular on-board GPS receiver
and IMU, both comparable to those used in consumer grade
drones and smartphones. This regular GPS receiver contributes
to the majority of the self localization error, which can be several
meters and different for different GPS modules. Its accuracy also
depends on how many satellites it receives data from. Hence,
it can vary over the course of a day. This is evident from the
different self-pose accuracies of the same MAVs for noon and
twilight experiments.

From Table I, we see that the mean error in the tracked es-
timate is in the order of decimeters. This occurs mainly due
to a noticeable high bias in the z-component of the estimate.
Contributing factors to this are i) deviation between the actual
and the assumed height of the person ii) on-board GPS be-
ing less accurate in vertical than in horizontal direction and
iii) air pressure fluctuations caused by wind, degrading the
MAV’s self-localization by affecting the barometric altimeters.
While the first reason is likely responsible for the constant part
of the bias, the other two reasons contribute to drifts in the bias
over time.

When interpreting the tracking results from Table I, it should
be noted that all estimates and errors are in the world refer-
ence frame. As MAVs have significant self-localization errors of
∼ 1 m (see Tabs. II and III), the tracked person’s world-frame
estimates are heavily affected by them. This also implies that
person’s tracked position estimate has a significantly lower error
in the MAVs’ local frames. Furthermore, the tracked estimate
(see Tab. I) has a low variance of 0.19 m2 for the twilight experi-
ment and 0.30 m2 for the noon experiments in the 3D Euclidean
errors. This shows that our method is quite precise in jointly

TABLE III
MAV 2 LOCALIZATION ERRORS W.R.T GT

tracking the target and keeping it in the field of view of both
MAVs for the whole duration of the experiment, except for a
few frames. This can be visualized in the image streams of both
MAV’s cameras.2 The precision of the estimate is also visible
in the trajectory plots in these videos.

There is a visible time-lag between the person’s GT and the
estimated trajectory. This lag is more pronounced in the noon
experiment. It is caused mostly by the false negative detections,
which happened much more in the noon experiment (see ex-
periment footage). Processing an image frame on-board a MAV
takes approximately 250 ms, even if the detection is not suc-
cessful. For example, algorithm 1 will perform an EKF update
only F + 1 times 250 ms after F consecutive unsuccessful de-
tections followed by a successful one, assuming that meanwhile
no teammate MAV performs a successful detection. The pre-
diction model of EKF, which models the motion dynamics of
the tracked person, copes up with this lag to some extent, as
the predictions are made at every image frame. However, the
mismatch between this model and actual person motion, e.g.,
sudden change in person’s walking direction results in very visi-
ble estimation lag (especially noticeable in the video of the noon
experiment and the corresponding trajectory plots in Fig. 4(b)).
Finally, it must be noted that we do not intend to have a swarm
of MAV as a practical method of providing centimeter-accurate
absolute position tracking of the target. Our main intent is to
have a system that is suitable for human motion capture, for
which we require the MAVs to have good relative localization
w.r.t. the tracked target and most importantly have convergence
and stability in the tracked target estimate. This is demonstrated
from the reduced variance in the error using our approach as
compared to the other approaches.

C. Results and Comparisons w.r.t. Baseline Methods

Using the recorded MAV camera images and the self-
localization pose logs of both MAVs, we ran our MCDT method
offline under two different situations. In the first situation,
we considered only single MAVs and used the recorded im-
ages from each MAV, separately. Boxes in green and pink in

2Complete footage of the experiment: Noon Experiment https://youtu.be/
_ZOsw5MWZiQ Twilight Experiment https://youtu.be/LV_82bT25Bc Simula-
tion https://youtu.be/NHhyl9KnvRQ
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Fig. 5. Box plots of the errors in different situations. Refer Section IV-C for
details. Note that blue boxes of the online run also correspond to the plots in the
accompanying videos.

Fig. 5 correspond to this situation. In the second situation, we
switched off only the self-pose bias correction (SPBC) feature
(see sec. III-C) of our MCDT method (yellow boxes in Fig. 5).
The blue boxes represent the estimates from the actual online
runs. Pattern-filled boxes summarize the localization errors of
each MAV obtained during the online run and used during the
aforementioned offline runs. The box-plots in Fig. 5 show that
both the cooperative aspect and the self-pose bias correction
features of our method significantly reduce the tracking er-
rors and make the estimator more precise. Most importantly,
MAV 2 is able to keep a good person tracking estimate, despite
being poorly localized. Note that the active ROI selection feature
of our method is not directly comparable by running offline ex-
periments on the recorded images and turning off the active ROI
selection feature. This is because the images were recorded in
the actual online run with that feature enabled, which is mainly
responsible for keeping the person in the FOV of all MAVs. An
offline run without active ROI selection on these images will be
biased since the person is present in nearly all recorded images.

D. False Detections and Other Limitations

Any potential false-positive in the environment outside the
actively-selected ROI would not be detected. However, multiple
persons within the ROI will create ambiguity and could lead to
actual false positives. Therefore, within the ROI, we associate
detections by discarding all but one, based on a comparison
with the tracked estimate. Nevertheless, some failure cases are
possible, e.g., i) if multiple persons are present in the FOV
before the EKF has converged on a stable estimate, or ii) if
a MAV does not detect the true person for a prolonged time
period while continuously having false positive detections. In
our approach, a MAV in such situation can still recover to the
correct person’s estimate if enough other teammates have true
positive detections.

V. SIMULATION EXPERIMENTS AND RESULTS

A. Experiments Setup

Simulations were conducted as a software-in-the-loop setup
on a single computer with 12-core Intel(R) Core(TM) i7-3970X
CPU @ 3.50 GHz with an NVIDIA GK110 (GeForce GTX 780).
All software components are ROS nodes, which communicate
over TCP/IP networking. The detector runs for each simulated
MAV including delay logic to simulate the detection delay of
the real-MAV hardware. Physics simulation was handled by
Gazebo. The simulated MAVs (firefly model) were equipped
with virtual cameras. Their parameters, e.g., framerate, resolu-
tion, etc., were set to the same as the real MAVs’ cameras. We

Fig. 6. Simulation experiment 1 and 2. (a) scalability w.r.t. number of MAVs.
(b) contribution of active ROI selection.

achieved a simulation real-time factor of 0.15 with 16 MAV’s.
GPS inaccuracy and drift were simulated by superimposing a
random-walk offset on the GT position of each simulated MAV
to match the slowly drifting behavior of the real MAV’s GPS
and IMU-based position estimate. During the experiment we
recorded each MAV’s target position and self-pose estimate, as
well as the corresponding GT directly available from Gazebo.

We define a simulation run as the following sequence:
i) spawning of K simulated MAVs and a human actor (at the
origin) in Gazebo, ii) waiting for all MAVs to detect the person,
assume formation and converge on a stable estimate (∼ 20 s),
iii) the simulated human actor starts walking on a predefined
random trajectory within a 10× 10 m perimeter, iv) simulation
and recording are stopped after 120 seconds.

B. Experiment 1 - Scalability w.r.t. no. of MAVs

The goal of this experiment is to demonstrate the scalability
of the approach with the growing number of MAVs. We con-
ducted runs with K= [1..8, 16] MAVs and perfect networking,
i.e., with a detection message loss rate of 0%. Since the behav-
ior is affected by the random GPS drift behavior, each run was
repeated 9 times and the results averaged over all repetitions
and all MAVs in a run.

Results of this experiment (see Fig. 6(a)) show that the largest
improvement in both self-pose and target 3D position estimation
is achieved when using 2 MAVs as opposed to a single MAV. Ac-
curacy continues to improve up to 16 MAVs in a team. Beyond
that, we could not conduct the experiments because the MAVs
would violate the safety threshold distance while maintaining
the required distance to the person.

C. Experiment 2 - Contribution of Active ROI Selection

The goal of this experiment is to demonstrate that active ROI
selection in the image has a significant impact on the target track-
ing accuracy. Experiments are conducted with 2 and 4 MAVs,
9 times each in which the region of interest is always the entire
camera image. The results are compared to the corresponding
runs in simulation experiment 1 (since those already have the
active ROI selection enabled).

The results of this experiment (see Fig. 6(b)) show an in-
crease of 113% mean error and 60% median error in the target
position estimation when the entire image is used instead of
actively-selected ROI in the 2 robot case. For the 4-robot case,
the increase is 60% and 50% in mean and median errors, re-
spectively. The main reason for such an increase in estimation
error is the reduced number of successful person detections if



3200 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 4, OCTOBER 2018

Fig. 7. Simulation experiment 3 - robustness w.r.t. communication loss.

the person’s projected size on the image is significantly smaller
w.r.t. the processed image size.

D. Experiment 3 - Robustness w.r.t. Communication Loss

The goal of this experiment is to demonstrate the ro-
bustness of the approach w.r.t. network packet loss. We
conducted runs with K= [4, 7] MAVs and loss rates of
[10, 25, 50, 75, 88, 94, 97, 99, 99.5, 100]%. Each run was re-
peated 6 times and the results averaged over all repetitions and
all MAVs in a run. With a simulated loss rate of 100%, each
MAV will only receive its own detections, but not from any
other MAVs. MAVs were still receiving position information
from the other MAVs to prevent collisions.

The results of this experiment (see Fig. 7) show that only
around 20% of detection measurements need to be exchanged
between MAVs to ensure convergence of the entire swarm to a
high accuracy estimate (relative to the MAV self-poses). If the
loss rate is higher than 80%, the error in both target and self-pose
estimates increases exponentially. It is important to note that a
network outage in our real-MAV scenario would also prevent
the MAVs from receiving their teammates positions. In such a
situation, collision avoidance cannot be guaranteed.

VI. CONCLUSION AND FUTURE WORK

In this letter we presented a novel method for real-time, con-
tinuous and accurate DNN-based multi-robot cooperative de-
tection and tracking. Leveraging cooperation between robots in
a team, our method is able to harness the power of deep convo-
lutional neural network-based detectors for real-time applica-
tions. Through real robot experiments involving only on-board
computation and comparisons with ground truth and baseline
approaches, we demonstrated the effectiveness of our proposed
method. We also showed the feasibility of real-time person de-
tection and tracking with high precision from a team of MAVs
which maintain a perception-driven formation. Additionally, we
performed noise quantification of the DNN-based detector that
allowed us to use it within a Bayesian filter for person tracking.
Through extensive simulation experiments we verified that our
approach is scalable w.r.t. the number of robots as well as robust
to communication failures and gaps.

The work in this letter paves the way for our future goal3

of performing full-body pose capture in outdoor unstructured

3Our project AirCap homepage (with links to ROS source code):
http://aircap.is.tuebingen.mpg.de

scenarios. To this end, we are developing a perception-driven
formation controller that not only attempts to minimize the joint
3D position estimate uncertainty in real-time, but also considers
the full-body pose reconstruction errors learned offline.
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