
!

Hochschule Osnabrück
University of Applied Sciences

Fakultät

Ingenieurwissenschaften und Informatik

Bachelorarbeit
über das Thema:

Konzeption und Realisation eines Visualisierungsmodells
zur Darstellung funktioneller Konnektivität im  

menschlichen Gehirn

Autor: Lennart Bramlage, 627599

lennart.bramlage@hs-osnabrueck.de

1. Prüfer: Herr Prof. Johannes Nehls

2. Prüfer: Herr Dr. Raffi Enficiaud

Abgabedatum: 01.11.2017

Kurzfassung

Seit den frühen Neunzigern haben sich die Methoden zur Ableitung funktioneller
Konnektivität stetig weiterentwickelt und entsprechende Datensätze sind feiner aufgelöst als
je zuvor. Entsprechende Präsentationsmethoden jedoch sind um einiges weniger weit
entwickelt. Schon ein einzelnes funktionelles Netzwerk besteht aus hunderttausenden
relevanten Verbindungen was in der Visualisierung einen Kompromiss zwischen
Vollständigkeit und Lesbarkeit provoziert. Besonders bei der Visualisierung von Konnektivität
mit direkter Referenz zur anatomischen Repräsentation des Gehirns sorgt die schiere Anzahl
von Verbindungen für ein undurchdringliches Chaos und verbietet jede Identifikation
übergeordneter Tendenzen des Netzwerks.
Innerhalb der letzten Jahre haben Forscher wiederholt Methoden der Cluster Analyse (mean-
shift, spectral clustering) verwendet um solche Tendenzen zu extrahieren. Häufig jedoch,
wurden die Resultate ohne Bezug zum vollständigen funktionellen Netzwerk visualisiert. In
diesem Projekt soll K-Means, als Methode der Cluster Analyse, als Basis für einen Edge-
Bundling Ansatz genutzt werden um vollständige, funktionelle Netzwerke lesbar abzubilden.
Zu diesem Zweck wurde zunächst der K-Means Algorithmus für sechs-dimensionale
Datenpunkte, also die Koordinaten zweier Punkte im 3D Raum, angepasst um damit auf
Datensätze funktioneller Konnektivität angewendet werden zu können. Die Resultate wurden
in ein, mit Paraview entwickeltes, Visualisierungsmodell integriert. Der realisierte Software
Prototyp erlaubt somit die Visualisierung funktioneller Konnektivität als gebündelte
Einzelverbindungen, innerhalb oder außerhalb eines Referenzmodells des Gehirns. K-Means in
Kombination mit einer Edge-Bundling Lösung erzielte dabei eine erhebliche Klärung der
Verbindungsstruktur.

Abstract

Methods of aggregating functional connectivity data have evolved at a fast pace since the
early nineties and datasets of functional connectivity can be gathered at higher resolutions
than ever. Presentation methods for this data, however, are much less well developed. Even a
single subject experiment can yield hundreds of thousands of relevant connections, forcing
presentation methods to compromise between completeness and readability. Especially when
visualising connectivity data in immediate reference to the anatomical structure of the brain,
the sheer number of connections obfuscates the network’s overarching tendencies and renders
the visualisation cluttered and chaotic.
In recent years, researchers have applied a number of cluster analysis methods (mean-shift,
spectral clustering etc.) to identify major network tendencies in functional connectivity data.
The results were commonly visualised without regard to the full functional network. This
project employs K-Means as a method of cluster analysis and uses it as a basis for edge
bundling in a whole-scale network visualisation in order to preserve the entirety of
information provided by a benchmark dataset. For this purpose a variant of K-Means was
implemented, that can be applied to functional connectivity datasets represented as a set of
six-dimensional datapoints, where each datapoint consists of two 3D point coordinates. The
results were incorporated into a visualisation model, developed for the VTK application
Paraview. The implemented software prototype allows the visualisation of functional
connectivity data on the internal or external of the brain as a set of curves in Paraview. K-
Means in combination with a bundling method has achieved a significant reduction of screen-
space clutter for this visualisation.

Contents

List of Figures III ..

Glossary and Abbreviations IV ..

1. Introduction 1 ...
1.1 Overview 1 ...

1.2 Goals 2 ..

1.3 Structure of this Thesis 2 ..

2. Background 3 ...
2.1 General Terms 3 ..

2.1.1 Functional Magnetic Resonance Imaging (fMRI) 3 ...

2.1.2 Connectomics 4 ..
2.1.3 Functional Connectivity 5 ...

2.2 State of Reasearch 6 ..
2.2.1 Previous Work 6 ..

2.2.2 Recent Developments 9 ..

2.3 Data Sources 11 ...
2.3.1 Experiment 11 ...

2.3.2 Data Types and Domains 11 ...

2.4 Analysis of Requirements 14 ..

2.4.1 Identification of User Groups 14 ..
2.4.2 Functional Requirements 14 ..

2.4.3 Technical Requirements 16 ..
2.4.4 Demarcations and Limitations 16 ..

2.5 Environment 17 ...

2.5.1 Paraview and VTK 17 ...
2.5.2 Systems and Software 18 ...

3. Edge Visualisation 20 ...
3.1 Problem Statement 20 ...

3.2 Drawing Connexel Edges in 3D Space 21 ..

3.3 Spherical Representation and Matrix Projection 24

3.4 Conclusion 28 ..

4. Clustering Connective Curves 29 ...
4.1 K-Means Algorithm 29 ..

4.2 Adapting K-Means to Connexel data 30 ...

 I

4.2.1 Distance Function 30 ...

4.2.2 Barycentre Function 31 ...
4.2.3 Results 32 ..

4.3 Hierarchical Scheme 33 ..

4.4 Colours 35 ...

4.5 Performance 36 ..

4.6 Conclusion 37 ..

5. Edge Bundling 38 ...
5.1 Bundling Heuristics 38 ..

5.2 Interpolation Functions 39 ...

5.3 Bundling Refinement 41 ..

5.4 Conclusion 43 ..

6. Software Package 44 ..
6.1 Package Contents 44 ..

6.2 Application and Workflow 45 ..

7. Conclusion 48 ...
7.1 Discussion of Results 48 ..

7.2 Outlook 50 ...

A. References 52..

 II

List of Figures

Chapter 2. Background:
Fig.2.1: highlighted, statistically relevant brain regions in an fMRI scan
Fig.2.2: functional connectivity correlation matrix [Hutchison2015]
Fig.2.3: radial connectivity graph [vanHorn2012]
Fig.2.4: "Functional connectivity in right anterior cingulate cortex [Margulies2007]
Fig.2.5, mean-shifted functional connectivity
Fig.2.6: Left volume representation. Right .vtk mesh representation
Fig.2.7: programmable filter attributes exposed through XML

Chapter 3. Edge Visualisation:
Fig.3.1: Interpolated edges in in polar coordinates,
Fig.3.2: Rodrigues Rotation
Fig.3.3: Connective edges projected at constant radius
Fig.3.4: side by side of volume information and brain mesh surface
Fig.3.5: volume information rotated, rotated volume information scaled
Fig.3.6: drawing and projecting generated lines

Chapter 4. Clustering Connective Curves:
Fig.4.1: faulty clustering of a set of edges
Fig.4.2: barycentre calculation
Fig.4.3: cluster centroid of a single cluster
Fig.4.4: example of a hierarchy and cluster selection
Fig.4.5: three hierarchy levels dividing the same cluster
Fig.4.6: colour as a cluster property at different hierarchical levels

Chapter 5. Edge Bundling:
Fig.5.1: examples of bundling applied to a single cluster
Fig.5.2: gradually converging alpha function for the unit example
Fig.5.3: quickly converging alpha function for a concrete example of n = 10
Fig.5.4: two bundling archetypes
Fig.5.5: continuous radius
Fig.5.6: internalised connective curves

Chapter 6. Software Package:
Fig.6.1 Paraview window
Fig.6.2: Properties Panel of the programmable filter

Chapter 7. Conclusion:
Fig.7.1: externalised connexel curves
Fig.7.2: internalised connexel curves

 III

Glossary and Abbreviations

Abbreviations

BOLD 
Blood-oxygen-leveldependant

MRI/fMRI 
Magnetic resonance imaging, functional magnetic resonance imaging

VTK 
Visualization Toolkit

ROI 
Region of interest. Describes a certain brain area or fragment thereof.

DWI 
Diffusion weighted imaging.

Glossary

Cluster  
A group or set of entities sharing similar attributes.

(Interpreted) Interface Layer 
Exposure of functionalities implemented in another programming language to the
programming language of the current environment.

Functional Connectivity  
A type of connectivity, which is not necessarily based on physiological structure.
Instead it is a statistical concept, informed by time series correlation or covariance of
spatially segregated brain areas.

Connectome  
Statistically calculated network of functional or structural connectivity, depending on
the scope of the study defining it.

Vertex 
A three-dimensional point in space.

Barycentre  
Describes the centre of mass of a given set of elements.

 IV

1. Introduction

1.1 Overview

Mapping the human brain is a concurrent topic in neuroscience. Researchers hope to
infer understanding of the brain's functionality from a well-defined and complete map
of its inner workings. This map is generally referred to as the brain's wiring diagram
or the 'Connectome', however there is a sensible distinction between the 'structural'
and the 'functional Connectome'. The structural (also anatomical) Connectome
describes a map of actual, physiological connections between neurons in the brain.
The functional Connectome, on the other hand, describes the interconnectedness of
active brain regions during or in the absence of task performance.

Visualisation models are a major element in Connectome research. Plain connectivity
data is dense and seldom human readable. Understanding the interconnectedness of
brain areas is best achieved with an anatomical reference. Where the visualisation of
the structural Connectome is pre-defined by the actual presence of the axons in the
white matter regions of the brain, functional Connectivity is only a statistical concept
and therefore its visualisation is possible in a number of ways. A common analogy is
the mapping of a computers circuitboard, compared to the mapping of a programs
execution.

Neither the structural, nor the functional Connectome have been mapped in their
entirety. For the structural Connectome, this is largely due to the limitations of
current technology in medical imaging. Non-invasive methods like DWI (Diffusion-
Tensor-Imaging or DW-MRI Diffusion-Weighted Magnetic Resonance Imaging) and
fMRI (functional Magnetic Resonance Imaging) have improved significantly in recent
years, but their resolution still only allows the analysis with a level of uncertainty.
Functional Connectivity research is impacted by the same demarcations, however the
more prevalent problem is the definition of a desired visualisation model.

Datasets of functional Connectivity hold an immense number of correlating or
covarying brain regions, making an accurate but insightful visualisation hard to
generate. The most common approach is to limit the areas of interest during the
gathering of the data, prior to the visualisation, and concentrating solely on their
relations to other areas of the brain. Usually this data is gathered using fMRI while
the subject executes a number of simple tasks, or is completely at rest (Resting-State
fMRI).

The benchmark dataset in this project however aims to capture a whole-scale
functional network, without simplification or summary. This adds new requirements
to a visualisation model, namely the display of hundreds of thousands of connections
in a single screen. This thesis aims to prototype such a visualisation model.

Chapter 1 Introduction

1.2 Goals

The main goal of this thesis is to create a prototype of a visualisation software, that
can display whole-scale, high-field functional connectivity networks. This is supposed
to be achieved by applying methods of cluster analysis to functional connectivity data
as provided by Dr. Johannes Stelzer and his group at the Max-Planck-Institute for
Biological Cybernetics.

Connectivity data will be displayed as a set of curves, spanning areas of previously
inferred functional connectivity in 3D-space. A custom K-Means implementation will
be developed and will provide a method of defining low-variance clusters among the
curves. Results of the clustering will be incorporated into the visualisation by forcing
the curves to converge with their respective cluster centroid.

In order to further the discussion on the visualisation of functional connectivity data,
the visualisation model proposed in this thesis will attempt to externalise the display
of connective strands. As a reference, a 3D mesh of a subject brain will be integrated
into the visualisation. The resulting visualisation will show similarities to a magnetic
field diagram.

1.3 Structure of this Thesis

The central part of this thesis will be a prototypical software package, that holds all
necessary tools to create visualisations of high-resolution functional connectivity.

First, the background chapter will relate the importance of functional connectivity
research, general approaches and previous research in the field, that directly informs
the course of this thesis. Additionally it will include a description of the experiment
in which the benchmark dataset has been gathered and investigate the layout of the
dataset, file by file. With this foundation, a set of requirements to the software will be
provided, which can be used for reference to later determine the progress of the
software project and the outlook on how to proceed after the conclusion of this thesis.

The following chapters will closely examine the implemented methods used in this
particular software package, beginning with the drawing of connected edges in 3D
space. This will be followed by the two major implementations in the visualisation
model; the application of the clustering algorithm K-Means on a dataset of functional
connectivity and the incorporation of its results in the visualisation.

After the exploration of the applications logic, another chapter will provide
information on the general workflow and usage of the provided software.

 2

Chapter 2 Background

2. Background

2.1 General Terms

2.1.1 Functional Magnetic Resonance Imaging (fMRI)

fMRI (functional Magnetic Resonance Imaging) is a non-invasive imaging technique,
commonly applied in Cognitive Science and Neuropsychology. The method capitalises
on the distinct magnetic properties of oxygenated (i.e. arterial) and deoxygenated (i.e.
venous) blood [Ogawa1990] as well as activity-dependant blood flow in the brain (also
known as hemodynamics) in order to identify localised neural activity [Singleton2009].

Due to a lack of locally stored energy, activated neurons require glucose and oxygen
sourced through hemoglobin [Nieuwenhuys1998]. During activation of a particular
brain region, blood vessels expand and blood flow increases resulting in higher
concentrations of oxygen-rich blood [Roy1890]. The exact physiology of this process
escapes the scope of this thesis. Essentially, the interaction of the MRI induced
magnetic field and the fluctuating magnetic properties of blood flow inside the brain
provoke a measurable signal termed BOLD-Contrast (or Blood-Oxygen-Level-
Dependant) Fig.2.1 [Ogawa1990].

Fig.2.1: highlighted, statistically relevant brain regions in an fMRI scan.
BOLD-contrast images are commonly recorded at lower visual resolution and later

superimposed on high resolution scans of the subject.

 3

Chapter 2 Background

The non-invasive nature and the possibility of Depth imaging have made fMRI the
prime technique for researching the human Connectome [Smith2013]. Three major
applications of MRI have acquired popularity in Connectome research. While Resting
State (or Default-Mode Network) fMRI and Task-Activated fMRI employ the same
general technique with a variation only in the experiment design, Diffusion-Weighted
Imaging (DWI) is commonly used to map white matter structures as opposed to
neural activity, which occurs exclusively in the grey matter. DWI has been used to
great effect in mapping the anatomical structures of the brains white matter,
furthering research of the structural Connectome [Dillow2010]. However, Resting-
State and Task-Related fMRI are more relevant to this thesis, Task-Related fMRI
being the method employed to gather the data that is to be visualised.

In Task-Related fMRI the patient or subject are instructed to perform a simple
assignment like tapping their fingers one by one [Biswal1995][Friston1996]. The
simplicity of the task is supposed to minimise the number of brain regions engaged in
processing and executing it, allowing researchers to identify a singular brain regions
purpose. A usual session consists of a number of sets of such a task, broken up by a
second condition. That condition might be another task, or a resting phase, that is
intended to contrast the patterns in brain activity provoked by the premier task and
evade expectation bias [Kimberg2000]. Recurring patterns from premier set to
premier set then suggest high task correlation. Experiment conditions like this are
widely applied in research of the functional Connectome (or Functional Connectivity).

Lastly and conversely, Resting-State fMRI makes use of the same measuring
techniques only without the subject performing a task. Subjects are instead asked to
let their minds wander - activating the so-called Default Mode Network
[Buckner2008]. It is proven, that even in a resting state the brains neural connections
are still active [Greicius2003], 'linking' particular brain regions and thus creating a
network, that is generally distinct from networks formed during engagement in tasks -
making a 'mind-wandering' section an attractive alternating step in Task-Related
fMRI studies.

2.1.2 Connectomics

Connectomics describes the study and eventual creation of high resolution wiring
diagrams of the brain. This wiring or interconnectedness is agreed upon to be the
defining feature of the nervous system and its mapping is only made possible due to
the advancements in non-invasive MRI imaging technology.

The term Connectomics is a play on the word Genomics - suggesting that the
Connectome is the foundational blueprint of the psyche like the genome is the
blueprint of the body. As with the genome, the relevance and urgency of creating a
high resolution Connectome is widely debated. However there is no doubt that recent

 4

Chapter 2 Background

advances in Connectome research have already contributed to Neuroscience’s
understanding of the brains inner workings.

Mapping the anatomical white matter structures of the brain for example has helped
researchers identify abnormalities in Dementia- or Alzheimers-stricken patients -
discoveries that might eventually lead to earlier diagnoses and possible treatments.
Comparing full, anatomical Connectomes of healthy patients with those affected by
neurodegenerative disease could be the key to understanding the origin of such
afflictions.

Beyond the anatomical map of the brain, largely limited to the white matter
responsible for linking brain areas, lies the mapping of the functional structure.
Arguably more important to the understanding of the brains function is the actual
activity and not the physiological structure, that acts as a medium for it. Enter the
second major field in Connectomics: Functional Connectivity.

2.1.3 Functional Connectivity

Cortical functional connectivity, as indicated by the concurrent spontaneous activity
of spatially segregated brain regions, is being studied increasingly because it may
determine the reaction of the brain to external stimuli and task requirements. It is
reportedly altered in many neurological and psychiatric disorders, which hints at the
possibility of functional connectivity diagnosis as well as treatment [vandeVen2004].

Contrary to Anatomical Connectivity, which describes the actual structure of
connections between neurons, Functional Connectivity is an entirely statistical
concept. It describes a correlation or covariance of neuronal activity between two
spatially remote areas [Friston1994] across a given time frame and in response to
certain task stimuli or in their absence (see default mode network [Greicius2002]). As
such it has no immediate reference to underlying structural connections. [Friston1996]

Areas of recorded neural activity are located in the grey matter in the outer layers of
the brain and containing the neuronal cell bodies. Those areas range in size,
depending on the experiment design and methods employed. With the ascent of high
resolution imaging technology it is now possible to observe areas with voxel sizes of
only a few cubic millimeters. However, the sheer density of neurons in these layers,
with -voxels of the cerebral cortex containing around 630.000 neurons (example
calculation by the Geoffrey Aguirre Lab, 2012), still requires statistical information
retrieval. Even at such a level of aggregation a study of the cerebral cortex will
generate connectivity data for several tens of thousands of interconnected voxels.
Connectivity data is usually obtained for all possible connections in a set of voxels,
then thresholded and weighted with characteristics like persistence of the connection
across time-series or condition instances as described in the fMRI section above. At
the conclusion of such a study stands a weighted list of again, tens of thousands
connections, a high weight suggesting a strong task-correlation of a distinct
connection.

3mm3

 5

Chapter 2 Background

This data needs to be related to the actual spatial representation of the brain in order
to determine major activation patterns and infer functional meaning. Of course
simply linking every two-voxel connection with a straight line would result in a
cluttered image void of any human-readable information. Luckily, the actual path is
not a dimension of the information vector (also called Connexel, the basic unit of
measurement in Connectomics [Worsley1998]), consisting only of two voxels and a
weight of their connection - allowing for a large variety of visualisation methods, but
lacking a standardised method.

2.2 State of Reasearch

2.2.1 Previous Work

The “pathless” nature of Functional Connectivity [Achard2006] is fertile ground for
possible visualisation methods. The most important problem to solve is to visually or
practically simplify the large volume of datapoints in a single set of measured
connectivity without omitting essential information [Böttger2014]. While there is a
definite standard for handling anatomical connectivity data (even with full datasets)
[Pajevic1999], there is no method yet, that would visualise the entirety of a functional
network. Commonly, visualisation of large scale functional networks is a two step
process. First comes a preprocessing step of the actual input data, only second and
much less well-developed is the visualisation step.
So far the most popular preprocessing approaches take into account only fractions of
whole sets or subsample data from a larger set in order to “thin out” the connectivity
data before eventually rendering it [Margulies2013].
There is a variety of methods, two/three of which will be described in the following
paragraphs as they heavily inform the eventual visualisation process proposed in this
thesis.

In the very popular seed-based correlation analysis for example, connectivity data of a
single brain voxel, the seed region, is recorded by correlating every other voxel of the
brains volume representation with the seed voxel across several time series
[Biswal1995]. This approach is highly zoomed in and can offer a lot of detailed
information, provided the researcher can make an informed a-priori decision on which
voxel to designate as the seed voxel. The method is synonymous with the region-of-
interest analysis (ROI) or cross-correlation-analysis (CCA), suggesting that the
applicant will have to have decided on a region of interest before commencing their
study. In most cases, researchers define a number of seed voxels in order to capture
connectivity across major brain regions like the visual or motor cortex
[Margulies2007][Greicius2003].

 6

Chapter 2 Background

Independent component analysis on the other hand is performed on large swathes of
data in order to identify major, mutually independent connective strands
[Beckmann2005][DeLuca2006]. This allows the automatic identification of major,
underlying network tendencies without a-priori knowledge of which regions they occur
in. At the same time, this approach is highly zoomed out and runs the danger of
dropping statistically minor but nonetheless significant connectivity information. As a
statistical approach it is not suited to preprocess data for a full functional network
visualisation as it filters out detailed elements of the connective strand.

Recently, different clustering algorithms have been used to identify major networks in
raw connectivity data [Venkataraman2009][Lee2012]. Spectral clustering, as well as K-
Means clustering algorithms have been employed and could successfully highlight
well-known and therefore comparable structures of the default mode network, the
visual cortex, the motor cortex and of the dorsal attention system. All of this without
a priori knowledge of where these structures might originate [Venkataraman2009].

In most cases visualisation approaches for these highly preprocessed datasets are
much less sophisticated. A general approach is the visualisation of functional
connectivity in a simple connectivity matrix, marking connection strength, likelihood
or prevalence between two given voxels by a colour hue Fig.2.2 [Shirer2011]
[Honey2007][Biswal1995].

 7

Fig.2.2: functional connectivity correlation matrix [Hutchison2015]. A red hue
suggests high, task-related correlation. Both the x- and y-axes defined the same set of

previously identified areas of interest.

Chapter 2 Background

 8

Fig.2.3: radial connectivity graph [vanHorn2012]. This graph connects
areas of interest, that showed correlation during task-related fMRI. The alpha

value of each edge is a measure of the connection strength.

Fig.2.4: "Functional connectivity in right anterior cingulate cortex
(inferior seeds)." [Margulies2007] The x-axis, labeled i1-i9 denotes a number
of seed regions compared against a number of sagittal (vertical in relation to the

head of the subject) slices on the y-axis.

Chapter 2 Background

Moving away from a strict matrix and towards graph-theory, several forms of
diagrams have been proposed, for example two-dimensional connectivity maps
[Achard2006]. Even with a disregard to the anatomical space however, graphs tend to
get cluttered as the number of displayed connections increases. To resolve this issue,
methods of visual summary such as hierarchical edge bundling [Holten2006] have been
introduced to the visualisation process. Circular connection graphs for example, can
provide a cleaner representation of network data employing such methods Fig.2.3
[vanHorn2012][McGonligle2011]. Still, all of these approaches share a fundamental
disadvantage: the inability to display connection data in relation to an immediate,
anatomical reference because of their spatially abstract modalities.

Due to the relatively small size of connections aggregated in seed-based analysis
approaches, visualisations do not tend to get cluttered and are largely created in two-
dimensional space using fMRI generated image slices where connections are correlated
with a colour value (usually blue to red, indicating probability of a recurring
connection at this location) Fig.2.4 [Greicius2003][Margulies2007][Biswal1995]. This
visualisation method provides an anatomical reference in the form of actual brain
scans of the subject. However it is not well suited to actually point out the connection
between voxels, instead its main value lies in the information of how much a single
voxel is connected to other voxels. Working with two-dimensional slices, identifying
connections across depth levels is especially tricky.

2.2.2 Recent Developments

This section will summarise recent developments in preprocessing or gathering
connectivity data and visualising it. These developments directly inform the approach
of this thesis.

Another way of whole set preprocessing is the method of task-related edge density
(TED), developed by Lohmann et al. and employed to gather the demo data for this
thesis. In TED connectivity data is gathered on a per voxel basis, similar to a seed-
based approach but for every given voxel in a volume representation. Every voxel
represents a node and every possible connection an edge between two voxels.
Connections with high correlation during task-performance are attributed with a high
weight i.e. edge density. This approach does not require presegmentation of the data
and allows the generation of high resolution functional connectivity network data,
essentially identifying functional networks without omitting, summarising or singling
out information. With this method, there is no prior filtering or simplification which
leaves us with immensely large sets of relevant connections to visualise. Two methods
of visualisation have been proposed in the original TED paper to deal with this issue.

First, a “hubness”-map, tracking only the number of connections for which a given
voxel serves as an endpoint, this hubness value is encoded in the voxels colour. This
of course does only represent the connectednes of a given region, not its actual
relation to any number of spatially remote regions.

 9

Chapter 2 Background

Second, displaying each connection as a line in 3d space using braingl. This does
visualise an actual network of connective edges, but the high number of connections
again obligates visual simplification. In this example, edges that are close to each
other are bundled together, meaning their intermittent points are interpolated
towards a shared central edge.

This bundling is based on a subdivision scheme called mean-shift, dividing the
original data iteratively until visual inspection confirms a satisfactory division of all
connections. Boettger et al. [Böttger2014] employ the mean-shift algorithm in order
to determine high concentrations of connective strands and summarise them into
logical and visual clusters. The big advantage of this method is, that the number of
clusters does not have to be determined. Instead, the algorithm will approximate a
set of convergent cluster centroids, or means. After the logical clustering is complete,
each connective strand, starting out as a straight line, is interpolated with a close
(closer than a self defined threshold value) mean edge in order to form bundles. This
approach is successful in reducing screen-space cluttering and creates clear, visual
network maps provided enough connective strands are drawn towards one of the
specified means Fig.2.5.

It is also closely related to widely appreciated visualisations of DWI acquired
anatomical connectivity data. Despite the success of this approach, it is still not
possible to display the vast amounts of connections of an entire functional network
without immense cluttering due to a number of issues. One being that a large amount
of clusters would still result in many cross-sections of bundled connective strands,
again rendering the visualisation barely readable. At the same time, reducing the
number of clusters might result in overgeneralisation, bundling up connections that
barely share attributes like end-point proximity or general direction. Boettger et al.
conclude, that in order to produce a comprehensive visualisation of full scale
connectivity networks one would have to follow “more radically different paths than
nature” and incorporate methods like externalising the connective strands in a

 10

Fig.2.5, mean-shifted functional connectivity (blue) network visualisation,
superimposed on visual approximation of structural network (red)

[Böttger2014].

Chapter 2 Background

network map. This would also solve another issue. As argued by Margulies et al., the
connective strands displayed in this approach are located inside the anatomical brain
representation - possibly encouraging misinterpretations, that connective paths are
part of the anatomic structure and not simply reflections of a high possibility of a
functional connection.

2.3 Data Sources

2.3.1 Experiment

The experiment of which the demonstrative data is used in this thesis centres around
a set of face recognition tasks in order to derive functional connectivity data with an
explicit reference to memory access. Condition one requires participants to recognise a
single, specific face in a set of faces shown one at a time. Condition two again
provides a set of faces, only now participants must identify the second to last face
they have been shown. Each condition occurs four times each, without a discernible
pattern in order to minimise effects of expectation bias and maximise reformation of
the functional networks.

fMRI data is gathered using a prototypical 9.1 tesla fMRI, which yields very high
resolution segmented images of a brain volume. The acquired data is preprocessed
using a standard pipeline for noise reduction and subsequently analysed using the
task-related edge density method as described in the previous section.

The experiment is conducted by Dr. Johannes Stelzer, member of the High-Field MRI
group at the Max-Planck Institute for Biological Cybernetics. At the point of the
conclusion of this thesis, the results of the study have not been published.

2.3.2 Data Types and Domains

The goal of the experiment is to aggregate task-state functional connectivity data for
large-scale connectivity, i.e. connectivity on a whole-brain basis. A single dataset
consists of multiple files, the most relevant being a 3D matrix containing the actual
connection data.

1. Every datapoint in the connection data matrix contains three values. The first
and second value are indices referring to voxel coordinates in the brain volume,
the third value is a floating point number denoting the connection weight between
the two voxels. These datapoints, which hold the information on a single
connection of correlating or covariant regions have been termed
“connexel” [Worsley1998], as in pair of 3D-positions. This data is the result of the
TED analysis and is delivered in .csv format.

 11

Chapter 2 Background

2. The connection data stores connections as pairs of indices, each referring to a
voxel coordinate inside the brain volume representation. The brain volume is
represented by a 4D matrix essentially storing said indices behind three nested
index values. These values in turn refer to a three-dimensional voxel coordinate.
This data source can be understood as a voluminous box, separated into voxels of
size . Only the coordinates, that are part of the brain volume inside the
box hold an index value and as such can be easily extracted. Volume data is held
in .nii format, commonly used in neuroimaging Fig.2.6 Left.

3. Third is the visual brain representation in form of a simple 3D mesh of the
scanned brain. In its role to serve as visual/anatomical reference for connectivity
data it is an essential part of the visualisation - especially in this approach of
visualising functional connectivity data in relation to anatomical space. The
whole-brain mesh representation is in .vtk format Fig.2.6 Right.

These three files are closely related and should be used discretely for each subject, or
single study. Since functional connectivity is derived from grey matter activity in the
outer layers of the brain it is common, that datasets are prepared with an “inflated”
representation of the subjects brain. This essentially reduces the depth of the Sulci
(the burrows between the folds of the brain surface) allowing for a less ambiguous
view at grey matter activity. Especially when applying a clustering algorithm based
on the distance of 3D coordinates, depressed Sulci can lead to a perceived proximity
of connection endpoints.

Working with an inflated brain representation will reduce logical errors when
calculating distances between connection endpoints and as such is paramount in order

1,2mm3

 12

Fig.2.6: Left volume representation. Right .vtk mesh representation. Note, the
volume representation contains a dense matrix of points. Because of the matrix's

symmetry, the impression of a superimposed pattern appears.

Chapter 2 Background

to make the application of a distance based clustering algorithm valid. The same is
true for the application of a preprocessing method, involving distance as a relevant
attribute.

After preprocessing there is not much relation between actual connectivity data and
the volume representation, since we expect, that connectivity information has been
gathered correctly and with respect to a possibly inflated state. However, using an
inflated volume representation in conjunction with a non-inflated whole-brain mesh
will lead to possibly harmful and certainly false misinterpretations of the visualisation
results.

 13

Chapter 2 Background

2.4 Analysis of Requirements

2.4.1 Identification of User Groups

Based on the background information provided above, the following chapter will
outline a set of requirements that need to be fulfilled in order to create a viable
visualisation toolset.

The set of functional requirements is three-fold. As a user software, the visualisation
tool prototyped in the course of this thesis is to be applied by people other than the
original developer. Furthermore it is to be open-sourced, allowing third parties to
continue the development process at any point. Lastly, the visualisation itself is meant
to be interpreted by the original operator as well as peers, interested in the field of
connectivity research.

All things considered, it is possible to identify three distinct user groups, two of which
are addressed in the immediate scope of this thesis:

Operators of the software. Experts and researchers in the field of neuroscience or
medicine and knowledgable in the general application of advanced and professional
user software in those fields. Abilities in computer science and programming should
be beneficial but not required.
Peers in the field of connectivity research. This includes students, researchers and
others interested in the topic of functional connectivity. This user group is not
concerned with operating the software, but instead with interpreting the results. An
expected scenario involving this user base would be the distribution of a research
paper featuring visualisations generated with the provided software.

Excluded from the immediate scope of this thesis is the following and last group.

Third-party developers. Generally well versed in Python programming and the use of
common packages. Basic understanding of matrix and vector calculation is necessary,
as well as an all-around good read on algorithms. Not more than a passing interest in
neuroscience is required.

2.4.2 Functional Requirements

As the user group analysis suggests, the following section will be divided into
requirements of operators of the software and requirements of “consumers” of the
softwares visualisation output. The second set of requirements can be understood as a
combination of factual validity and value of the visualisation.

 14

Chapter 2 Background

Application Requirements:

• The paraview filter should have a basic user interface. K-means operates on the
basis of a constant k number of clusters. Operators need to have the option to
manipulate k from inside the user interface in the case of live calculations.
Additional attributes to manipulate the visualisation could be the subselection of
edges, a switch to display or not display edges and cluster selection.

• In addition to the previous requirement, users should be able to explore
hierarchically generated K-Means data by scrolling along the hierarchy with another
ui-element.

• Inputting the data into the user interface (by file path) is the only requirement to
generate a visualisation.

• Calculations of clusters should be efficient enough to be processed live and in no
more than a few minutes, even for medium size datasets. Small datasets should be
processed in mere seconds. This feature is intended to serve as a scouting process of
where and how to visualise connectivity data - large scale datasets should be
processed in the command line interface.

• The software has to offer the option of loading precalculated cluster data from file
in order to reduce system load. To meet this requirement a simple command line
interface is required, such that users of the software can generate data before using
the paraview integrated filter.

Visualisation Requirements:

• Central element of the visualisation is the display of the mean edge, marking an
average connection edge for a cluster of connections and located on the outside of
the anatomical brain representation.

• Clusters have to be visually distinct from one another, this will be achieved with a
continuum along three attributes: colour, projection radius and interpolation along
edge points towards the respective mean edge. This is the essential step of applying
the information retrieved from the K-Means processing results.

• One of the defining factors of the underlying data in this visualisation approach is
its high resolution. All of this data should be represented in the final visualisation
output, allowing the observer to explore the full spectrum of a whole-brain
connectivity graph.

• The visualisation has to be accurate in its representation of connectivity endpoints.
Every visualised edge has two endpoints, originally provided by the data input and
marking the actual correlating/covariant regions in the brain. Through all
preparatory and visualisation processing steps this data has to be left unchanged
and displayed as provided.

• There has to be clear reference to the anatomical background of the connection
data. This could be a transparent whole-brain scan, a point cloud or a background
image.

 15

Chapter 2 Background

2.4.3 Technical Requirements

Similar to the manyfold nature of the functional requirements, the technical
requirements could be separated into two categories. Namely, a set of requirements for
the clustering step and another for the actual visualisation step.

Technical Requirements for Clustering:

• The nature of a single connective edge requires a special distance function inside the
K-Means algorithm. The algorithm should therefore be simple enough to expose a
distance function and make it interchangeable.

• Connective edges are six-dimensional, consisting of two three-dimensional points. In
order to compute the distance between two edges accurately the distance function
has to be agnostic to the direction of each edge.

• The final software bundle created in this thesis should provide a simple Unix
executable command line script, that will allow operators to run K-Means and
hierarchical K-Means on any set of two-point edges and save the output to file.

• The K-Means algorithm will be implemented in a naive fashion and should
therefore not require Python packages beyond Numpy.

Technical Requirements of the Visualisation

• As with the original distance calculation, the six-dimensional properties of each
edge could lead to a faulty visualisation. Edges have to be aligned before they can
be displayed in order to avoid visual loops and crossing lines.

• Interpolation between original connective edges and mean edge has to accept several
different interpolation methods in order to provide control over level and
progression of interpolation in the bundling step.

• To create intermittent points for every two-point connective edge the Rodrigues
rotation must be implemented.

• The radius of the edge projection for each cluster needs to be calculated based on
the average distance between this clusters endpoints.

• To make hierarchical data explorable, the original edges that make up a cluster on a
current hierarchy level must be retrieved. To retrieve edges an algorithm has to
follow along the hierarchy.

• All of the above must be implemented with VTK and its Python bindings.

2.4.4 Demarcations and Limitations

• All calculations (especially the K-Means algorithm) will require Numpy as a
dependency for matrix calculations and essential, mathematical operations.

• The only efficiency factor addressed in visualisation processing will be that the task
can be completed in linear time without overburdening the systems RAM. Large
datasets should be precomputed in a system Python environment and not inside the
Paraview client, i.e. the programmable filter.

 16

Chapter 2 Background

2.5 Environment

2.5.1 Paraview and VTK

VTK (Visualization Toolkit) is an open-source software package for 3D computer
graphics, image processing and visualisation. VTKs main component is a C++
Library, which is made accessible to other programming languages through
interpreted interface layers. The software prototyped in this thesis will employ VTKs
Python interface layer, which will allow easy access to code sources and a faster
prototyping environment. Additionally, developing in Python will grant access to a
variety of useful libraries like Numpy.

Paraview is a software tool for data analysis and visualisation. Built on the 3D-
rendering pipeline and general functionality of VTK, Paraview effectively acts as a
user interface for VTK and enables users to interact with its tools through graphical
interface elements.

Users can load 3D-models into the application and start manipulating edges, vertices
and faces. Unlike regular 3D-modeling software, Paraview does not allow the direct
manipulation of either of these 3D-elements through cursor but instead offers a range
of filters, which perform operations on them algorithmically. Paraview offers several
versions of filters, some of which generate data while others require a data input of
some sort. Some filters can also be applied on plain data, like a simple data table,
allowing the generation of 3D meshes or transforms from regular numerics.

VTK offers several classes for data handling. Most of these classes consist of a
number of cells and some added attributes and methods. Cells represent sets of
vertices, edges or faces and are necessary to display 3D objects. VTK makes a
distinction between topological and geometric data. Cells provide the topological
element but hold no immediate information on their position in 3D space. Instead,
every cell refers to one or more elements in the 3D object's 'points' array, which holds
a set of plain, geometric coordinates. A vertex refers to a single point in the array and
its topology has zero dimensions, an edge refers to at least two points and therefore
has upwards of one dimension and so on.

Because of the open-source nature of both VTK and Paraview the development of
custom plugins (in most cases filters) is encouraged by extensive documentation and a
variety of possibilities. The most accessible option to create a custom filter for
example, would be to use the "programmable filter". It can be applied to any VTK
data source (mesh, plain data and others), exposing said datasource to a Python
environment in which it can be manipulated before it is returned to the rendering
pipeline. This allows users to directly run Python code using the VTK-Python library
inside Paraview and on a specific data source.

 17

Chapter 2 Background

However accessible and immediate, a programmable filter cannot be understood as
distributed software, since it would require users to copy and paste the actual Python
source into the filters “script” property. In order to expand a simple Python source
into an easily integrable plugin an XML file, meeting Paraview standards, is required.
This XML file is interpreted by Paraview as a filter or data source and can therefore
be loaded using the integrated plugin manager. It can also hold a layout for the
properties panel of the filter it represents, offering a way to include manipulable fields
or other GUI-elements in a plugin while hiding others in an "advanced" section Fig.
2.7.

Fig.2.7: programmable filter attributes exposed through XML. Paraview
allows a set of simple input types, like fields, range sliders and checkboxes.

The prototyped package will provide the Python source of a programmable filter as
well as a readymade XML filter plugin, using a similar Python source as its hidden
script property. Additionally, the XML filter will be exposing access-required
attributes as described in section 2.4.2 in its graphical user interface. This will allow
operators to control the visualisation properties on the fly and without touching
source code. The exact layout of these files will be discussed in the main section.

2.5.2 Systems and Software

All of the Python libraries listed below are effective dependencies, meaning that the
full spectrum of the provided software can only be used if all of them have been
installed and properly sourced in the users Python environment. This holds true for
the application of the XML filter inside Paraview.

 18

Chapter 2 Background

Software:

• Python 2.7.10, universal high level programming language, developer and
proprietor: Python Software Foundation, https://pythonprogramming.net

• NumPy, Python library for multidimensional array computing and general math
appliances, developer and proprietor: Travis Oliphant, Numpy Team, http://
www.numpy.org

• Matplotlib, Python Library for the display of function graphs, developer and
proprietor: Michael Droettboom, http://matplotlib.org

• NiBabel, Python library for nifti/.nii and other neuroimaging file reading and
writing, developer and proprietor: https://www.nipy.org

• VTK, Visualisation Toolkit C++ Library for 3D-Rendering with Python-bindings,
developer and proprietor: Kitware Inc., http://www.vtk.org

• Paraview 5.4.0, Open-Source Application for data analysis and 3D visualisation
built on VTK, developer and proprietor: Kitware Inc., Sandia National Laboratory,
Los Alamos National Laboratory, https://www.paraview.org

Hardware:

• Desktop PC with Intel Xeon CPU W3690 @ 3.47GHz x 6, 23,5 GB RAM, Ubuntu
14.04

• MacBook Pro 2015 with Intel Core i5 @ 2,7GHz x 2, 8GB RAM, macOS Sierra
10.12.6

 19

3. Edge Visualisation

3.1 Problem Statement

There is a large number of possibilities of drawing lines in 3D space. Due to the
immense number of connections in a single dataset of functional connectivity however,
the proposed visualisation method was confined to a set of requirements.

Previous work has demonstrated, that straight lines, connecting the endpoints of
connexels create a densely cluttered visualisation [BrainNetViewer]
[VisualConnectome] - even at much smaller datasets. Readability of a high resolution
dataset, like the benchmark dataset in this thesis, would in no way be possible
without extensive downsampling of the data or other undesired methods of
preprocessing. The same goes for bundled, but still, internally displayed connective
lines, as proposed by Boettger et al. [Böttger2014], since the number of clusters would
likely still be enough to clutter up the brain volume and obfuscate experiment data.
Therefore the connective lines drawn with the implemented algorithm are external,
surrounding the brain mesh at a near constant distance to the surface. This approach
is comparable to a visualisation proposed by Foucher et al. [Foucher2005], which so
far has not been employed on whole-brain functional connectivity data.

The second requirement is scalability. This visualisation is supposed to display high-
field functional connectivity data with hundreds of thousands of connective edges. A
single line drawing pass should be efficient enough to allow the exploration of the
data without excessive processing times. Additionally, simplifying the line drawing
algorithm will improve readability and allow the continuation on the development of
the project by developers to come.

Lastly, one of the major achievements of high-field functional connectivity is its voxel
resolution, meaning that active brain regions can be singled out at steps.
Being one of the defining factors of such datasets, it is paramount to preserve the
possibility of localising these connection endpoints in the final visualisation.

The following section will examine how these requirements are intended to be fulfilled
with the proposed, multi-step visualisation model. A simple method of drawing lines
at constant radius in 3D space will be proposed as a foundation for the visualisation.
These connective edges will eventually link the two endpoints of each connexel in the
dataset. Lines drawn in this way will lie on a sphere, surrounding the brain mesh. In
order to approximate the set of lines more closely to the brain mesh surface, a
projection method will be introduced in the second subsection. This method will be
capable of translating any number of coordinates between a spherical and an
ellipsoidal representation.

1,2mm3

Chapter 3 Edge Visualisation

3.2 Drawing Connexel Edges in 3D Space

With a prepared set of pairs of connection endpoints, everything is properly set up to
draw edges between those points in 3D space. In order to draw an edge, Paraview
expects a number of 3D coordinates to draw line segments between. The idea is to
generate a set of 3D coordinates approximating a curve by a set of segments
connecting the two endpoints of each connexel at a constant radius, thus generating a
connective strand for each relevant connection. The number of intermittent segments
determines the apparent smoothness or resolution of each edge. To draw the lines at a
constant radius, two approaches were tested.

The first attempt was to convert both endpoint coordinates (origin and
destination) of a connexel from a cartesian coordinate representation to a spherical
one, then generate a number of points along the curve by linear interpolation
between the two points' and angles, while leaving the radius untouched.
Projecting both origin and destination coordinates would enable the definition of a
constant radius, allowing a very simple interpolation scheme, with being a
set of 3D coordinates between the two connexel endpoints

This approach however presented itself as problematic, because of the domain of the
polar angle inside the spherical coordinate system. has a domain of , so
intermittent points tended to interpolate predominantly on the azimuthal angle
when angles of the endpoints were particularly close. This resulted in an unexpected
path of the curve on the sphere Fig.3.1.

vo, vd

n
ϕ θ r

V(vo, vd, n)
n

vo, vd(x, y, z) → vs
o, vs

d(θ, ϕ, r)
V(vo, vd, n) = {vi : vo + (vd − vo)(i

n)∀i ∈ {1, …, n}}

θ θ [0; π]
ϕ

θ

 21

θ

A B

O

Fig.3.1: Interpolated edges in in polar coordinates, approach one, linear
interpolation between angles in spherical coordinate space (red) with the undesired

interpolation. Intuitively, the shortest path (green) would be expected.

Chapter 3 Edge Visualisation

The interpolation of polar coordinates does not link the two points on the sphere
surface and , using the shortest path. One way to ensure that the shortest path is
always taken is to remain on the plane defined by . This can be achieved using
the Rodrigues Rotation formula. This formula rotates a vector around an axis
(given by the normal of the plane) by an angle .

where is the vector, rotated around the axis by the angle .
This solves the previous issue and yields 3D edges as expected. A few additional
methods were required to successfully implement the Rodrigues formula. First, had
to be defined, around which the origin vector, the first of the two endpoints of the
connexel, could be rotated. This could be achieved using the cross product of the two
endpoints (origin and destination), thereby finding a perpendicular unit vector to
the plane in which both vectors are included.

In the case of the origin and the destination vector being collinear, taking the cross
product of either one and any random vector, that is not a multiple of either, would
return a perpendicular vector. This auxiliary method has been implemented
recursively to ensure the generation of a non-collinear cross vector.

The second important auxiliary method aims to find the angle between the two
points' unit vector representations, again assuming the plane .

This angle delta can be divided into any number of chunks, granting control over the
edge resolution once again Fig.3.2.

Any number of connexels can easily be represented by an edge in 3D space employing
the methods above. Projecting edges with constant radius will essentially be create on
a sphere, exclusively holding all edge vertices. In order to connect each edge to its two
endpoints inside the brain volume it is sufficient to simply add them to the array
holding the intermittent vertices. The result is accurate, in that it connects two
regions of activation visually without obscuring their original location. However any
edge holding coordinates at constant radius as well as the two original voxel
coordinates will have a pronounced right angle, due to the outward projection Fig.

A B
AOB

v k
AOB θ

vr = vcosθ + (k × v)sinθ + k (k ⋅ v)(1 − cosθ)

vr k θ

k

k

k (⃗AO , ⃗BO) =

⃗AO × ⃗v rand

∥ ⃗AO × ⃗v rand∥
, if ⃗AO × ⃗BO = ⃗0

⃗AO × ⃗BO
∥ ⃗AO × ⃗BO ∥

, else

θ
AOB

θ = arccos(vo

∥vo∥
⋅ vd

∥vd∥) = arccos(⃗AO
∥ ⃗AO ∥

⋅
⃗BO

∥ ⃗BO ∥)

 22

Chapter 3 Edge Visualisation

3.3.

 23

Fig.3.3: connective edges projected at constant radius. The stilt-like line
segments connecting the original endpoints to the projected vertices are identifiable by

the right angles.

A B

O

u v

u1 un-1

Fig.3.2: Rodrigues Rotation a unit vector u towards a unit vector v.
Intermittent vectors {u1, ..., un-1} can be projected to any radius by simple

multiplication.

Chapter 3 Edge Visualisation

3.3 Spherical Representation and Matrix Projection

The previous section discusses in detail how 3D edges at constant radius are created
for each connexel in a dataset of functional connectivity. The goal however is, to draw
those edges at a close-to-constant distance from the brain mesh surface in order to
relate their orientation to possible pathways more closely.

During the line drawing step all edges were generated on a sphere, the shape of the
brain mesh however is closer to an ellipsoid. While still an approximation to the mesh
surface, projecting the connective edges from a spherical representation to an
ellipsoidal one, resembling an upscaled version of the brain mesh, will allow for a
better approximation of a constant distance to the brain surface. The process of
projecting points into a spherical representation will be termed "forward-transform"
or "forward-projection" and the process of projecting from a spherical representation
to an ellipsoidal one "back-transform" or "back-projection".
The forward transformation can be easily achieved through shrinking along the
ellipsoid's axes. The back transformation will be achieved by multiplying along the
same axes by a factor inverse to the forward transform. Information on both the axes
and the factors can be determined by computing the covariance matrix of the
coordinates forming the ellipsoid in question. In this case the covariance matrix will
be computed using the vertex coordinates of the brain mesh.

 
Let be a single vertex coordinate defined as

 

The covariance will be computed using either combination of the coordinate sets ,
and , herein represented by placeholders . The covariance matrix of the entire
set of centred vertex coordinates will then include the covariance of all possible
combinations of coordinate sets, with regards to the sequence.

pi

pi = (xi, yi, zi)

x y
z a, b ΣP

M̄p

cov(a, b) =
∑n

i=0 (ai − ā)(bi − b̄)
n − 1

ΣP =
cov(x, x) cov(x, y) cov(x, z)
cov(y, x) cov(y, y) cov(y, z)
cov(z, x) cov(z, y) cov(z, z)

 24

Chapter 3 Edge Visualisation

The forward-projection can be applied to both, mesh vertex coordinates and connexel
endpoint coordinates held in the volume representation. This transformation has the
advantage of making the data isotropic, such that no particular axis/direction is
pronounced. The volume information was transformed, prior to clustering due to the
expected improvement of clustering results. Instead, this adds falsehoods to the
results, because during the clustering step the data is abstracted from its actual,
physical dimensions obscuring distances and therefore cluster layouts. This should be
avoided in further application of the software.

Fig.3.4: side by side of volume information represented by a point cloud
and brain mesh surface. The volume information needs to be understood as a
tightly-knit three dimensional matrix of points. It holds about six times as many

vertices as the mesh surface.

The matrix is real positive definite and hence can be diagonalised, and written in
the following way:

where matrix is a rotation matrix and the matrix is diagonal.
contains the eigenvectors of . The define the axes of the spread of
points in the brain mesh, and the set of eigenvalues the associated variance of the
spread. The eigenvector with the highest eigenvalue therefore defines the axis with
the most spread. The intention is, to now rotate the centred volume information of
the brain to align it with the spread of the mesh points, using the transpose of the
 matrix of eigenvectors . The result will be the same set of points, projected
onto a new coordinate system basis Fig.3.5 left.

Σp

Σp = R ⋅ D ⋅ Rt

R D = diag(λ) R
Σp eigenvectors

λ

P̄

3 × 3 Rt

P̄r

 25

Chapter 3 Edge Visualisation

The coordinates now need to be scaled by yet another matrix. For scaling we use
multiplied by a constant factor , such that the scale of the original brain mesh
is preserved Fig.3.5 right. After execution of this forward transformation, the
connective edges can be drawn for any set of connexels as seen in section 3.2. such
that,

Fig.3.5: left: volume information rotated by transposed matrix of
eigenvectors, right: previously rotated volume information scaled by

inverted and normalised diagonal matrix of eigenvalues.

The volume data represented in this way, all intermittent edge coordinates can be
created and added to the transformed set of the original coordinates.
With all vertices, including the intermittent edge coordinates, represented in the same
space, a back projection of the entire set is possible in one go. This can be understood
as the inverse of the process described above and the same covariance matrix of the
brain mesh is required.

P̄r = Rt ⋅ P̄

D− 1
2

max(λ)

ps
i = 1

max(λi)
D− 1

2 Rtpi

pi = RD 1
2 max(λi)ps

i

 26

M = np.sqrt(np.diag(max(eig)/

eig)).dot(M)
M = eig_vectors.T.dot(M)

Chapter 3 Edge Visualisation

The point coordinates in have been projected into spherical space, resulting in a
spherical representation of the entire set . Let be a copy of with the newly
generated edge coordinates. To project them into the ellipsoidal representation of the
brain mesh they need to first be scaled. To achieve this, the inverse of the diagonal
matrix originally used to scale the set of connexel coordinates is required. In this case,
this is rather unintuitive, because the matrix would be the inverse of an inverse
diagonal matrix of eigenvalues. The result will be a version of , rotated to the
original rotation.

A set of random edges has been created in a spherical representation of the brain
volume and consequently been projected to match the brain surface in the following
example Fig.3.6.

The Python implementation for both the forward projection matrix and the back
projection matrix uses Numpy to compute the eigenvalues of a covariance matrix,
passed as an arguement. It is therefore:

P̄
P̄s ·Ps P̄s

·Ps

 27

Fig.3.6: progress of drawing and projecting generated lines as well as
volume information. Even at a small subset of n=128 connections (<0.2% of the

whole dataset), the visual output is densely cluttered.

Chapter 3 Edge Visualisation

Note, that this implementation does not use the exact reciprocal of the in
its eigen_matrix variable. This is to maintain the general scale of the point matrix as
seen in Fig.3.5. Taking the reciprocal instead would significantly down-size the entire
matrix. While not problematic after back projection and to the visualisation in
general, this might impair debugging during development.

3.4 Conclusion

In conclusion, using the above methods, edges can be projected into an ellipsoidal
representation, such that they have a close to constant distance to the brain surface.
The method is efficient as it is a simple matrix multiplication, that can be performed
with accelerated routines (Blas, Numpy). Performing this method on large numbers of
edges at once is not an issue.

Combined with the method of edge drawing at constant radius, explained in the
beginning of this chapter, the pipeline for drawing lines is kept computationally
minimal, while still being visually accurate.

Of course, an ellipsoid is only a very rough approximation of an actual brain's
surface, since it does not take the highly folded structure of the brain into account.
The folds of the brain also add significant variance to the brain mesh coordinates,
which might impact the ellipsoidal approximation.

While many edges can be processed in this way, only the next section will introduce a
method of displaying them without extensively cluttering the screen-space.

eigenvalues

 28

def forward_projection_matrix(cov_mat):
 eigen_values, eigen_vectors = np.linalg.eigh(cov_mat)

 eigen_matrix = np.sqrt(np.diag(max(eigen_values) * eigen_values**-1))

 m = eigen_vectors.dot(eigen_matrix).T

 return m

def origin_projection_matrix(cov_mat):
 eigen_values, eigen_vectors = np.linalg.eigh(cov_mat)

 eigen_matrix = np.sqrt(np.diag(max(eigen_values) * eigen_values**-1))

 m = np.linalg.inv(eigen_matrix).dot(eigen_vectors.T).T

 return m

4. Clustering Connective Curves

The previous section focuses on the display of connective edges, however it does not
address the issue of scalability. Drawing a set of only 128 edges can result in a
cluttered visualisation and the entire dataset holds more than a thousand times that
many edges. This section will introduce a method of clustering, that will be the
foundation of the visual summary of the data. Clustering is a method of identifying a
set of objects, that share a higher similarity amongst each other, than to objects of a
different set. In this case, edge clusters will be defined by the relative closeness of
their endpoints.

4.1 K-Means Algorithm

K-Means is a clustering method, that aims to partition a set of -dimensional
datapoints into clusters, such that the in-cluster variance is minimised. In the
analysis of 2D- or 3D-points for example this would mean, that K-Means seeks to
deploy its cluster centroids (elements, that share the dimensionality of the dataset,
also termed 'mean') in such a way, that aggregated, squared distance between
datapoints and their assigned cluster centroid is at a minimum.

General steps of the K-Means algorithm are as follows:

1. Initially, the cluster centroids are provided to the algorithm. A common
approach is to sample these randomly from the dataset, that K-Means is
performed on, however there are more elaborate methods of initialisation which
seek to improve the overall computation time and quality of the clustering.

The following two steps are repeated until some condition occurs. In most
implementations this is the convergence of the cluster centroids, to a point where
there is no more or insignificant change between iterations.

2. Each datapoint in the set is assigned to its 'closest' (attribute-wise) cluster
centroid. 
Given a set of cluster centroids the assignment step would be 
 
  
 
where is a set of datapoints associated with cluster at iteration and is a
single datapoint. is a distance function. So each cluster is a set of elements,
that share a higher likeness to their centroid, than any other cluster centroid. 

3. Each cluster is composed of a subset of the original data. To conclude a single
step in the iteration, each clusters centroid is updated with the aggregated values
of its particular subset. 

n d
k

k

k ci, …, ck

S(t)
i = {p : dist(p − c(t)

i) ≤ dist(p − c(t)
j) ∀j ∈ {0, …, k}}

S(t)
i c(t)

i t p
dist()

Chapter 4 Clustering Connective Curves

 
  
 
where for every cluster centroid the updated version will be the centre of
mass of the subset .

4.2 Adapting K-Means to Connexel data

K-Means generally uses the euclidean distance between the datapoints it is performed
on.
Each connexel datapoint can be encoded in a six-dimensional vector containing two
3D-coordinates. The arising problem is, that the order of the coordinates becomes a
factor in the eventual result of the cluster analysis when it should not. An example in
two-dimensional space will illustrate the problem:

The two major functions of K-Means, namely the distance function and the
barycentre function, have to be modified to accommodate the nature of the present
dataset.

4.2.1 Distance Function

The example makes it immediately obvious, that edges AB and CD should belong to
the same cluster. Due to the application of a euclidian distance function, coordinates
A and C as well as B and D have been compared resulting in much higher squared
distance between endpoints than expected.

This highlights, that the distance of two edges is defined by the distance between
their two respective endpoints, so there are always two possible comparisons for any
given edge in euclidian space.

c(t+1)
i = barycentre(S(t)

i)

c(t)
i c(t+1)

i
S(t)

i

d

 30

A
D

B

F

CE

Fig.4.1: faulty clustering of a set of edges. n=3, k=2

Chapter 4 Clustering Connective Curves

where the set is a single six-dimensional datapoint consisting of two 3D
coordinates, compared against a centroid of the same dimensionality. So for every
datapoint the distance to each centroid has to be computed for a flipped version as
well.

One of two heuristics can now be selected for the assignment step, either compare all
minimum distances between edges and centroids to determine the set affiliated with a
specific cluster or compare all maximum distances. While the former one is more
intuitive, it is important to note, that the choice of which distances to compare does
not have an effect on the outcome; the important part is the consistency across all
comparisons. This effectively makes the assignment step of the algorithm agnostic to
the orientation of its datapoints, resulting in the expected outcome.

4.2.2 Barycentre Function

The orientation of the lines would also have an effect on the update step of the
cluster centroids, if not explicitly handled otherwise. It is therefore necessary to
preserve the information of which version (flipped or original) of a specific edge the
mean centroid has been compared against, when the edge was assigned to its cluster.
The edges will have to be aligned accordingly, before recomputing the centroid Fig.
4.2.

The desired computation for the cluster centroid of should therefore
look like this

as opposed to

This is achieved by storing a flip-map in the form of a boolean array during distance
computations. Before cluster centroids are updated, this array is used to switch the
first three elements in a datapoint with the last three, or leave it unchanged as
required.

d = ∥ {x1, y1, z1, x2, y2, z2} − c(t)
i ∥ or ∥ {x2, y2, z2, x1, y1, z1} − c(t)

i ∥

{x1, …, z2}
c(t)

i
p f

S(t)
i = {p : (∥p − c(t)

i ∥2 ∧ ∥ p f − c(t)
i ∥2) ≤ (∥p − c(t)

j ∥2 ∧ ∥ p f − c(t)
j ∥2) ∀j ∈ {0, …, k}}

C0 = {AB, CD}

c0 = (A + D
2 , B + C

2)

c0 = (A + C
2 , B + D

2)

 31

Chapter 4 Clustering Connective Curves

4.2.3 Results

Results indicate the success of the methods described above. The within-cluster sum
of squared distances is decreased significantly when compared to the approach using
euclidian distance computation. In one hundred sample computations of and
 , for a shuffled dataset, the average sum of squared distances was ~27998mm
for the adapted and ~34668mm for the euclidian approach. This divergence grows as
 gets larger.

Generally the adapted method reduces the amount of outliers in any given cluster,
essentially creating more representative cluster centroids Fig.4.3.

Fig.4.3: cluster centroid (superimposed in red) of a single cluster. Left the
basic, euclidean distance function includes a set of outliers (mid left). Right direction-
independent, adaptive approach assigns outliers to different clusters. The centroid is a

more accurate representation of the clusters centre of mass.

k = 16
n = 1024

k

 32

F

E
C

A
D

B

Fig.4.2: barycentre calculation. Left faulty recomputation without prior
alignment of edges. Right expected computation of cluster centroid, averaging

F

E
C

A D

B

Chapter 4 Clustering Connective Curves

4.3 Hierarchical Scheme

K-Means is successful in summarising large datasets in the form of a predefined
number of clusters. The requirement for the a-priori definition of a number of clusters
however is one of the algorithm's major limitations. Especially when processing large
datasets with significant processing times, converging on a representative number of
clusters can be time-consuming and inefficient.

A way to make the exploration of even large datasets a more interactive experience is,
to apply K-Means hierarchically. A hierarchical scheme will consist of several
applications of K-Means, where only the first considers the original dataset of
connexels. Subsequent applications will be performed on the converged centroid edges
of the previous pass, while also reducing the number of clusters . Each pass is stored
and can be traced back along the hierarchy to the original dataset Fig.4.4.

Not only does this enable the exploration of many different K-Means results at
different numbers of clusters, but it also bears potential to identify clusters more
consistently. Especially when examining a dataset one cluster at a time and moving
up and down the hierarchy, there is a high probability of identifying a highly effective
cluster layout, meaning number and distribution of clusters, for a particular
subsection of the data.

The design of this hierarchical application scheme is simple. It iterates entire K-
Means applications using the proposed implementation, with the number of clusters
given by

k

k(t+1) = n
xt+1

 33

h=2;k=4;k2

Fig.4.4: example of a hierarchy and cluster selection. Assuming hierarchy level 2
and cluster two are selected, the edges on the bottom of the highlighted path will be

displayed as a single cluster.

Chapter 4 Clustering Connective Curves

where is the current iteration step in the hierarchy, the number of edges in the
original set and a user defined value marking the divisor in between iterations. For
 for example, the benchmark set of 186266 connections would take 16 iterations
to reach , allowing for many hierarchy levels to be created and inspected.

As mentioned, only the first pass considers the original dataset, so every subsequent
set is defined by the set of centroids produced in the previous pass;

where is a set of edges given by a set of centroids with each centroid given as
described above (reference formula step 2 from K-Means).

These centroids are a summation of the clusters they represent, which depending on
the hierarchy level, consist only of previous centroids. The eventual goal is to relate
every hierarchy levels cluster layout to the original dataset, therefore every cluster
needs to be followed along the hierarchy, to aggregate all connective edges represented
by the leaves of the hierarchy graph Fig.4.4.

Without taking all edges into account during each pass this method runs the danger
of steering centroids away from actual cluster centres of the original data. So when
relating upper hierarchy levels to the original dataset, outliers and higher aggregated
squared distances are to be expected. Additionally, since the hierarchical process
forces K-Means to be executed on progressively smaller datasets and lower numbers
of clusters, relatively independent clusters may be summarised in a single cluster of a
higher order.

t n
x

x = 2
k = 2

A(t+1) = {c : barycentre(S(t)
i)}

At+1 c

 34

Fig.4.5: three hierarchy levels dividing the same cluster. The hierarchical clustering
scheme has been applied to the same dataset as above. The cluster has been chosen, due to
its similarity to the cluster in the last section. From left to right, cluster hierarchy moves

from toplevel (6) to bottom level (0)

Chapter 4 Clustering Connective Curves

Fig.4.5 shows a single cluster in three different hierarchical stages. Comparing this
outcome with the one shown in the previous section, it is easy to tell that this cluster
contains a larger number of outliers. Indeed, the aggregated squared distance in the
example of and is across a number of 100 trials about 1.3 times as
high as in the single pass clustering.
This rate is relatively consistent between different size datasets and different numbers
of clusters and numbers of hierarchical passes. This concludes, that hierarchical K-
Means does not achieve better clustering layouts on higher hierarchical levels.
However, with access to the hierarchy attribute inside the user interface, operators
can skim through a dataset at different cluster layouts with next to no delay.

4.4 Colours

The clustering results will not only enable methods of edge bundling, but will allow
the colouring of the connexel edges for improved distinction between clusters. In the
field of functional connectivity research, colours are generally used to encode further
information of the datasets. Some prominent features like connection strength,
dominant orientation of the connection or general connectedness are common colour
scales. The only predictor of colours in this example will be the index of each edges
associated cluster.

In the application of the hierarchical scheme, the integration of colour as a cluster
property is especially effective in analysing network tendencies Fig.6.

k = 16 n = 1024

 35

Fig.4.6: colour as a cluster property at different hierarchical levels. The K-
Means results used in this visualisation are equal to the ones in the previous

example. Left cluster at top hierarchy level, single colour. Right cluster at hierarchy
level 3, the same level as the mid example in Fig.x

Chapter 4 Clustering Connective Curves

4.5 Performance

K-Means as well as Hierarchical K-Means have been implemented with little regard to
efficiency. The major goal was to create an easily readable implementation, that could
compute a result for a dataset of any size in linear time.

In some cases this lead to the inability of using more advanced methods of
computation as provided by Numpy. Numpy would allow the computation of squared
distances between an entire set of edges and an entire set of centroids at once, so the
first approach was the following:

distances = ((edges - centroids)**2).sum(axis=1)

However, the large number of connective edges in the benchmark set would lead to an
immense size of the distances matrix.
With for example, there would of course be 16 centroids, so 186266*16
distances, times two because of the computation of both the original and the flipped
version. A single distance is stored as a 64bit floating point number. For a single step
of K-Means, this computation would occupy upwards of 23 Gigabytes of RAM. A
single pass distance calculation was therefore out of the question. Instead distances
were then calculated per edge, slowing down general performance but allowing for the
computation of a set of any size on machines with much less RAM. This
implementation will allow a Single K-Means computation of the entire set to be
completed in linear time.

Random initialisation of centroids leads to relatively high variance when it comes to
processing times and number of K-Means steps required in generating a result. The
variance is reduced relative to the number of clusters. Generally, using a higher
number of clusters will increase the duration of every K-Means pass but decrease the
number of passes required. Despite this, the main predictor of processing times is the
size of the dataset .

Other more methods of initialisation would likely reduce the variance of results and
more efficient implementations could reduce processing times by a large margin.

k = 16

k

n

 36

Chapter 4 Clustering Connective Curves

4.6 Conclusion

The K-Means algorithm has been successfully implemented and customised to meet
the requirements of a six-dimensional dataset in the form of functional connectivity
data. While there were no exact metrics for the accuracy of the clustering, except for
squared distance aggregation between approaches, visual confirmation suggests, that
clusters are computed as expected - with a high priority for similarly oriented
connexel edges.

Both K-Means and hierarchical K-Means have been identified as valuable
preprocessing methods. While the single pass variant delivers results with more
efficient cluster layouts, the hierarchical scheme contributes in that it provides
explorable datasets, which can inform decisions about relevant data subsets or
clustering layouts for future computations.

While the results can be made explorable in Paraview's user interface, they do not
provide realtime visualisations and require, depending on the size of the source data,
several minutes of preprocessing.

The results are nevertheless foundational in their importance for the eventual
visualisation of whole-scale connectivity data. Computing a single pass K-Means and
displaying only the resulting centroids is already a method of reducing the density of
a high field dataset with a strong approximation of a lossless summary. Another
method of exposing major network tendencies is the introduction of colour to the
edge visualisation. Basing each edges colour on the index of the associated cluster can
allow a large variety and enhance the visualisation in many ways.

The main purpose of the clustering however, is the visual summary of all connexel
curves and not just a subset. The following section will examine bundling methods, to
create a concise and informative visualisation.

 37

5. Edge Bundling

The cluster analysis described in the previous section is the foundation of the visual
summary of the dataset. In functional connectivity research datasets can reach sizes
of upwards of 100.000 connections for a whole-scale functional network. The
experimental dataset, used as a benchmark in this thesis has an even higher
resolution. Where previous attempts at visualising functional connectivity have
generally taken only subsets into account, this visualisation aims to prototype a
method of displaying a full dataset, paying special attention to the preservation of
valuable details like the origin and destination locations of each connexel. The
proposed method of visual summary is a bundling method, which 'ties' edges,
associated with a specific cluster, together in order to de-clutter the visualisation and
incorporate hundreds of thousands of connexels in a single view.

5.1 Bundling Heuristics

After the generation of edges in 3D space and the computation of K-Means, the
results can be incorporated into the visualisation in order to be able to display high
resolution functional connectivity data.
The bundling is achieved by interpolating each connective edge towards its associated
cluster centroid. Again, the prime directive is to leave the endpoints of each edge
untouched, such as to not manipulate the actual experiment data. Additionally this
will ensure, that despite visual summary around the centre of each edge, the high
resolution of the origin and destination neighbourhood is preserved and visualised
accurately. 

After back projection to brain mesh space, the following can be applied for every
edge.

where describes an edge, affiliated with cluster in the form of a set of 3D
coordinates. Every edge is interpolated vertex-wise towards , the cluster's centroid
edge, by a coefficient in the open unit interval contained in the set . All sets
introduced hold the same number of elements. Making a function of time will allow
the implementation of different, more elaborate interpolation functions.

ec = {[0,1] → IR3

t ↦ αe(t) + (1 − α)c(t)

ec cj
c

α
α

Chapter 5 Edge Bundling

5.2 Interpolation Functions

 can be initialised with numerous functions, so long as they satisfy the following
properties:

 has to retain the constraint, that , such that the interpolation of
both connexel endpoints equals zero; leaving them entirely unchanged. This is
necessary to not
manipulate the original dataset. Another requirement of is its symmetry. In order
to have a symmetric interpolation, the zenith of should be at its centre with each
value before or after being lower.

Depending on current visualisation requirements clusters can be converged quickly or
in a more gradual manner using a variety of functions Fig.5.1.

The function in the visualisation on the left for example lets edges converge slowly
and is given by

where is given by and is a number corresponding to the total
number of vertices held in any given edge/centroid.

α

α : {α(0) = α(n) = 0
α(t) ∈ [0,1]

α α(0) = α(n) = 0

α
α

α = {x : sin(x ⋅ π
|s |

)}

s s = {0, …, n − 1} n

 39

Fig.5.1: examples of bundling applied to a single cluster. Function graphs
are given below.

Chapter 5 Edge Bundling

The function on the right converges more quickly and is given by

In addition to the steepness of the interpolation function, simply multiplying the
resulting set of coefficients by a value in the interval will offer some
control over the level of compression around the centre of the bundle. Any value lower
than 1.0 will prevent a full convergence of connective edges and centroid edge,
allowing a loser bundle visualisation that preserves information on origin and
destination of a single connection. This information will be forfeited when the bundle
converges on a specific point around its centre.

α = {x : 1 −
(x − n − 1

2)4

n log(− n − 1
2)3

}

(0,1) ∈ ℝ+

 40

Fig.5.2: gradually converging alpha function for the unit example of n=1.
This function corresponds to the visualisation on the left.

Fig.5.3: quickly converging alpha function for a concrete example of n =
10. This function corresponds to the visualisation on the right.

Chapter 5 Edge Bundling

5.3 Bundling Refinement

Simply interpolating edges in their current state is a fast method of visually
summarising the connectivity data. While not without merits, improving on this
method will be necessary to attempt to satisfy the requirements laid out in the
introduction of the visualisation, namely creating a visualisation without clutter,
which allows the display of any number of connexel curves without obscuring each
connexels endpoints.

Interpolating edges towards centroids makes cluster orientation and spread of
endpoints obvious, but exact endpoint locations can be obscured by the 'stilts'
connecting the endpoints to the first points of the connective edge laying on the
ellipsoid Fig.5.4 left. Despite these drawbacks this type of visualisation could hold
some value. For example when approximating an ideal number of clusters, as variance
among endpoint neighbourhoods is easily visible in this approach.

A way to reduce the 'stilt' effect, is to drastically minimise the projected radius of the
edges, while keeping a high radius on the centroids. This will reduce the magnitude of
the curves 'stilt', effectively turning it into a much less significant segment of the
curve. Post-interpolation, the edge will now approximate a more continuous curve
Fig.5.4 right. Especially in combination with a quickly converging interpolation
function, this reduces the screen space each cluster inhibits significantly.

 41

Fig.5.4: two bundling archetypes. Left: Simple interpolation of connective edges
towards a mean edge with a similar radius . Right: interpolation of connective edges

with a radius towards a mean edge with significantly higher radius .

Chapter 5 Edge Bundling

A more solid and intuitive solution is the implementation of a function, that
gradually increases, then decreases the radius of a given line during its course. This
function delivers an array of radii, reaching their zenith at the central coordinates of
any edge - similar to the interpolation set introduced above. The resulting edges
behave more smoothly and also reduce line spread as the edge bundle approaches
either endpoint neighbourhood Fig.5.5.

This would turn the radius into a function of time, such that

where denotes a single edge, whose vertices have been projected using a continuous
radius function . This function interpolates the radius between the inherent radii
of the connexel endpoints over a user-defined zenith or maximum radius. The
continuous radius function is therefore given by the following

where are the radii at the origin and destination point of a connexel curve, is
the number of vertices and could be given by any version of or a similar
function.

The general goal is to externalise connexel curves, so a radius, larger than the
maximum extent of the brain mesh on any axis should be chosen for the user-defined
zenith. The maximum extent of the brain would be half its length, with the length
being the axes of the highest spread of vertex coordinates. Because of the original 1:1

α

er = r(t)ec(t)

er
r(t)

vo, vd

r : {
r(0) = ro, r(n) = rd

t ↦ (ro + (rd − ro)(t
n − 1)) + z(t)

ro, rd n
z(t) α(t)z

 42

Fig.5.5: continuous radius. Improved reduction of spread at endpoint
neighbourhoods, mean edges now blend in with connective edges.

Chapter 5 Edge Bundling

scale of the dataset, in this example the zenith should be defined as at least 75mm.
The visualisation in Fig.5.5 uses a zenith of 120mm.

An interesting side-effect of the continuous radius function is, that choosing a small
zenith of only 1mm will still result in an accurate visualisation, preserving the
endpoint coordinates. The bundled edges are displayed on the insight of the brain,
similar to the visualisation proposed by Boettger et al. [Böttger2014] Fig.5.6.

5.4 Conclusion

It has been established, that even simple interpolation of edges, projected at close-to-
constant radius will achieve visual clutter reduction. This method furthermore
indicates the spread of endpoints at a clusters neighbourhood, suggesting that, while
not quite desirable for whole-scale visualisations, it might have value in identifying a
more adequate number of clusters for a given set.

The method has been improved upon in two steps, first, edge vertices have been
created at a low radius, while the centroid edges, towards which they were
interpolated, kept a relatively high radius. This reduced the angular effect of the
curve and turned a perceived 'stilt' into a less significant element of the entire curve.
Because of the requirement of a specific relation between connexel and centroid edge
radii another method was prototyped.
Instead of two constant radii to interpolate between a continuous radius function was
developed, that smoothed out the curve approximation. This approach was even more
successful at reducing clutter around endpoint neighbourhoods and improved the
interpolation.

 43

Fig.5.6: internalised connective curves. Effect of continuous radius in
combination with a low zenith.

6. Software Package

6.1 Package Contents

The final software package contains a number of scripts written in Python as well as
a testing suite for the provided functionalities. This will ensure stability in future
developments and extensions of the package.

The following paragraph will describe the package layout and its most relevant
member files in a general fashion. Closer examination of each files functions will take
place in the following subsections.

 readme.md

 requirements.txt

 filter/filter.py

 filter/filter_xmlable.py

 filter/plugin.xml

 cli_tools/naive_k_means.py

 cli_tools/hierarchical_k_means.py

 tools/plot_ops.py

 tools/file_ops.py

 tools/nifti_alignment.py

 tests/test_suite.py

 tests/context.py

naive_k_means.py
This Python file includes the naive K-Means implementation and all necessary
auxiliary functionalities. The most essential being distance function for six
dimensional datapoints, method of initialisation and a method of saving the processed
result.
This file can be run in the command line or via regular import inside a Python shell
or file.

hierarchical_k_means.py
This works in a similar fashion as the naive_k_means in that it can be run from the
command line, as well as any Python environment.

plot_ops.py
Provides a vast range of supporting functions, necessary for drawing the actual
visualisation inside Paraview. This is the main module used by the programmable
filter as well as its XML counterpart. It consists of a set of functions for preparatory
calculations enabling the visualisation and another set to handle all VTK-related
operations like drawing points, lines and organising output data for the Paraview
pipeline.

Chapter 6 Software Package

file_ops.py
This module provides a set of auxiliary functions necessary to handle the input files
holding connection information. The assemble_edges method creates a Numpy array
holding the 3D-coordinates for every connexel (set of two voxel coordinates) by
combining information of the volume information and the connection data as
described in the following section. The Numpy array should be saved and can easily
be loaded inside the Paraview filter or during precalculation.
This module requires the Python packages Nibabel and CSV to handle the
corresponding file formats.

nifti_alignment.py
In the rare and very avoidable case that volume information and mesh are not
aligned, this script can serve as a helper to match a set of volume coordinates with a
mesh of the brain.

filter.py
A version of the Paraview filter, that has to be added to a “programmable filter”
instance’s script property in the Paraview hierarchy. Every attribute of the script has
to be manipulated in code, most importantly paths to load data will need to be
changed.

filter_xmlable.py
This filter is functionally the same as the one above, but it has been prepared for the
automatic generation of an xml variant, using the script provided by Paraview
developers.

plugin.xml
This is a version of the filter, that can be loaded using Paraviews plugin manager. It
comes with a user interface and is the central piece of software this thesis revolves
around. The Python source integrated here can be found in this file:
filter_xmlable.py
Due to format reduction in this XML file, readability of the Python source is
impaired so for any review purposes the Python file should be referred to.

6.2 Application and Workflow

Using the the tools listed above users are able to perform each of the following steps
in order to create a visualisation using Paraview. Note that some additional steps
involving software not included in this package are necessary.

General setup:
The following instructions will set up a Paraview environment, which allows the live
calculation and visualisation of a clustered set of connectivity data in 3D-space. Note
that live calculations tend to get slow depending on the system in use. The main

 45

Chapter 6 Software Package

purpose of the software package remains the loading of preprocessed, i.e. clustered
connectivity data. This particular workflow will be described in the section following
this one.

These steps require external software sources.

1. Install Paraview from https://www.paraview.org/download. Version 5.4 has been
used during development, but any version above 4.6 should be a viable option to
use the software package.

2. Install dependencies using pip, the Python package management tool. On both
macOS and Linux one simple terminal command should suffice: 
 
 # cd path/to/_brain_viz  
 pip install -r requirements.txt  
 
This will install the packages Numpy, CSV, NiBabel and Python-VTK as
required.

The following steps build entirely upon the software package's contents.

3. Prepare the Connection Data using the file_ops module. The simplest way to
do this is by importing the module inside a Python shell and saving the edge
information to an .npy file. The module itself loads Numpy, allowing users to save
the assembled edge information from inside it as seen in the last command of the
following shell input example. 
 
 >>> from _tools import file_ops as f  
 >>> edges = f.assemble_edges('path/to/.nii', 'path/to/.csv') 
 >>> f.np.save('path/to/edges', edges)

4. Setup Paraview by launching the binary inside the downloaded .zip file. Load
the brain mesh you want to work with by dragging the file to the Pipeline
Browser inside Paraview Fig.6.1. Some unnecessary display options will be
enabled by default and should be disabled for an optimal working experience. 
Fig.x, Paraview window. The Pipeline Browser can be seen on the top left.  

5. Load the XML plugin using Paraviews plugin manager under 
Tools > Manage Plugins... > Load New... 
The plugin should now appear in the alphabetical list of filters.

6. Setting up the filter will require a few extra steps. Most exposed UI attributes
have a default value, that can be changed around as desired - however it is
absolutely necessary for a user to specify the two fields bdv path and edges path

 46

Chapter 6 Software Package

according to their personal setup. This is only possible after the filter has been
applied to the previously loaded mesh inside the Paraview hierarchy. As the name
suggests the edges path attribute should be set to the path of the previously
created, congregated edge information from step 3. bdv path on the other hand
should point to the software packages root directory, since it will be used for
several imports in the filter source Fig.6.2. 

 47

Fig.6.2: Properties Panel of the programmable filter. The gear symbol
indicates that the advanced view is enabled. This exposes the 'bdv path'

property, a path pointing to the root of the software package.  

Fig.6.1: Paraview window. The pipeline browser can be seen on the top left.

7. Conclusion

7.1 Discussion of Results

The exploratory work done during this thesis was generally successful in the goals it
set out to achieve. The first of these goals was the display of curves in 3D-space. A
method was introduced, prototyped, abandoned and replaced with a different
approach, the Rodrigues Rotation formula, that eventually yielded the expected
results. Connexels, consisting of two spatially segregated 3D-coordinates could be
visualised by a set of rotated vectors using the VTK pipeline. This was only a setup
to the visualisation of whole-scale functional connectivity networks.

In the next step K-Means was introduced as a method of clustering the large number
of edges for later, visual summary. A naive K-Means implementation was successfully
adapted to be able to perform clustering on a set of six-dimensional connexel
datapoints. For this purpose, a distance function was developed, that performed
distance computations for a set of edges, each defined by two points in three-
dimensional space, without regard to the orientation of said edges. The distance
function was only one of the major parts of this specific K-Means implementation.
The second one, a barycentre function, was a recomputation of K-Means centroids,
which was customised using the same orientation agnostic methods. Continuous tests
and benchmarks were applied and proved the functions improvements over regular
euclidian distance computations in the context of connexel datasets.

The processing times for large datasets were relatively high, leading to the
introduction of a hierarchical implementation of K-Means. This method would create
a number of computations of varying numbers of clusters, essentially generating
several cluster layouts for the same dataset. The hierarchical scheme would perform
K-Means computations consecutively on the centroids, generated by a previous K-
Means pass. While not as successful in generating a cluster layout with low
aggregated squared distances, this method allowed the exploration of a dataset along
the hierarchy offering the possibility of identifying highly expressive cluster
distributions for subsets of the data.

The final step towards the visualisation was the integration of the results delivered by
the clustering algorithms into the visualisation. The clustering layouts were used to
converge edges in 3D-space, creating not only a logical clustering but also a visual
bundling of connexel curves with similar properties. The bundling method was
implemented in a highly readable manner to expose several attributes of interest to
the operator, like the level of compression of bundled edges, as well as the overall
convergence of edges with their respective cluster centroid.
Section 5.3 introduced a set of consecutive steps to improve the cluster visualisation
by manipulating the exposed features and in that identified two promising methods of
visualisation, which hold exclusive values. First was the interpolation of edges,

Chapter 7 Conclusion

projected at close-to-constant radius, a visualisation that clearly displayed cluster
variance at endpoint neighbourhoods and already reduced screen-space clutter at
cluster centres. Second was a method, using varying radii, which yielded a much more
condensed visualisation without obscuring endpoint locations, achieving most of the
previously stated goals of the visualisation.

At the conclusion of the practical phase, the software package is a solid foundation for
visualising functional connectivity data in a number of different ways, that motivate
further exploration. K-Means has been successfully implemented to divide any
number of connexel edges into any number of clusters and the result is automatically
displayed as a set of bundled curves of varying colours (associated with the clusters
index).

 49

Fig.7.1: externalised connexel curves. n=10.000, k=11

Chapter 7 Conclusion

7.2 Outlook

In its current state, the software is able to generate visualisations of functional
connectivity data with only a small set of user inputs. Visualisations created for
datasets, containing up to 10.000 connexels achieve overall clear visualisations using
the default parameters. Larger datasets however, the visualisation of which is the
ultimate goal in a project such as this, require more extensive customisations. These
customisations are not yet implemented in an accessible enough way, such that only
developers with further knowledge of the software will know about them.

Another factor, that can be improved upon is the efficiency of the implemented
algorithms. It has been mentioned, that K-Means has been implemented with little
regard to efficiency, meaning, that it should eventually be replaced by an
implementation with better performance, as well as improved consistency with regard

 50

Fig.7.2: internalised connexel curves. n=10.000, k=11

Chapter 7 Conclusion

to cluster results. Additionally, the edge bundling method is not performing well and
in fact takes even more processing time than the K-Means computation. This can no
doubt be fixed in further iterations.

Finally, due to time constraints, the software has not yet been presented to the group
of Dr. Johannes Stelzer. Because of the prototypical nature, the discussion should be
driven forward by the requirements presented by the functional connectivity
researchers, who requested this software. The implemented features will need to be
tested by them.

 51

Appendix

A. References

[Ogawa1990] Ogawa, S., Lee, T. M., Kay, A. R. & Tank, D. W., "Brain magnetic
resonance imaging with contrast dependent on blood oxygenation" Proceedings of the
National Academy of Sciences USA 87, 9868–9872, 1990

[Singleton2009] Singleton, A.B., Camargos, S., Scholz, S., Simon-Sanchez, J., Paisan-
Ruiz, C., Lewis, P., Hernandez, D., Ding, J., Gibbs, J.R., Cookson, M.R., Bras, J.,
Guerreiro, R., Oliveira, C.R., Lees, A., Hardy, J., Cardoso, F. "DYT16, a novel
young-onset dystonia-parkinsonism disorder: identification of a segregating mutation
in the stress response protein prkra." Lancet Neurology, 7, 207-215, 2008

[Nieuwenhuys1998] Nieuwenhuys, R; Donkelaar, HJ; Nicholson, C. "The Central
Nervous System of Vertebrates", Volume 1. Springer. 11–14, 1998

[Roy1890] Roy, C. S. & Sherrington, C. S., “On the regulation of the blood supply of
the brain”, American Journal of Physiology, 85-108, 1890

[Smith2013] Smith, Stephen M et al. “Resting-State fMRI in the Human Connectome
Project.”, NeuroImage 80, 144–168., 2013

[Dillow2010] Dillow, C. "The Human Connectome Project Is a First-of-its-Kind Map
of the Brain's Circuitry", https://www.popsci.com/science/article/2010-09/
introducing-human-connectome-project-first-its-kind-map-brains-circuitry

[Biswal1995] Biswal, B., Zerrin Yetkin, F., Haughton, V. M. and Hyde, J. S.,
"Functional connectivity in the motor cortex of resting human brain using echo-
planar", mri. Magn. Reson. Med., 34: 537–541. 1995

[Friston1996] Friston K. J. et al., “Functional Topography: Multidimensional Scaling
and Func- tional Connectivity in the Brain”, Cerebral Cortex 60, 156-164, 1996

[Kimberg2000] Kimberg, D.Y., Aguirre, G.k., D’Esposito, M., "Modulation of task-
related neural activity in task-switching: an fMRI study" Cognitive Brain Research,
Volume 10, Issues 1–2, 189-196, ISSN 0926-6410, https://doi.org/10.1016/
S0926-6410(00)00016-1.

[Buckner2008] Buckner, R. L., Andrews-Hanna, J. R. and Schacter, D. L., "The
Brain's Default Network". Annals of the New York Academy of Sciences, 1124: 1–38.
doi: 10.1196/annals.1440.011 2008

 52

Appendix

[Greicius2003] Greicius, M.D., Krasnow, B., Reiss, A.L., Menon, V., "Functional
connectivity in the resting brain: a network analysis of the default mode hypothesis",
Proceedings of the National Academy of Sciences in the United States of America, vol.
100: 253-258, 2003

[vandeVen2004] van de Ven, V. G., Formisano, E., Prvulovic, D., Roeder, C. H. and
Linden, D. E.J. (2004), "Functional connectivity as revealed by spatial independent
component analysis of fMRI measurements during rest." Hum. Brain Ma, 22: 165–
178. doi:10.1002/hbm.20022

[Worsley1998] Worsley, K. J., Cao, J., Paus, T., Petrides, M. and Evans, A.C. (1998),
"Applications of random field theory to functional connectivity." Hum. Brain Ma, 6:
364–367. doi:10.1002/(SICI)1097-0193(1998)6:5/6<364::AID-HBM6>3.0.CO;2-T

[Achard2006] Achard, S., Salvador, R., Whitcher, B., Suckling, J., Bullmore, E., "A
Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly
Connected Association Cortical Hubs", Journal of Neuroscience, 4: 63-72, 2006

[Boettger14] Böttger J., Vilringer A., Schäfer A., Margulies D. S. & Lohmann G.,
“Three-Dimensional Mean-Shift Edge Bundling for the Visualization of Functional
Connec- tivity”, IEEE Transactions on visualization and computer graphics, Vol. 20,
No. 3, 471-480, 2014

[Bha05] Bharat Biswal, F. Zerrin Yetkin, Victor M. Haughton and James S. Hyde,
“Func- tional connectivity in the motor cortex of resting human brain using echo-
planar MRI", Magnetic Resonance in Medicine, 537-541, 2005

[Loh16] Lohmann G., Stelzer J., Zuber V., Buschmann T., Margulies D. S., Bartels A.
& Scheffler K., “Task-Related Edge Density (TED)—A New Method for Revealing
Dynamic Network Formation in fMRI Data of the Human Brain”, https://doi.org/
10.1371/journal.pone.0158185, 2016

[Pajevic1999] Pajevic, Sinisa, and Carlo Pierpaoli. "Color schemes to represent the
orientation of anisotropic tissues from diffusion tensor data: application to white
matter fiber tract mapping in the human brain." Magnetic resonance in medicine
42.3 (1999): 526-540.

[Margulies2013] Margulies, Daniel S., et al. "Visualizing the human connectome."
NeuroImage 80 (2013): 445-461.

[Margulies2007], image source, Margulies, Daniel S., et al. "Mapping the functional
connectivity of anterior cingulate cortex." Neuroimage 37.2 (2007): 579-588.

 53

Appendix

[Beckmann2005] Beckmann, Christian F., et al. "Investigations into resting-state
connectivity using independent component analysis." Philosophical Transactions of
the Royal Society of London B: Biological Sciences 360.1457 (2005): 1001-1013.

[DeLuca2006] De Luca, M., et al. "fMRI resting state networks define distinct modes
of long-distance interactions in the human brain." Neuroimage 29.4 (2006): 1359-1367.

[Venkataraman2009] Venkataraman, Archana, et al. "Exploring functional
connectivity in fMRI via clustering." Acoustics, Speech and Signal Processing, 2009.
ICASSP 2009. IEEE International Conference on. IEEE, 2009.

[Lee2012] Lee, Kyu-Min, et al. "Correlated multiplexity and connectivity of multiplex
random networks." New Journal of Physics 14.3 (2012): 033027.

[Shirer2011] Shirer, W. R., et al. "Decoding subject-driven cognitive states with
whole-brain connectivity patterns." Cerebral cortex 22.1 (2012): 158-165.

[Honey2007] Honey, Christopher J., et al. "Network structure of cerebral cortex
shapes functional connectivity on multiple time scales." Proceedings of the National
Academy of Sciences 104.24 (2007): 10240-10245.

[Hutchison2015], image source, Hutchison, R. Matthew, et al. "Dynamic functional
connectivity: promise, issues, and interpretations." Neuroimage 80 (2013): 360-378.

[vanHorn2012], image source, Van Horn, John Darrell, et al. "Mapping connectivity
damage in the case of Phineas Gage." PloS one 7.5 (2012): e37454.

[Holten2006] Holten, Danny. "Hierarchical edge bundles: Visualization of adjacency
relations in hierarchical data." IEEE Transactions on visualization and computer
graphics 12.5 (2006): 741-748.

[McGonigle2011] Schwarz, Adam J., and John McGonigle. "Negative edges and soft
thresholding in complex network analysis of resting state functional connectivity
data." Neuroimage 55.3 (2011): 1132-1146.

[Foucher2005] Foucher, J. R., et al. "Functional integration in schizophrenia: too little
or too much? Preliminary results on fMRI data." Neuroimage 26.2 (2005): 374-388.

[Gre09] Greicius M. D. & Damoiseaux J. S., “Greater than the sum of its parts: a
review of studies combining structural connectivity and resting-state functional
connectivity”, Brain Structure & Function, Vol. 213, Issue 6, 525-533, 2009

 54

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Bachelorarbeit selbstständig und nur
unter Verwendung der angegebenen Literatur und Hilfsmittel angefertigt habe. Die
aus fremden Quellen direkt oder indirekt übernommenen Stellen sind als solche
kenntlich gemacht.

Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen
Prüfungsbehörde vorgelegt und auch nicht veröffentlicht.

Osnabrück, den 01.11.2017 ..

