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Control of Musculoskeletal Systems using Learned
Dynamics Models

Dieter Büchler1,2, Roberto Calandra3, Bernhard Schölkopf1, Jan Peters1,2

Abstract—Controlling musculoskeletal systems, especially
robots actuated by pneumatic artificial muscles, is a challenging
task due to nonlinearities, hysteresis effects, massive actuator de-
lay and unobservable dependencies such as temperature. Despite
such difficulties, muscular systems offer many beneficial prop-
erties to achieve human-comparable performance in uncertain
and fast-changing tasks. For example, muscles are backdrivable
and provide variable stiffness while offering high forces to reach
high accelerations. In addition, the embodied intelligence deriving
from the compliance might reduce the control demands for
specific tasks. In this paper, we address the problem of how to
accurately control musculoskeletal robots. To address this issue,
we propose to learn probabilistic forward dynamics models using
Gaussian processes and, subsequently, to employ these models for
control. However, Gaussian processes dynamics models cannot be
set-up for our musculoskeletal robot as for traditional motor-
driven robots because of unclear state composition etc. We
hence empirically study and discuss in detail how to tune these
approaches to complex musculoskeletal robots and their specific
challenges. Moreover, we show that our model can be used to
accurately control an antagonistic pair of pneumatic artificial
muscles for a trajectory tracking task while considering only one-
step-ahead predictions of the forward model and incorporating
model uncertainty.

Index Terms—Model Learning for Control; Biologically-
Inspired Robots; Hydraulic/Pneumatic Actuators

I. INTRODUCTION

MANY dynamic activities that appear straightforward for
humans, such as walking, grasping or ball games, are

still fundamental challenges in robotics. Uncertainty, the re-
quirement of fast reactions, and dynamic movements with high
accelerations – without damaging the system and environment
– still pose big hurdles. Despite the existence of learning
algorithms that outperform humans in non-robotics tasks [1],
the transfer of super-human performance to robots in dynamic
tasks has not been shown yet.

Using robots actuated by muscle-like actuators,
also called muscular robots, can be a way to
achieve human-level performance in robotics.
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Fig. 1: 4-DoF robot arm actuated by eight
PAMs. 700 g moving masses and PAMs
with max. forces of 1200 N lead to angular
accelerations of up to 28k deg/s2.

In this paper, we try to
leverage antagonistic pairs
of pneumatic artificial mus-
cles (PAMs) instead of tra-
ditional motors. PAMs are
the nearest replica of skeletal
muscles available as robotics
hardware and exhibit many of
their desired properties [2].
First, PAMs are backdrivable,
thus, damages due to low ve-
locity impacts with humans,
external objects and the robot
itself are reduced (although
not completely prevented).
On the other hand, changing co-contraction levels adjust the
compliance in the antagonistic pair, offering flexibility if the
task requires it. Second, high accelerations, provided by PAMs,
enable the robot to reach desired states in less time and
allow for fast flick-movements due to energy storage and
release as observed in fast human arm movements. Third,
learning dynamic tasks, e.g. table tennis, is more feasible with
antagonistic actuation as damage due to exploration at higher
velocities can be minimized [3]. Fourth, it has been shown that
the demands on the control algorithm are reduced for tasks
where contact with external objects is required, e.g. opening
a door [4]. Also muscular actuation assures gait stability in
spite of the presence of unmeasured disturbances [5], a desir-
able property that might cope with uncertainties of dynamic
tasks. These insights illustrate what is known as embodied
intelligence and may – in combination with a learning control
approaches – pave the way to human-level movements.

Yet, muscular robots are not widely used. Many of the
issues with pneumatic muscles ultimately derive from the
lack of good dynamics models that generally describe the
relationship between the action u taken in state s and the
successor state s0. Severely non-linear behavior, unobservable
dependencies such as temperature, wear-and-tear effects and
hysteresis [2] render PAM systems considerably challenging to
model. Another reason that muscular robots are scarcely in use
is overactuation. An infinite set of air pressure combinations in
an antagonistic PAM pair lead to the same joint angle but with
different compliance levels. Compliance c = dq/dFext or its
inverse the stiffness k represents the external force Fext applied
to the joint required to cause a change of dq in the joint angle.
Overactuation is critical for two reasons. First, overactuation
principally rules out acquiring inverse models u = f (s,s0) of
musculoskeletal systems by traditional regression. Inverse dy-
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namics models are only unique for traditionally actuated robots
and have to be approximated locally for over- and under-
actuated systems [6]. The second reason is that overactuation
expands the state-action space, thus learning such dynamics
models requires more data or additional assumptions about the
underlying mechanisms. Using forward models s0 = f (s,u),
however, does not fully solve the issue despite describing the
true causal relationship and hence always existing. In case the
controller uses the forward model to decide on the actions
by minimizing the control error, overactuated systems offer
multiple equally optimal solutions. Without any additional
constraints, such a control framework results in optimization
over loss functions with an additional severe source of non-
convexity.

The straightforward constraint is minimal energy, hence al-
ways choosing the minimal pressures that lead to the minimal
control error. In the well-known linear quadratic regulator
setting this is indicated by the uT Ru term. Another possibility
is to change stiffness or compliance according to the task, e.g.,
for grasping of delicate objects. The main idea of our approach
is to pose a constraint that facilitates the use of a learned
non-parametric probabilistic model. In the face of the above-
mentioned difficulties of retrieving good models, learning a
flexible model purely from data seems to be a promising ap-
proach. Recent successes in Gaussian process (GP) dynamics
models [7]–[9] are especially encouraging to follow this line
of research. However, the application of nonparametric models
in an online setting requires – among other considerations
– the selection of a small set of informative training data
points from a highly time-correlated data stream. The GP
return meaningful predictions only in the vicinity of the
training data. Hence, it is possible to deviate into unknown
state-action regions, especially with time-variant systems like
pneumatic muscles. In order to enable nonparametric model
learning for antagonistically actuated systems despite higher
dimensionality due to overactuation, we utilize the uncertainty
of the GP model as an additional constraint.

The contribution of this paper is twofold. First, we discuss
and empirically evaluate the important aspects of learning GP
forward dynamics models for muscular systems as they are
substantially different to traditional robots. Second, we intro-
duce a novel formulation that by incorporating the uncertainty
of the GP dynamics model into our control framework, allows
to controls the system towards the area of the state-space that
are known from the training data. This capability is made
possible by the use of a muscular systems and by exploiting
its overactuation property, i.e., by choosing the set of muscle
pressures from the infinite set that minimizes the control error.
With this novel control scheme, we can ensure that the model-
based controller remains in the vicinity of the training data of
the GP where we have reasonable prediction.

II. PNEUMATIC MUSCLE ROBOT

We use the PAM-actuated robot arm from [3] which is
shown in Fig. 1. Its key features are a) its lightweight structure
with only 700 g moving masses, b) powerful PAMs that can
lift up to 1.2 kN each and generate angular accelerations of up
to 28k deg/s2 and c) its design that aims to reduce difficulties
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Fig. 2: System responses to a step in control signal at t = 0. All values have been
normalized to be in [0,1]. It can bee seen that q̈ reaches its minimum faster than q̇ and
q. (a) Unfiltered sensor values show a faster response as any filtering adds delay. The first
substantial change occurs at t = 2. (b) Filtered values reach their respective minimum
slower than in (a). The first substantial changes occur at t = 3, hence 1 time step later
than the unfiltered signals. Generally, higher order time-derivatives react faster. However,
filtering inhibits this effect.

for control, e.g., minimal bending of cables etc. This four DoF
robot arm has eight PAMs in total with each DoF actuated
by an antagonistic pair. Each PAM is equipped with an air
pressure sensor and each joint angle is read by an incremental
encoder. The pressure in each muscle is changed via Festo
proportional valves that regulate the airflow according to the
input voltage.

All signals are fed into a National Instruments FPGA PCIe
7842R card. The inputs and outputs of this card can be
accessed via a C/C++ API from the main C++ code. On the
FPGA, the encoder values are translated into joint angles q and
a pressure controller is implemented for each PAM. This inner
control loop compares the desired pressures pdes sent from the
C++ code with the current air pressures within the PAMs p
and sets the voltage to the proportional valves v accordingly.
With this disentangled setup, we can bound pdes within the
FPGA to be maximally 3 bar thus practically ensuring that p
never reaches the allowed pressure limit of 6 bar.

III. MODEL LEARNING & CONTROL

Learning flexible and probabilistic forward dynamics mod-
els and using them for control is a promising way to achieve
higher performance for muscular robots. Gaussian process
regression is a non-parametric and probabilistic model that
is often used to represent robot dynamics [6]. Here, we
address how to adapt such a GP model for muscular systems
and discuss the additional difficulties that arise compared to
GP dynamics modeling for traditionally actuated robots. We
subsequently show how to use uncertainty estimates of the GP
model during control to exploit the overactuation inherent to
musculoskeletal systems in order to generate trajectories while
staying close to the training data.

A. Traditional Model Learning with Gaussian Processes

Muscular robots are substantially different from motor-
driven systems. After giving some background on forward dy-
namics modeling of motor-driven robots with GPs, we briefly
describe the Hill-muscle model to illustrate our adaption to
the GP model setup.
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1) Rigid Body Dynamics: Generally, the dynamics of a
robot representing the relationship between joint angles q and
its derivatives q̇ and q̈ to the torque vector t are modeled by
differential equations derived by applying Newton’s second
law and assuming rigid links

M(q)q̈+C(q, q̇)q̇+g(q) = t , (1)

with M being the joint space inertia matrix, C representing
the Coriolis and centrifugal forces and g gravitation. For
traditional motor-based robots the torque t is proportional
to the input current. Hence the relationships (q, q̇,t) ! q̈
and (q, q̇, q̈) ! t represent forward and inverse dynamics
respectively. The state and actions here are clearly defined
to be s = [q, q̇] and u = [t]. The joint angle accelerations
q̈ can be used as successor state s0 because the actions t

directly influence q̈ and the state entities can be recovered by
differentiation. For muscular robots the state composition is
not obvious. The torque ti = Fi ⇥ri depends on the combined
force of all muscles acting on joint i, Fi, as well as the
geometry of the joint, specifically the moment arm ri. For an
antagonistic muscle pair with a radial joint, the torque reduces
to

ti = (F(a)
i �F(b)

i )ri , (2)

given the forces of both muscles F(a)
i and F(b)

i and the joint
radius ri that is independent of the joint angle.

2) Analytical Muscle Model: Many analytical force models
for skeletal muscles exist. One of the most widely used is the
Hill muscle model, see [10] for a detailed description. It has
been shown that the Hill model reflects the properties of PAMs
to some extent [11]. The total muscle force

FM = FCE +FPEE = FSEE , (3)

derived from this model is based on an active contractile
element FCE that depends on the activation a and passive
parallel and serial elastic elements FPEE and FSEE that both
change with the muscle length lM . The quantity FM would
enter Eq. (2) as one of the forces F(a)

i or F(b)
i . The active part

of the total force

FCE = aFmaxfL(lCE)fV (vCE) , (4)

depends not only on the activation a but also on the force-
length fL and the force-velocity fV relationship and is param-
eterized by the maximum isometric force Fmax. Typically, fL
is bell-shaped whereas a sigmoid-like function constitutes fV .
Eq. (4) can then be used to form the dynamics of the muscle
length

∂ lCE

∂ t
= f�1

V

✓
FSEE �FPEE

aFmaxfL(lCE)

◆
, (5)

that takes the activation a and lCE as parameters, resulting
from the interaction with t in Eq. (1). Often the activation
is modeled as a non-instantaneous process based on a neural
excitation signal u

∂a
∂ t

= ca(a�u) , (6)

in which ca is the constant activation and deactivation rate.

Notation: The actions u of the system from Section II
correspond to the desired pressures pdes and the state s can
be composed of any combination of the sensed signals v, q
and p. The activation a and the neural excitation signal u from
the analytical Hill muscle model in Eq. (6) coincide with the
current and desired pressure p and pdes.

3) Gaussian Processes Forward Dynamics Models: In this
paper, we learn a probabilistic Gaussian process [12] forward
dynamics model in discrete time

st+1 = f(st ,ut)+ e , (7)

with s 2 RD being the state of dimensionality D, u 2 RM

the action of dimensionality M and e ⇠N (0,Sn) independent
and identically distributed (i.i.d.) Gaussian measurement noise
with a diagonal covariance noise matrix Sn. The state transfer
function f is modeled by a Gaussian process with a squared ex-
ponential kernel and automatic relevance determination (ARD)

k(xa,xb) = s

2
f exp

✓
�1

2
(xa �xb)

T L�1(xa �xb)

◆
, (8)

having signal variance s

2
f and squared lengthscales L =

diag(l2
1 , . . . , l

2
D+M). The dataset D= {X ,y} consists of a design

matrix X 2 RN⇥(D+M) with each row being the nth training
input xT

n = [sn,un]T and y 2 RN the target values. Hence, one
GP is established for each element of s0. A GP can be seen as a
distribution over functions and is queried using the conditional
(posterior) probability

p(f|X,y,x⇤) =N (kT
⇤ a,k⇤⇤ �kT

⇤ K̃k⇤) , (9)

where [k⇤]n = k(x⇤,xn), k⇤⇤ = k(x⇤,x⇤), a = K̃y, K̃ = (K+
snI)�1 and I being the identity matrix. The hyperparameters
s f ,sn and L are optimized by maximizing the marginal like-
lihood p(y|X). The GP provides a flexible model by assuming
only smoothness of the underlying function f , depending on
the choice of the covariance function. On the other hand, non-
parametric methods require a training dataset to make predic-
tions. The training time complexity rises cubically O(N3) and
prediction time complexity linearly O(N) with the number
of training data points N [13], [14]. Many approximations
schemes exist [15], [16] that are relevant to future work but
are not used here as they rely on approximations.

B. Model Adaptations to Muscular Systems

Many properties of pneumatic muscular systems render
modeling difficult. We mention some of these issues from
which we subsequently derive adaptations to the GP forward
dynamics model.

1) Modeling Issues: Modeling of PAMs is still a key
problem for control [2]. The reason for this is that analytical
models derived from physics, including the Hill muscle model
from Eq. (4), do not sufficiently describe the properties of
real PAMs. Unobserved influences such as volume change
of the muscle while moving, tip effects and temperature as
well as hysteresis and nonlinearities require the model to be
extraordinarily flexible.

Another important issue with pneumatics is actuator delay.
In every system a short time passes between applying control
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until a reaction is sensed. The time in between sums up all
delays in the control loop. For instance, a magnetic field has
to increase in a motor or – as in our case – valves have to open
and air pressure has to rise within the PAM. For PAM-actuated
robots, the sequence of actuation

pdes ! v ! air flow ! p ! t ! q̈ ! q̇ ! q ,

contains more sources of delay compared to motor-driven
systems, e.g., mechanical opening and closing of the valve and
the generation of air pressure in the muscles. This process is
further delayed by the compressibility of air. Fig. 2 shows
an experiment where the joint angles q, velocities q̇ and
accelerations q̈ are recorded in response to a step in desired
pressure signal pdes for unfiltered and filtered cases. Unfiltered
entities respond faster to the excitation but inhere more noise,
especially higher time-derivatives such as joint velocities q̇
and accelerations q̈ because they need to be estimated from q.
Strong noise complicates modeling with GPs as only output
noise is assumed.

2) State Composition: Actuator delay is a sign of unob-
served dependencies as the successor state s0 cannot be fully
explained by the current state s and action u. This requirement
is a key aspect of a Markov decision process (MDP, [17]) that
generally describes a control task. More formally, the state has
to bear the Markov property

p(st |u0:t�1,s0:t�1) = p(st |ut�1,st�1). (10)

The Markov assumption together with a reward r that the agent
receives upon taking action u in s complete the MDP. The
relationship between states from one time step to the next is
governed by a transition function (s,u)! s0 corresponding to
the forward dynamics. As the GP is a probability distribution
over functions, the prediction quality is reduced the more the
Markov assumption is violated. Hence by forcing the state to
be Markov, the modeling of the forward dynamics with a GP
is facilitated.

The Markov requirement, however, has often been violated
by weak dependence on the past, leading to models that are
adequate but sub-optimal. On real systems, dependencies often
remain unmeasured due to the lack of sensors or tedious
measurement procedures. Examples are 1) estimating the
temperature in PAMs, 2) stiction and friction effects as well
as 3) slack of the cables. Nonetheless, the information of such
unobserved effects is captured in the transition (st ,ut)! st+1
as different successor states will be reached when applying
the same action in the same state at different times. Such a
problem is described as a partially observable MDP (POMDP).

A possible solution to this problem is to approximate this
POMDP with a K-th order MDP by concatenating the previous
states and actions into an augmented state

saug
t = [st ,st�1, . . . ,st�k,ut ,ut�1, . . . ,ut�k] , (11)

an idea closely related to the NARX concept [18].
a) State Elements based on Analytical Models: De-

pendencies that should be incorporated into the state can
be obtained for a motor-driven robot from the rigid body
dynamics Eq. (1). As some dynamic properties of PAMs are
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Fig. 3: Datasets under consideration in this work depicted for illustration. All datasets
were created by applying two antiphase periodic pressure trajectories to the antagonistic
PAM pair and recording the resulting sensor values. The target Dq represents the
difference to the next state and is depicted in filtered and raw sensor form. A non-
causal 10th order Butterworth lowpass filter was used for filtering. (a) ’slow’ dataset. (b)
Closer view of (a) illustrates that the relative angle encoders add considerable noise for
slow motions. (c) ’slow’ and ’fast’ datasets form the ’mixed’ dataset. (d) Closer view of
fast part of (c). For faster movements the noise is smaller. Hence, the ’mixed’ dataset
includes two types of noise. Faster movements excite higher order dynamics components
which need to be expressed by the model.

also captured in the analytical model Eqs. (5) and (6), it
is highly likely that some form of the variables governing
Eqs. (5) and (6) need to be included into the state. Hence,
the joint angle q and angle velocities q̇ as well as muscle
lengths l, muscle contraction speeds l̇, current PAM pressures
p and current pressure rates of change ṗ should be part of
the state. Incorporating the pressures p into the state also
helps to resolve hysteresis in the p ! q relationship because
rising and falling curves can be discriminated according to
pt  pdes

t . The order of the system determines how many time-
derivatives need to be added to the state. While the rigid body
dynamics Eq. (1) suggest that the robot arm dynamics is a
second order system (neglecting cable dynamics), the lack of
well-established analytical models for PAMs means that the
order of PAM dynamics is unclear. For instance, [10] indicates
that the activation from Eq. (6) should possibly be modeled
as a second order system but do not take the higher order into
account to reduce computational load. In addition, for slower
movements higher order derivatives might not play such an
essential role in the model prediction and can be held out
from the state to avoid higher input dimensionality of the GP.
For this reason, we test slow and fast trajectory datasets in
the experiments in Section IV and check how performance is
influenced by the orders of the system.

b) Estimated State Elements: Another issue with time
derivatives is that they are not sensed directly but have to
be estimated. A common way is to use finite differences
ṁt = (mt+1�mt�1)/(2Dt) where Dt is the sampling period and
mt a measurement. However, the noise on ṁt would in this case
multiply. A GP only assumes output noise and would experi-
ence major complications. Unfortunately, from our experience,
the delay introduced by filtering the sensor values online on
the real robot, even with a second order Butterworth lowpass
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Fig. 4: The influence of random, k-means and equidistant training data selections model
is illustrated with increasing size of training dataset on the (a) & (b)’slow’, (c) & (d)
’fast’ and (e) & (f) ’mixed’ dataset. Experiments have been performed five times and
the mean of the logarithm of the normalized root mean squared error log(NRMSE) is
depicted. Subfigures (a), (c) and (e) have been tested against filtered test targets y and
(b), (d) and (f) against unfiltered y. The ’fast’ dataset is composed of similar periodic
curves and hence needs the least number of data. In case the log(NRMSE) is calculated
against unfiltered test targets, the log(NRMSE) tends to rise for more data points provided
because the prediction of the GP becomes smoother as the noise modeling improves. The
graphs for most realistic ’mixed’ dataset decrease slowest. The regularly-spaced spikes
in (e) & (f) occur due to sampling of the equidistant scheme at the same location in the
periodically repeating data.

filter, substantially impairs control performance. We hence
test how adding previous joint angles qt:t�h and pressures
pt:t�o instead of their respective time-derivatives alter the
prediction performance without filtering the input training
data. For instance, the sequence [qt ,qt�1,qt�2] contains the
same information as [qt , q̇t , q̈t ] but corrupted by less noise.

A similar transformation as finite differences is required to
attain the lengths of the PAMs. The lengths of the muscles are
la,b = l0±(q/2p)r where l0 is the muscle length for q = 0 deg
assuming a radial joint with fixed radius r and cables that are
always under tension (so that any change in the joint angle is
solely due to a change in muscle length and not slack in the
cables). The lengths of the PAMs can then be inferred immedi-
ately from the joint angles. An interesting question is whether
the GP is able to recover such transformations in addition to
unobserved dependencies such as elongation and slack of the
cables. Based on the previous discussion, we propose to test
the following state compositions : 1) snoisy

t = [qt , q̇t ,pt , ṗt ], 2)
spadded

t = [qt:t�h,pt:t�o] , and 3) saction
t = [sx

t ,pdes
t:t�h] where sx

t is
a placeholder for either snoisy

t or spadded
t . The state compositions

are empirically tested in Section IV.
3) Model Validation: According to [19] a model can only

be good enough to fulfill its purpose. [20] coins this aspect

purposiveness. The process of disentangling the contribution
of the model and the controller to the overall tracking perfor-
mance is quite involved. Hence, often the model is assessed
separately by the long-term predictions abilities [7], [8]. This
procedure involves a previously collected data sequence con-
sisting of a state [st ]Tt=0 and a corresponding action trajectory
[u0]

T�1
t=1 . Starting with the initial input x0 = [s0,u0] to the GP,

the prediction of the next state is fed together with the next
action as input for the next time step. This iterative procedure
is continued until the predicted state deviates sufficiently from
the known state trajectory, e.g. ||sdes

h � f(sh�1,uh�1)||2 > x .
The horizon h then represents how well the roll-outs can be
simulated and is important, for instance, for model predictive
control type of control frameworks. For muscular systems, the
state is required to contain the pressures inside the PAMs.
Long-term predictions are then always corrupted by the quality
of the pressure model that, in return, is not predefined by
the desired trajectory. PAM pressures play a role only when
stiffness should be modulated along with the position trajec-
tory, which is not the focus of this work. For this reason,
we decide to resort to one-step-ahead predictions and only
predict entities that are essential to calculate a control error.
Many criteria exist to measure model quality for one-step-
ahead predictions, see [20] for a detailed description. Here,
we employ a normalized version of the root mean squared
error

RMSE =

s
ÂN

i=1(f
(k)(si�1,ui�1)� s(k)

i )2

N
, (12)

which addresses datasets with different magnitudes

NRMSE =
RMSE

s(k)max � s(k)min

, (13)

where f(k) is the k-th element of the prediction and k 2 [1,D],
s(k)max and s(k)min the maximal and minimal value of the state
component k in the dataset comprising N data points. The
predictions can be tested against either the filtered or raw
targets from the dataset. The filtering of the target signal can
be done with a non-causal filter, e.g. zero-phase Butterworth
lowpass filter which does not add additional delay. Filtered
outputs have the benefit of being closer to the latent true data
as can be seen in Fig. 3 (b). We test both cases in Section IV.

4) Filtering Training Outputs: We decided to filter the
training outputs although a GP in principle handles output
noise. However, we found state dependent noise in our training
dataset which requires heteroscedastic noise treatment. Fig. 3
(b) and (d) illustrate that the unfiltered graph changes more
randomly for the slow dataset than for the fast dataset.
Heteroscedastic datasets often occur in real applications. Un-
fortunately, inference in heteroscedastic GPs is based on ap-
proximations and training is computationally more demanding.
For this reason, we decided to filter the training targets such
that different noise levels of the dataset are balanced to some
extent.

Using approaches to handle input noise for GPs [21], [22]
is a valid alternative and subject to future work. In this project,
we aim at highlighting problems and give basic answers. Thus,
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we try to avoid making approximations as it is hard to quantify
how doing so influences the result.

5) Subset Selection: Robots accumulate large amounts of
correlated data at high frequencies. Keeping all this data in the
training dataset for non-parametric data is not possible. Hence,
the data need to be further subsampled. We do not incorporate
approximations to the GP in order to realize bigger training
datasets, e.g. with pseudo inputs [15] as such approaches also
rely on approximations.

Hence, we pick a subset of data from the complete dataset
instead. As a baseline we consider random subsampling, over
which any sensible subsampling approach should improve.
The default choice is often equidistant subsampling where N
data points are picked from the dataset that are equally far
apart. If, however, the resulting sampling frequency is less
than twice the maximum frequency of the time series, some
aspects of the signal cannot be captured according to the
Nyquist-Shannon sampling theorem. On the other hand, areas
where little change happens could be sampled too often. As
an alternative, we use the k-means algorithm to find N clusters
among the complete dataset and pick the data points that are
closest to each cluster. Thus, data points are selected so as to
maximize the difference among the training set according to
the Euclidean distance. The GP is hence more expressive in
regions of the training data exhibiting greater variation.

C. Variance-Regularized Control

The control goal is to track a desired trajectory [sdes
t ]Tt=1 with

a control trajectory [ut ]Tt=1 with minimal deviation. A simple
way to express this desire is to define the squared error

e2
t = ||(sdes

t � st)||2Q , (14)

slow fast mixed

s(1)t
2.6e�4±1.1e�4 1.3e�4±2.2e�6 4.8e�4±2.7e�4
2.6e�4±3.6e�5 1.3e�4±1.1e�5 4.8e�4±3.5e�4
2.0e�4±0.0e+0 1.3e�4±0.0e+0 3.6e�4±0.0e+0

s(2)t
2.8e�4±3.7e�5 1.3e�4±6.5e�6 4.6e�4±3.0e�4
2.0e�4±1.3e�5 1.3e�4±3.7e�6 3.1e�4±1.2e�4
2.9e�4±0.0e+0 1.3e�4±0.0e+0 3.1e�4±0.0e+0

s(3)t
2.8e�4±9.0e�5 1.3e�4±2.2e�6 3.0e�4±6.9e�5
2.6e�4±4.4e�5 1.3e�4±3.4e�6 2.8e�4±8.3e�5
2.9e�4±0.0e+0 1.3e�4±0.0e+0 2.7e�4±0.0e+0

s(4)t
2.8e�4±6.4e�5 1.3e�4±2.6e�6 1.7e�4±9.0e�5
2.3e�4±3.4e�5 1.3e�4±5.3e�6 9.9e�5±2.7e�5
2.9e�4±0.0e+0 1.3e�4±0.0e+0 2.6e�4±0.0e+0

s(5)t
3.4e�4±9.0e�5 1.3e�4±1.3e�5 4.3e�4±1.3e�4
3.0e�4±3.6e�5 1.3e�4±5.3e�6 2.7e�4±1.0e�4
3.2e�4±0.0e+0 1.3e�4±0.0e+0 3.1e�4±0.0e+

TABLE I: Normalized root mean squared error from Eq. (13) calculated for the
prediction of each model with different state compositions (rows) against filtered target
values from the datasets (columns) depicted in Fig. 3. s(1)t = [qt ], s(2)t = [qt ,qt�1,qt�2],
s(3)t = [qt ,qt�1,qt�2, pa

t , pb
t ], s(4)t = [qt ,qt�1,qt�2, pa

t , pb
t , pa,des

t�1 , pb,des
t�1 ], s(5)t = [qt , q̇t , pa

t , pb
t ]

Experiments have been performed five times under same conditions illustrated by the
mean NRMSE and one standard deviation. 100 data points have been selected to the
training set by random, k-means and equidistant selection. Equidistant selection is
deterministic and thus has always zero standard deviation. The best performance on
the ’slow’ dataset is achieved with s(2)t and k-means selection. 100 training data points
are sufficient to be independent of state composition as well as data selection type for
the ’fast’ dataset as a low amount of information is contained. The ’mixed’ dataset
is corrupted by heteroscedastic noise and requires modeling of higher order dynamics.
Best performance is achieved with more complex state representations, s(4)t , as well as
k-means selection that is capable to select more distinctive data points compared to the
other selection types.

for each time step t. The mean of the forward dynamics model
f̄ from Eq. (7) can be incorporated for the prediction of e2

t+1
in the next time step

ē2
t+1 = (sdes

t+1 � st+1)
T Q(sdes

t+1 � st+1)

! ē2
t+1(ut) = (sdes

t+1 � f̄(st ,ut))
T Q(sdes

t+1 � f̄(st ,ut)). (15)

The controls in each time step t can then be extracted using

ut = argmin
u

ē2
t+1(u) . (16)

The main idea of our control framework is to make use of
the full posterior distribution that is given by our probabilistic
forward model. Thus, we optimize for the expected value of
the loss, similar to [23]. In this case, Eq. (14) becomes

E[e2
t+1(u)] = sdes

t+1
T Qsdes

t+1 �2sdes
t+1

T QE[f]+E[fT Qf]

= sdes
t+1

T Qsdes
t+1 �2sdes

t+1
T Qf̄+ f̄T Qf̄+ tr(QS)

= ē2
t+1(u)+ tr(QS(u)) (17)

with [S]i, j = cov(fi, f j) being the covariance of each GP in the
forward model vector f and diag(S) = s

2. We have left out the
dependence on u in the derivation of Eq. (17) to keep the math
uncluttered and added (u) in the last line where appropriate.
Eq. (17) can be interpreted as the sum of the mean of the
squared error from Eq. (15) and regularized by the variances
of each element of the forward model vector f weighted by the
diagonal elements of Q. This regularization poses a constraint
to the overactuation of antagonistic actuation. Hence, by using
this control framework, the controls are chosen such that the
successor state is near to the training dataset.

IV. EXPERIMENTS AND EVALUATIONS

The goal of this paper is to illustrate how to set up a GP dy-
namics model and subsequently use it for control of a muscular
system. In this section we validate the model considerations
from Section III with experiments. First, we illustrate how
equidistant, random and k-means subsampling influences the
prediction performance with an increasing number of training
data points. The next experiments test state compositions can-
didates on different datasets with characteristic challenges and
with distinct subsampling types. In the third experiment, we
show that the best performing model set-up from the previous
experiments can be used to control one real pneumatic muscle
pair. We further demonstrate that leveraging the full posterior
of our stochastic forward model can help to keep the system
near the training data. Our new control approach outperforms
our previous PID controller from [3].

A. Subset Selection and Model Validation

In this experiment, we test how the prediction performance
changes with the number of training data points as well as with
the subset of data selection strategy on the slow, fast and mixed
datasets from Fig. 3. The slow dataset challenges the model
to accurately distinguish noise from signal. As the relative
angle encoders of our PAM-actuated robot have a resolution of
0.036�, relatively high quantization noise corrupts the signal as
can be seen in Fig. 3 (b). The fast dataset consists of periodic
movements with higher frequency. Thus, more data represents
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the same curve compared to the slow datasets but higher
order dynamics components are excited. The challenge of the
mixed dataset is its heteroscedastic noise that often occurs in
real scenarios. The prediction performance is measured by the
NRMSE from (13) against filtered and unfiltered training data
targets y. The models always predict the difference to the next
joint angle Dq.

Fig. 4 depicts these experiments. One can observe that in
all graphs the mean of the NRMSE decreases with increasing
number of training data points when tested against the filtered
test targets. In contrast, the graphs for tests against unfiltered y
start to rise. This fact illustrates that testing against filtered test
data outputs gives a better estimate of the model’s quality as
the model is guaranteed to improve with more data. Another
observation is that the fast dataset can be learned with a
smaller number of training data as it comprises less informa-
tion. In Fig. 4 (e), (f) the graph for equidistant subsampling
is corrupted by spikes that occur periodically. These spikes
happen when the same location on the periodically repeating
signal is sampled as can happen with equidistant subsampling.
Hence, not all information is captured in the dataset and leads
to worse prediction performance.

B. Evaluation of State Composition

Section III-B discusses important issues regarding the state
composition like 1) actuator delay, 2) non-Markovian states
and 3) noisy time-derivatives and derives possible solutions. In
this section, these proposed states are evaluated by measuring
the NRMSE on the three different datasets from Fig. 3 with
their specific characteristics and challenges. We also compare
how the choice of subsampling type from Section III-B5
affects the prediction performance. Table I displays the results.
Each experiment is performed with 100 training data points
and repeated five times under identical settings. The NRMSE
is hence indicated as mean and one standard deviation.

It is noteworthy that the standard deviation for all exper-
iments using equidistant subsampling is zero as no source
of randomness is present. For k-means subsampling, the
stochasticity is introduced by initial random seeds of the
clusters. Also striking is that the prediction performance for
the fast dataset is independent of the state composition and
subsampling type. The reason is that the fast dataset comprises
less information compared to the other datasets. Thus, 100 data
points are enough to learn the model well. Further conclusions
can be made from Table I. First, higher order components are
excited in the mixed dataset as it includes the fast dataset.
Comparing the prediction performance for s(1)t and s(2)t with
k-means subsampling, one can see that higher order elements
contained in s(2)t lead to improved performance. Second,
states s(3)t contains time-derivatives that were estimated using
finite differences whereas s(5)t instead includes time-padded
elements as suggested in section III-B2b. Hence, the NMRSE
is generally lower for s(3)t on the slow dataset that is corrupted
by relatively strong noise. The best overall performance on
the mixed dataset is achieved with the most involved state
representation of s(4)t with k-means subsampling. This dataset
is the most realistic as it contains heteroscedastic noise as well
as excites higher order terms. K-means subsampling assures
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Fig. 5: Tracking experiment that validates our model on a real one antagonistic PAM
pair and employs the variance-regularized control (VRC). A dataset is collected using a
manually tuned PID controller along the des. trajectory and subsampled with the k-means
strategy. The VRC settles faster to the error bound of ±1 degree after sharp changes in
the des. trajectory compared the PID.

that the most different data points are selected to be in the
training dataset. In this manner, the flexibility introduced by
state s(4)t has a better chance to be fully exploited. In general,
for rich datasets, the state representation is required to be
expressive and hence needs to avoid noisy input data and
contain higher order terms. For simpler datasets, such as data
collected locally as in [13], a simpler state representation can
be used in order to speed up computation.

C. Evaluation of Control Performance

We now test the use of the learned model in the variance-
regularized control framework (VRC) from Section III-C on
the robot arm. We do so by controlling one DoF of our system
described in Section II as a showcase that our model derived
from the preceding discussion and experiments can be used to
control a real PAM system. Separate control laws for each
DoF can be designed as the dynamics of our light-weight
rigid body structure can be neglected in comparison to the
friction of the cable drives and dynamics of the pneumatic
muscles. We employ the state representation s(4)t from the
preceding experiment and the GP predicts the difference to the
current joint angle Dq. 100 training data points are subsampled
using the k-means approach from the complete dataset. This
dataset is generated by tracking multiple reference trajectories
with the PID controller from our previous work [3]. The PID
parameters are manually tuned and need to be adapted for
significantly different desired trajectories. In order to decide
on two desired pressures based on one control signal that
the PID provides, we employ the ‘symmetrical co-contraction
approach’ from [24].

The real-time optimization of the VRC scheme from
Eq. (16) is numerically approximated. The method-of-moving-
asymptotes algorithm (MMA, [25]) has proven to practically
work well, and in our experiments we use the implementation
from the C++ NLOPT toolbox [26]. We found helpful to
iterate through all algorithms implemented in NLOPT as well
as plot the error surface to be optimized (for VRC this is
Eq. (17)) offline after tracking with the PID controller to
find a good parameter setting for VRC. The parameters in Q
from Eq. (17) can be conveniently set by Qi,i = ci/s

(i)
f where



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2018

s

(i)
f is the signal variance of the GP predicting the i-th state

element of successor state s0. In this manner the contribution
of the variance regularization is not changing in case the GP
is retrained as s

(i)
f is the maximum variance prediction of the

GP (in case the system is far away from the training data). The
parameter ci can then be chosen in order to balance between
minimizing the squared control error ē2

t+1 and the variance
regularization term.

We chose to evaluate the performance of our controller,
and a baseline PID controller, on a challenging trajectory that
includes rapid changes in direction. From Fig. 5, we notice
how the control performance of the VRC approach remained
within a control error bound of ±1 deg most of the time. The
PID, however, oscillates outside this error bound in response to
the sudden change in the des. trajectory. One possible reason
why VRC performs better is that the GP captures essential
information from this oscillations and inhibits oscillation of
VRC due to the prediction one time step ahead. VRC can
then choose controls that lead the system towards the desired
trajectory. The regularization term helps to stay near the
training data, thus, helps to keep the GP predictions valid. The
PID has fixed parameters, VRC is in this sense more adaptive.

V. CONCLUSION

This paper aims at modeling the complex dynamics of PAM-
actuated systems with Gaussian process dynamics models and
using these for control. To accomplish this goal, we discussed
and tested important problems that arise for muscular systems
such as state-dependent and hence heteroscedastic sensor
noise, overactuation and actuator delay. We elaborated on the
implications of such issues and related them to model learning
such as 1) state components that have been derived from
analytical dynamics equations to construct a Markov state, 2)
validating the model with the NRMSE instead of long-term
predictions as they are less significant in this scenario, 3) using
filtered training targets for model validation and 4) to use
time-padded state elements instead of noisy time-derivatives
estimated from finite differences. Experiments were performed
to confirm these implications.

Moreover, to solve the issues deriving from overactuation
(which offers multiple solution to the control problem as an
infinite set of PAM pressures to the desired joint angle in
the next time step) we propose a novel control scheme that
includes as additional objective to minimizes the variance of
the controller (VRC). After discussing important technical
details on how to practically implement VRC, we evaluate
our approach on a real pneumatic arm and show that VRC
performs better than a PID controller.

In future work, we want to integrate the GP forward
dynamics model into model-based Reinforcement Learning
approaches. Furthermore, we plan to design models that take
the future horizon into account and employ such control
schemes to dynamic and uncertain tasks such as table tennis.
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