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Kurzfassung 

Seit den frühen Neunzigern haben sich die Methoden zur Ableitung funktioneller 
Konnektivität stetig weiterentwickelt und entsprechende Datensätze sind feiner aufgelöst als 
je zuvor. Entsprechende Präsentationsmethoden jedoch sind um einiges weniger weit 
entwickelt. Schon ein einzelnes funktionelles Netzwerk besteht aus hunderttausenden 
relevanten Verbindungen was in der Visualisierung einen Kompromiss zwischen 
Vollständigkeit und Lesbarkeit provoziert. Besonders bei der Visualisierung von Konnektivität 
mit direkter Referenz zur anatomischen Repräsentation des Gehirns sorgt die schiere Anzahl 
von Verbindungen für ein undurchdringliches Chaos und verbietet jede Identifikation 
übergeordneter Tendenzen des Netzwerks.  
Innerhalb der letzten Jahre haben Forscher wiederholt Methoden der Cluster Analyse (mean-
shift, spectral clustering) verwendet um solche Tendenzen zu extrahieren. Häufig jedoch, 
wurden die Resultate ohne Bezug zum vollständigen funktionellen Netzwerk visualisiert. In 
diesem Projekt soll K-Means, als Methode der Cluster Analyse, als Basis für einen Edge-
Bundling Ansatz genutzt werden um vollständige, funktionelle Netzwerke lesbar abzubilden. 
Zu diesem Zweck wurde zunächst der K-Means Algorithmus für sechs-dimensionale 
Datenpunkte, also die Koordinaten zweier Punkte im 3D Raum, angepasst um damit auf 
Datensätze funktioneller Konnektivität angewendet werden zu können. Die Resultate wurden 
in ein, mit Paraview entwickeltes, Visualisierungsmodell integriert. Der realisierte Software 
Prototyp erlaubt somit die Visualisierung funktioneller Konnektivität als gebündelte 
Einzelverbindungen, innerhalb oder außerhalb eines Referenzmodells des Gehirns. K-Means in 
Kombination mit einer Edge-Bundling Lösung erzielte dabei eine erhebliche Klärung der 
Verbindungsstruktur.  
  
Abstract 

Methods of aggregating functional connectivity data have evolved at a fast pace since the 
early nineties and datasets of functional connectivity can be gathered at higher resolutions 
than ever. Presentation methods for this data, however, are much less well developed. Even a 
single subject experiment can yield hundreds of thousands of relevant connections, forcing 
presentation methods to compromise between completeness and readability. Especially when 
visualising connectivity data in immediate reference to the anatomical structure of the brain, 
the sheer number of connections obfuscates the network’s overarching tendencies and renders 
the visualisation cluttered and chaotic.  
In recent years, researchers have applied a number of cluster analysis methods (mean-shift, 
spectral clustering etc.) to identify major network tendencies in functional connectivity data. 
The results were commonly visualised without regard to the full functional network. This 
project employs K-Means as a method of cluster analysis and uses it as a basis for edge 
bundling in a whole-scale network visualisation in order to preserve the entirety of 
information provided by a benchmark dataset. For this purpose a variant of K-Means was 
implemented, that can be applied to functional connectivity datasets represented as a set of 
six-dimensional datapoints, where each datapoint consists of two 3D point coordinates. The 
results were incorporated into a visualisation model, developed for the VTK application 
Paraview. The implemented software prototype allows the visualisation of functional 
connectivity data on the internal or external of the brain as a set of curves in Paraview. K-
Means in combination with a bundling method has achieved a significant reduction of screen-
space clutter for this visualisation.
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Glossary and Abbreviations 

Abbreviations  

BOLD 
Blood-oxygen-leveldependant 

MRI/fMRI 
Magnetic resonance imaging, functional magnetic resonance imaging 

VTK 
Visualization Toolkit  

ROI 
Region of interest. Describes a certain brain area or fragment thereof. 

DWI 
Diffusion weighted imaging. 

Glossary  

Cluster  
A group or set of entities sharing similar attributes. 

(Interpreted) Interface Layer 
Exposure of functionalities implemented in another programming language to the 
programming language of the current environment. 

Functional Connectivity  
A type of connectivity, which is not necessarily based on physiological structure. 
Instead it is a statistical concept, informed by time series correlation or covariance of 
spatially segregated brain areas. 

Connectome  
Statistically calculated network of functional or structural connectivity, depending on 
the scope of the study defining it. 

Vertex 
A three-dimensional point in space.  

Barycentre  
Describes the centre of mass of a given set of elements. 

 IV



1. Introduction 

1.1 Overview 

Mapping the human brain is a concurrent topic in neuroscience. Researchers hope to 
infer understanding of the brain's functionality from a well-defined and complete map 
of its inner workings. This map is generally referred to as the brain's wiring diagram 
or  the 'Connectome', however there is a sensible distinction between the 'structural' 
and the 'functional Connectome'. The structural (also anatomical) Connectome 
describes a map of actual, physiological connections between neurons in the brain.  
The functional Connectome, on the other hand, describes the interconnectedness of 
active brain regions during or in the absence of task performance. 

Visualisation models are a major element in Connectome research. Plain connectivity 
data is dense and seldom human readable. Understanding the interconnectedness of 
brain areas is best achieved with an anatomical reference. Where the visualisation of 
the structural Connectome is pre-defined by the actual presence of the axons in the 
white matter regions of the brain, functional Connectivity is only a statistical concept 
and therefore its visualisation is possible in a number of ways. A common analogy is 
the mapping of a computers circuitboard, compared to the mapping of a programs 
execution. 

Neither the structural, nor the functional Connectome have been mapped in their 
entirety. For the structural Connectome, this is largely due to the limitations of 
current technology in medical imaging. Non-invasive methods like DWI (Diffusion-
Tensor-Imaging or DW-MRI Diffusion-Weighted Magnetic Resonance Imaging) and 
fMRI (functional Magnetic Resonance Imaging) have improved significantly in recent 
years, but their resolution still only allows the analysis with a level of uncertainty. 
Functional Connectivity research is impacted by the same demarcations, however the 
more prevalent problem is the definition of a desired visualisation model. 

Datasets of functional Connectivity hold an immense number of correlating or 
covarying brain regions, making an accurate but insightful visualisation hard to 
generate. The most common approach is to limit the areas of interest during the 
gathering of the data, prior to the visualisation, and concentrating solely on their 
relations to other areas of the brain. Usually this data is gathered using fMRI while 
the subject executes a number of simple tasks, or is completely at rest (Resting-State 
fMRI). 

The benchmark dataset in this project however aims to capture a whole-scale 
functional network, without simplification or summary. This adds new requirements 
to a visualisation model, namely the display of hundreds of thousands of connections 
in a single screen. This thesis aims to prototype such a visualisation model.  
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1.2 Goals 

The main goal of this thesis is to create a prototype of a visualisation software, that 
can display whole-scale, high-field functional connectivity networks. This is supposed 
to be achieved by applying methods of cluster analysis to functional connectivity data 
as provided by Dr. Johannes Stelzer and his group at the Max-Planck-Institute for 
Biological Cybernetics. 

Connectivity data will be displayed as a set of curves, spanning areas of previously 
inferred functional connectivity in 3D-space. A custom K-Means implementation will 
be developed and will provide a method of defining low-variance clusters among the 
curves. Results of the clustering will be incorporated into the visualisation by forcing 
the curves to converge with their respective cluster centroid. 

In order to further the discussion on the visualisation of functional connectivity data, 
the visualisation model proposed in this thesis will attempt to externalise the display 
of connective strands. As a reference, a 3D mesh of a subject brain will be integrated 
into the visualisation. The resulting visualisation will show similarities to a magnetic 
field diagram. 

1.3 Structure of this Thesis 

The central part of this thesis will be a prototypical software package, that holds all 
necessary tools to create visualisations of high-resolution functional connectivity.  

First, the background chapter will relate the importance of functional connectivity 
research, general approaches and previous research in the field, that directly informs 
the course of this thesis. Additionally it will include a description of the experiment 
in which the benchmark dataset has been gathered and investigate the layout of the 
dataset, file by file. With this foundation, a set of requirements to the software will be 
provided, which can be used for reference to later determine the progress of the 
software project and the outlook on how to proceed after the conclusion of this thesis. 

The following chapters will closely examine the implemented methods used in this 
particular software package, beginning with the drawing of connected edges in 3D 
space. This will be followed by the two major implementations in the visualisation 
model; the application of the clustering algorithm K-Means on a dataset of functional 
connectivity and the incorporation of its results in the visualisation. 

After the exploration of the applications logic, another chapter will provide 
information on the general workflow and usage of the provided software. 
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Chapter 2 Background

2. Background 

2.1 General Terms 

2.1.1 Functional Magnetic Resonance Imaging (fMRI) 

fMRI (functional Magnetic Resonance Imaging) is a non-invasive imaging technique, 
commonly applied in Cognitive Science and Neuropsychology. The method capitalises 
on the distinct magnetic properties of oxygenated (i.e. arterial) and deoxygenated (i.e. 
venous) blood [Ogawa1990] as well as activity-dependant blood flow in the brain (also 
known as hemodynamics) in order to identify localised neural activity [Singleton2009]. 

Due to a lack of locally stored energy, activated neurons require glucose and oxygen 
sourced through hemoglobin [Nieuwenhuys1998]. During activation of a particular 
brain region, blood vessels expand and blood flow increases resulting in higher 
concentrations of oxygen-rich blood [Roy1890]. The exact physiology of this process 
escapes the scope of this thesis. Essentially, the interaction of the MRI induced 
magnetic field and the fluctuating magnetic properties of blood flow inside the brain 
provoke a measurable signal termed BOLD-Contrast (or Blood-Oxygen-Level-
Dependant) Fig.2.1 [Ogawa1990].  

Fig.2.1: highlighted, statistically relevant brain regions in an fMRI scan. 
BOLD-contrast images are commonly recorded at lower visual resolution and later 

superimposed on high resolution scans of the subject.  
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The non-invasive nature and the possibility of Depth imaging have made fMRI the 
prime technique for researching the human Connectome [Smith2013]. Three major 
applications of MRI have acquired popularity in Connectome research. While Resting 
State (or Default-Mode Network) fMRI and Task-Activated fMRI employ the same 
general technique with a variation only in the experiment design, Diffusion-Weighted 
Imaging (DWI) is commonly used to map white matter structures as opposed to 
neural activity, which occurs exclusively in the grey matter. DWI has been used to 
great effect in mapping the anatomical structures of the brains white matter, 
furthering research of the structural Connectome [Dillow2010]. However, Resting-
State and Task-Related fMRI are more relevant to this thesis, Task-Related fMRI 
being the method employed to gather the data that is to be visualised. 

In Task-Related fMRI the patient or subject are instructed to perform a simple 
assignment like tapping their fingers one by one [Biswal1995][Friston1996]. The 
simplicity of the task is supposed to minimise the number of brain regions engaged in 
processing and executing it, allowing researchers to identify a singular brain regions 
purpose. A usual session consists of a number of sets of such a task, broken up by a 
second condition. That condition might be another task, or a resting phase, that is 
intended to contrast the patterns in brain activity provoked by the premier task and 
evade expectation bias [Kimberg2000]. Recurring patterns from premier set to 
premier set then suggest high task correlation. Experiment conditions like this are 
widely applied in research of the functional Connectome (or Functional Connectivity). 

Lastly and conversely, Resting-State fMRI makes use of the same measuring 
techniques only without the subject performing a task. Subjects are instead asked to 
let their minds wander - activating the so-called Default Mode Network 
[Buckner2008]. It is proven, that even in a resting state the brains neural connections 
are still active [Greicius2003], 'linking' particular brain regions and thus creating a 
network, that is generally distinct from networks formed during engagement in tasks - 
making a 'mind-wandering' section an attractive alternating step in Task-Related 
fMRI studies. 

2.1.2 Connectomics 

Connectomics describes the study and eventual creation of high resolution wiring 
diagrams of the brain. This wiring or interconnectedness is agreed upon to be the 
defining feature of the nervous system and its mapping is only made possible due to 
the advancements in non-invasive MRI imaging technology.  

The term Connectomics is a play on the word Genomics - suggesting that the 
Connectome is the foundational blueprint of the psyche like the genome is the 
blueprint of the body. As with the genome, the relevance and urgency of creating a 
high resolution Connectome is widely debated. However there is no doubt that recent 
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advances in Connectome research have already contributed to Neuroscience’s 
understanding of the brains inner workings.  

Mapping the anatomical white matter structures of the brain for example has helped 
researchers identify abnormalities in Dementia- or Alzheimers-stricken patients - 
discoveries that might eventually lead to earlier diagnoses  and possible treatments. 
Comparing full, anatomical Connectomes of healthy patients with those affected by 
neurodegenerative disease could be the key to understanding the origin of such 
afflictions. 

Beyond the anatomical map of the brain, largely limited to the white matter 
responsible for linking brain areas, lies the mapping of the functional structure. 
Arguably more important to the understanding of the brains function is the actual 
activity and not the physiological structure, that acts as a medium for it. Enter the 
second major field in Connectomics: Functional Connectivity. 

2.1.3 Functional Connectivity 

Cortical functional connectivity, as indicated by the concurrent spontaneous activity 
of spatially segregated brain regions, is being studied increasingly because it may 
determine the reaction of the brain to external stimuli and task requirements. It is 
reportedly altered in many neurological and psychiatric disorders, which hints at the 
possibility of functional connectivity diagnosis as well as treatment [vandeVen2004]. 

Contrary to Anatomical Connectivity, which describes the actual structure of 
connections between neurons, Functional Connectivity is an entirely statistical 
concept. It describes a correlation or covariance of neuronal activity between two 
spatially remote areas [Friston1994] across a given time frame and in response to 
certain task stimuli or in their absence (see default mode network [Greicius2002]). As 
such it has no immediate reference to underlying structural connections. [Friston1996] 

Areas of recorded neural activity are located in the grey matter in the outer layers of 
the brain and containing the neuronal cell bodies. Those areas range in size, 
depending on the experiment design and methods employed. With the ascent of high 
resolution imaging technology it is now possible to observe areas with voxel sizes of 
only a few cubic millimeters. However, the sheer density of neurons in these layers, 
with   -voxels of the cerebral cortex containing around 630.000 neurons (example 
calculation by the Geoffrey Aguirre Lab, 2012), still requires statistical information 
retrieval. Even at such a level of aggregation a study of the cerebral cortex will 
generate connectivity data for several tens of thousands of interconnected voxels. 
Connectivity data is usually obtained for all possible connections in a set of voxels, 
then thresholded and weighted with characteristics like persistence of the connection 
across time-series or condition instances as described in the fMRI section above. At 
the conclusion of such a study stands a weighted list of again, tens of thousands 
connections, a high weight suggesting a strong task-correlation of a distinct 
connection. 

3mm3
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This data needs to be related to the actual spatial representation of the brain in order 
to determine major activation patterns and infer functional meaning. Of course 
simply linking every two-voxel connection with a straight line would result in a 
cluttered image void of any human-readable information. Luckily, the actual path is 
not a dimension of the information vector (also called Connexel, the basic unit of 
measurement in Connectomics [Worsley1998]), consisting only of two voxels and a 
weight of their connection - allowing for a large variety of visualisation methods, but 
lacking a standardised method. 

2.2 State of Reasearch 

2.2.1 Previous Work 

The “pathless” nature of Functional Connectivity [Achard2006] is fertile ground for 
possible visualisation methods. The most important problem to solve is to visually or 
practically simplify the large volume of datapoints in a single set of measured 
connectivity without omitting essential information [Böttger2014]. While there is a 
definite standard for handling anatomical connectivity data (even with full datasets)
[Pajevic1999], there is no method yet, that would visualise the entirety of a functional 
network. Commonly, visualisation of large scale functional networks is a two step 
process. First comes a preprocessing step of the actual input data, only second and 
much less well-developed is the visualisation step. 
So far the most popular preprocessing approaches take into account only fractions of 
whole sets or subsample data from a larger set in order to “thin out” the connectivity 
data before eventually rendering it [Margulies2013].  
There is a variety of methods, two/three of which will be described in the following 
paragraphs as they heavily inform the eventual visualisation process proposed in this 
thesis.  

In the very popular seed-based correlation analysis for example, connectivity data of a 
single brain voxel, the seed region, is recorded by correlating every other voxel of the 
brains volume representation with the seed voxel across several time series 
[Biswal1995]. This approach is highly zoomed in and can offer a lot of detailed 
information, provided the researcher can make an informed a-priori decision on which 
voxel to designate as the seed voxel. The method is synonymous with the region-of-
interest analysis (ROI) or cross-correlation-analysis (CCA), suggesting that the 
applicant will have to have decided on a region of interest before commencing their 
study. In most cases, researchers define a number of seed voxels in order to capture 
connectivity across major brain regions like the visual or motor cortex 
[Margulies2007][Greicius2003]. 
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Independent component analysis on the other hand is performed on large swathes of 
data in order to identify major, mutually independent connective strands 
[Beckmann2005][DeLuca2006]. This allows the automatic identification of major, 
underlying network tendencies without a-priori knowledge of which regions they occur 
in. At the same time, this approach is highly zoomed out and runs the danger of 
dropping statistically minor but nonetheless significant connectivity information. As a 
statistical approach it is not suited to preprocess data for a full functional network 
visualisation as it filters out detailed elements of the connective strand. 

Recently, different clustering algorithms have been used to identify major networks in 
raw connectivity data [Venkataraman2009][Lee2012]. Spectral clustering, as well as K-
Means clustering algorithms have been employed and could successfully highlight 
well-known and therefore comparable structures of the default mode network, the 
visual cortex, the motor cortex and of the dorsal attention system. All of this without 
a priori knowledge of where these structures might originate [Venkataraman2009]. 

In most cases visualisation approaches for these highly preprocessed datasets are 
much less sophisticated. A general approach is the visualisation of functional 
connectivity in a simple connectivity matrix, marking connection strength, likelihood 
or prevalence between two given voxels by a colour hue Fig.2.2 [Shirer2011]
[Honey2007][Biswal1995].  
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Fig.2.2: functional connectivity correlation matrix [Hutchison2015]. A red hue 
suggests high, task-related correlation. Both the x- and y-axes defined the same set of 

previously identified areas of interest.
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Fig.2.3: radial connectivity graph [vanHorn2012]. This graph connects 
areas of interest, that showed correlation during task-related fMRI. The alpha 

value of each edge is a measure of the connection strength.

Fig.2.4: "Functional connectivity in right anterior cingulate cortex 
(inferior seeds)." [Margulies2007] The x-axis, labeled i1-i9 denotes a number 
of seed regions compared against a number of sagittal (vertical in relation to the 

head of the subject) slices on the y-axis.
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Moving away from a strict matrix and towards graph-theory, several forms of 
diagrams have been proposed, for example two-dimensional connectivity maps 
[Achard2006]. Even with a disregard to the anatomical space however, graphs tend to 
get cluttered as the number of displayed connections increases. To resolve this issue, 
methods of visual summary such as hierarchical edge bundling [Holten2006] have been 
introduced to the visualisation process. Circular connection graphs for example, can 
provide a cleaner representation of network data employing such methods Fig.2.3 
[vanHorn2012][McGonligle2011]. Still, all of these approaches share a fundamental 
disadvantage: the inability to display connection data in relation to an immediate, 
anatomical reference because of their spatially abstract modalities. 

Due to the relatively small size of connections aggregated in seed-based analysis 
approaches, visualisations do not tend to get cluttered and are largely created in two-
dimensional space using fMRI generated image slices where connections are correlated 
with a colour value (usually blue to red, indicating probability of a recurring 
connection at this location) Fig.2.4 [Greicius2003][Margulies2007][Biswal1995]. This 
visualisation method provides an anatomical reference in the form of actual brain 
scans of the subject. However it is not well suited to actually point out the connection 
between voxels, instead its main value lies in the information of how much a single 
voxel is connected to other voxels. Working with two-dimensional slices, identifying 
connections across depth levels is especially tricky. 

2.2.2 Recent Developments 

This section will summarise recent developments in preprocessing or gathering 
connectivity data and visualising it. These developments directly inform the approach 
of this thesis. 

Another way of whole set preprocessing is the method of task-related edge density 
(TED), developed by Lohmann et al. and employed to gather the demo data for this 
thesis. In TED connectivity data is gathered on a per voxel basis, similar to a seed-
based approach but for every given voxel in a volume representation. Every voxel 
represents a node and every possible connection an edge between two voxels. 
Connections with high correlation during task-performance are attributed with a high 
weight i.e. edge density. This approach does not require presegmentation of the data 
and allows the generation of high resolution functional connectivity network data, 
essentially identifying functional networks without omitting, summarising or singling 
out information. With this method, there is no prior filtering or simplification which 
leaves us with immensely large sets of relevant connections to visualise. Two methods 
of visualisation have been proposed in the original TED paper to deal with this issue.  

First, a “hubness”-map, tracking only the number of connections for which a given 
voxel serves as an endpoint, this hubness value is encoded in the voxels colour. This 
of course does only represent the connectednes of a given region, not its actual 
relation to any number of spatially remote regions. 
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Second, displaying each connection as a line in 3d space using braingl. This does 
visualise an actual network of connective edges, but the high number of connections 
again obligates visual simplification. In this example, edges that are close to each 
other are bundled together, meaning their intermittent points are interpolated 
towards a shared central edge. 

This bundling is based on a subdivision scheme called mean-shift, dividing the 
original data iteratively until visual inspection confirms a satisfactory division of all 
connections. Boettger et al. [Böttger2014] employ the mean-shift algorithm in order 
to determine high concentrations of connective strands and summarise them into 
logical and visual clusters. The big advantage of this method is, that the number of 
clusters does not have to be determined. Instead, the algorithm will approximate a 
set of convergent cluster centroids, or means. After the logical clustering is complete, 
each connective strand, starting out as a straight line, is interpolated with a close 
(closer than a self defined threshold value) mean edge in order to form bundles. This 
approach is successful in reducing screen-space cluttering and creates clear, visual 
network maps provided enough connective strands are drawn towards one of the 
specified means Fig.2.5.  

It is also closely related to widely appreciated visualisations of DWI acquired 
anatomical connectivity data. Despite the success of this approach, it is still not 
possible to display the vast amounts of connections of an entire functional network 
without immense cluttering due to a number of issues. One being that a large amount 
of clusters would still result in many cross-sections of bundled connective strands, 
again rendering the visualisation barely readable. At the same time, reducing the 
number of clusters might result in overgeneralisation, bundling up connections that 
barely share attributes like end-point proximity or general direction. Boettger et al. 
conclude, that in order to produce a comprehensive visualisation of full scale 
connectivity networks one would have to follow “more radically different paths than 
nature” and incorporate methods like externalising the connective strands in a 
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Fig.2.5, mean-shifted functional connectivity (blue) network visualisation, 
superimposed on visual approximation of structural network (red) 

[Böttger2014].
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network map. This would also solve another issue. As argued by Margulies et al., the 
connective strands displayed in this approach are located inside the anatomical brain 
representation - possibly encouraging misinterpretations, that connective paths are 
part of the anatomic structure and not simply reflections of a high possibility of a 
functional connection. 

2.3 Data Sources 

2.3.1 Experiment 

The experiment of which the demonstrative data is used in this thesis centres around 
a set of face recognition tasks in order to derive functional connectivity data with an 
explicit reference to memory access. Condition one requires participants to recognise a 
single, specific face in a set of faces shown one at a time. Condition two again 
provides a set of faces, only now participants must identify the second to last face 
they have been shown. Each condition occurs four times each, without a discernible 
pattern in order to minimise effects of expectation bias and maximise reformation of 
the functional networks. 

fMRI data is gathered using a prototypical 9.1 tesla fMRI, which yields very high 
resolution segmented images of a brain volume. The acquired data is preprocessed 
using a standard pipeline for noise reduction and subsequently analysed using the 
task-related edge density method as described in the previous section. 

The experiment is conducted by Dr. Johannes Stelzer, member of the High-Field MRI 
group at the Max-Planck Institute for Biological Cybernetics. At the point of the 
conclusion of this thesis, the results of the study have not been published. 

2.3.2 Data Types and Domains 

The goal of the experiment is to aggregate task-state functional connectivity data for 
large-scale connectivity, i.e. connectivity on a whole-brain basis. A single dataset 
consists of multiple files, the most relevant being a 3D matrix containing the actual 
connection data.  

1. Every datapoint in the connection data matrix contains three values. The first 
and second value are indices referring to voxel coordinates in the brain volume, 
the third value is a floating point number denoting the connection weight between 
the two voxels. These datapoints, which hold the information on a single 
connection of correlating or covariant regions have been termed 
“connexel” [Worsley1998], as in pair of 3D-positions. This data is the result of the 
TED analysis and is delivered in .csv format. 
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2. The connection data stores connections as pairs of indices, each referring to a 
voxel coordinate inside the brain volume representation. The brain volume is 
represented by a 4D matrix essentially storing said indices behind three nested 
index values. These values in turn refer to a three-dimensional voxel coordinate. 
This data source can be understood as a voluminous box, separated into voxels of 
size  . Only the coordinates, that are part of the brain volume inside the 
box hold an index value and as such can be easily extracted. Volume data is held 
in .nii format, commonly used in neuroimaging Fig.2.6 Left. 

3. Third is the visual brain representation in form of a simple 3D mesh of the 
scanned brain. In its role to serve as visual/anatomical reference for connectivity 
data it is an essential part of the visualisation - especially in this approach of 
visualising functional connectivity data in relation to anatomical space. The 
whole-brain mesh representation is in .vtk format Fig.2.6 Right. 

These three files are closely related and should be used discretely for each subject, or 
single study. Since functional connectivity is derived from grey matter activity in the 
outer layers of the brain it is common, that datasets are prepared with an “inflated” 
representation of the subjects brain. This essentially reduces the depth of the Sulci 
(the burrows between the folds of the brain surface) allowing for a less ambiguous 
view at grey matter activity. Especially when applying a clustering algorithm based 
on the distance of 3D coordinates, depressed Sulci can lead to a perceived proximity 
of connection endpoints. 

Working with an inflated brain representation will reduce logical errors when 
calculating distances between connection endpoints and as such is paramount in order 

1,2mm3
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Fig.2.6: Left volume representation. Right .vtk mesh representation. Note, the 
volume representation contains a dense matrix of points. Because of the matrix's 

symmetry, the impression of a superimposed pattern appears. 
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to make the application of a distance based clustering algorithm valid. The same is 
true for the application of a preprocessing method, involving distance as a relevant 
attribute. 

After preprocessing there is not much relation between actual connectivity data and 
the volume representation, since we expect, that connectivity information has been 
gathered correctly and with respect to a possibly inflated state. However, using an 
inflated volume representation in conjunction with a non-inflated whole-brain mesh 
will lead to possibly harmful and certainly false misinterpretations of the visualisation 
results.  
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2.4 Analysis of Requirements 

2.4.1 Identification of User Groups 

Based on the background information provided above, the following chapter will 
outline a set of requirements that need to be fulfilled in order to create a viable 
visualisation toolset.  

The set of functional requirements is three-fold. As a user software, the visualisation 
tool prototyped in the course of this thesis is to be applied by people other than the 
original developer. Furthermore it is to be open-sourced, allowing third parties to 
continue the development process at any point. Lastly, the visualisation itself is meant 
to be interpreted by the original operator as well as peers, interested in the field of 
connectivity research. 

All things considered, it is possible to identify three distinct user groups, two of which 
are addressed in the immediate scope of this thesis: 

Operators of the software. Experts and researchers in the field of neuroscience or 
medicine and knowledgable in the general application of advanced and professional 
user software in those fields. Abilities in computer science and programming should 
be beneficial but not required. 
Peers in the field of connectivity research. This includes students, researchers and 
others interested in the topic of functional connectivity. This user group is not 
concerned with operating the software, but instead with interpreting the results. An 
expected scenario involving this user base would be the distribution of a research 
paper featuring visualisations generated with the provided software. 

Excluded from the immediate scope of this thesis is the following and last group. 

Third-party developers. Generally well versed in Python programming and the use of 
common packages. Basic understanding of matrix and vector calculation is necessary, 
as well as an all-around good read on algorithms. Not more than a passing interest in 
neuroscience is required. 

2.4.2 Functional Requirements 

As the user group analysis suggests, the following section will be divided into 
requirements of operators of the software and requirements of “consumers” of the 
softwares visualisation output. The second set of requirements can be understood as a 
combination of factual validity and value of the visualisation. 
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Application Requirements: 

• The paraview filter should have a basic user interface. K-means operates on the 
basis of a constant k number of clusters. Operators need to have the option to 
manipulate k from inside the user interface in the case of live calculations. 
Additional attributes to manipulate the visualisation could be the subselection of 
edges, a switch to display or not display edges and cluster selection. 

• In addition to the previous requirement, users should be able to explore 
hierarchically generated K-Means data by scrolling along the hierarchy with another 
ui-element. 

• Inputting the data into the user interface (by file path) is the only requirement to 
generate a visualisation. 

• Calculations of clusters should be efficient enough to be processed live and in no 
more than a few minutes, even for medium size datasets. Small datasets should be 
processed in mere seconds. This feature is intended to serve as a scouting process of 
where and how to visualise connectivity data - large scale datasets should be 
processed in the command line interface. 

• The software has to offer the option of loading precalculated cluster data from file 
in order to reduce system load. To meet this requirement a simple command line 
interface is required, such that users of the software can generate data before using 
the paraview integrated filter. 

Visualisation Requirements: 

• Central element of the visualisation is the display of the mean edge, marking an 
average connection edge for a cluster of connections and located on the outside of 
the anatomical brain representation. 

• Clusters have to be visually distinct from one another, this will be achieved with a 
continuum along three attributes: colour, projection radius and interpolation along 
edge points towards the respective mean edge. This is the essential step of applying 
the information retrieved from the K-Means processing results. 

• One of the defining factors of the underlying data in this visualisation approach is 
its high resolution. All of this data should be represented in the final visualisation 
output, allowing the observer to explore the full spectrum of a whole-brain 
connectivity graph. 

• The visualisation has to be accurate in its representation of connectivity endpoints. 
Every visualised edge has two endpoints, originally provided by the data input and 
marking the actual correlating/covariant regions in the brain. Through all 
preparatory and visualisation processing steps this data has to be left unchanged 
and displayed as provided. 

• There has to be clear reference to the anatomical background of the connection 
data. This could be a transparent whole-brain scan, a point cloud or a background 
image. 
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2.4.3 Technical Requirements 

Similar to the manyfold nature of the functional requirements, the technical 
requirements could be separated into two categories. Namely, a set of requirements for 
the clustering step and another for the actual visualisation step. 

Technical Requirements for Clustering: 

• The nature of a single connective edge requires a special distance function inside the 
K-Means algorithm. The algorithm should therefore be simple enough to expose a 
distance function and make it interchangeable. 

• Connective edges are six-dimensional, consisting of two three-dimensional points. In 
order to compute the distance between two edges accurately the distance function 
has to be agnostic to the direction of each edge. 

• The final software bundle created in this thesis should provide a simple Unix 
executable command line script, that will allow operators to run K-Means and 
hierarchical K-Means on any set of two-point edges and save the output to file. 

• The K-Means algorithm will be implemented in a naive fashion and should 
therefore not require Python packages beyond Numpy. 

Technical Requirements of the Visualisation 

• As with the original distance calculation, the six-dimensional properties of each 
edge could lead to a faulty visualisation. Edges have to be aligned before they can 
be displayed in order to avoid visual loops and crossing lines. 

• Interpolation between original connective edges and mean edge has to accept several 
different interpolation methods in order to provide control over level and 
progression of interpolation in the bundling step. 

• To create intermittent points for every two-point connective edge the Rodrigues 
rotation must be implemented. 

• The radius of the edge projection for each cluster needs to be calculated based on 
the average distance between this clusters endpoints. 

• To make hierarchical data explorable, the original edges that make up a cluster on a 
current hierarchy level must be retrieved. To retrieve edges an algorithm has to 
follow along the hierarchy. 

• All of the above must be implemented with VTK and its Python bindings.  

2.4.4 Demarcations and Limitations 

• All calculations (especially the K-Means algorithm) will require Numpy as a 
dependency for matrix calculations and essential, mathematical operations. 

• The only efficiency factor addressed in visualisation processing will be that the task 
can be completed in linear time without overburdening the systems RAM. Large 
datasets should be precomputed in a system Python environment and not inside the 
Paraview client, i.e. the programmable filter. 
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2.5 Environment 

2.5.1 Paraview and VTK 

VTK (Visualization Toolkit) is an open-source software package for 3D computer 
graphics, image processing and visualisation. VTKs main component is a C++ 
Library, which is made accessible to other programming languages through 
interpreted interface layers. The software prototyped in this thesis will employ VTKs 
Python interface layer, which will allow easy access to code sources and a faster 
prototyping environment. Additionally, developing in Python will grant access to a 
variety of useful libraries like Numpy. 

Paraview is a software tool for data analysis and visualisation. Built on the 3D-
rendering pipeline and general functionality of VTK, Paraview effectively acts as a 
user interface for VTK and enables users to interact with its tools through graphical 
interface elements. 

Users can load 3D-models into the application and start manipulating edges, vertices 
and faces. Unlike regular 3D-modeling software, Paraview does not allow the direct 
manipulation of either of these 3D-elements through cursor but instead offers a range 
of filters, which perform operations on them algorithmically. Paraview offers several 
versions of filters, some of which generate data while others require a data input of 
some sort. Some filters can also be applied on plain data, like a simple data table, 
allowing the generation of 3D meshes or transforms from regular numerics. 

VTK offers several classes for data handling. Most of these classes consist of a 
number of cells and some added attributes and methods. Cells represent sets of 
vertices, edges or faces and are necessary to display 3D objects. VTK makes a 
distinction between topological and geometric data. Cells provide the topological 
element but hold no immediate information on their position in 3D space. Instead, 
every cell refers to one or more elements in the 3D object's 'points' array, which holds 
a set of plain, geometric coordinates. A vertex refers to a single point in the array and 
its topology has zero dimensions, an edge refers to at least two points and therefore 
has upwards of one dimension and so on. 

Because of the open-source nature of both VTK and Paraview the development of 
custom plugins (in most cases filters) is encouraged by extensive documentation and a 
variety of possibilities. The most accessible option to create a custom filter for 
example, would be to use the "programmable filter". It can be applied to any VTK 
data source (mesh, plain data and others), exposing said datasource to a Python 
environment in which it can be manipulated before it is returned to the rendering 
pipeline. This allows users to directly run Python code using the VTK-Python library 
inside Paraview and on a specific data source. 
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However accessible and immediate, a programmable filter cannot be understood as 
distributed software, since it would require users to copy and paste the actual Python 
source into the filters “script” property. In order to expand a simple Python source 
into an easily integrable plugin an XML file, meeting Paraview standards, is required. 
This XML file is interpreted by Paraview as a filter or data source and can therefore 
be loaded using the integrated plugin manager. It can also hold a layout for the 
properties panel of the filter it represents, offering a way to include manipulable fields 
or other GUI-elements in a plugin while hiding others in an "advanced" section Fig.
2.7. 

Fig.2.7: programmable filter attributes exposed through XML. Paraview 
allows a set of simple input types, like fields, range sliders and checkboxes. 

The prototyped package will provide the Python source of a programmable filter as 
well as a readymade XML filter plugin, using a similar Python source as its hidden 
script property. Additionally, the XML filter will be exposing access-required 
attributes as described in section 2.4.2 in its graphical user interface. This will allow 
operators to control the visualisation properties on the fly and without touching 
source code. The exact layout of these files will be discussed in the main section. 

2.5.2 Systems and Software 

All of the Python libraries listed below are effective dependencies, meaning that the 
full spectrum of the provided software can only be used if all of them have been 
installed and properly sourced in the users Python environment. This holds true for 
the application of the XML filter inside Paraview. 
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Software: 

• Python 2.7.10, universal high level programming language, developer and 
proprietor: Python Software Foundation, https://pythonprogramming.net 

• NumPy, Python library for multidimensional array computing and general math 
appliances, developer and proprietor: Travis Oliphant, Numpy Team, http://
www.numpy.org 

• Matplotlib, Python Library for the display of function graphs, developer and 
proprietor: Michael Droettboom, http://matplotlib.org 

• NiBabel, Python library for nifti/.nii and other neuroimaging file reading and 
writing, developer and proprietor: https://www.nipy.org 

• VTK, Visualisation Toolkit C++ Library for 3D-Rendering with Python-bindings, 
developer and proprietor: Kitware Inc., http://www.vtk.org 

• Paraview 5.4.0, Open-Source Application for data analysis and 3D visualisation 
built on VTK, developer and proprietor: Kitware Inc., Sandia National Laboratory, 
Los Alamos National Laboratory, https://www.paraview.org 

Hardware: 

• Desktop PC with Intel Xeon CPU W3690 @ 3.47GHz x 6, 23,5 GB RAM, Ubuntu 
14.04 

• MacBook Pro 2015 with Intel Core i5 @ 2,7GHz x 2, 8GB RAM, macOS Sierra 
10.12.6 
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3. Edge Visualisation 

3.1 Problem Statement 

There is a large number of possibilities of drawing lines in 3D space. Due to the 
immense number of connections in a single dataset of functional connectivity however, 
the proposed visualisation method was confined to a set of requirements. 

Previous work has demonstrated, that straight lines, connecting the endpoints of 
connexels create a densely cluttered visualisation [BrainNetViewer]
[VisualConnectome] - even at much smaller datasets. Readability of a high resolution 
dataset, like the benchmark dataset in this thesis, would in no way be possible 
without extensive downsampling of the data or other undesired methods of 
preprocessing. The same goes for bundled, but still, internally displayed connective 
lines, as proposed by Boettger et al. [Böttger2014], since the number of clusters would 
likely still be enough to clutter up the brain volume and obfuscate experiment data. 
Therefore the connective lines drawn with the implemented algorithm are external, 
surrounding the brain mesh at a near constant distance to the surface. This approach 
is comparable to a visualisation proposed by Foucher et al. [Foucher2005], which so 
far has not been employed on whole-brain functional connectivity data. 

The second requirement is scalability. This visualisation is supposed to display high-
field functional connectivity data with hundreds of thousands of connective edges. A 
single line drawing pass should be efficient enough to allow the exploration of the 
data without excessive processing times. Additionally, simplifying the line drawing 
algorithm will improve readability and allow the continuation on the development of 
the project by developers to come. 

Lastly, one of the major achievements of high-field functional connectivity is its voxel 
resolution, meaning that active brain regions can be singled out at   steps. 
Being one of the defining factors of such datasets, it is paramount to preserve the 
possibility of localising these connection endpoints in the final visualisation. 

The following section will examine how these requirements are intended to be fulfilled 
with the proposed, multi-step visualisation model. A simple method of drawing lines 
at constant radius in 3D space will be proposed as a foundation for the visualisation. 
These connective edges will eventually link the two endpoints of each connexel in the 
dataset. Lines drawn in this way will lie on a sphere, surrounding the brain mesh. In 
order to approximate the set of lines more closely to the brain mesh surface, a 
projection method will be introduced in the second subsection. This method will be 
capable of translating any number of coordinates between a spherical and an 
ellipsoidal representation. 

1,2mm3
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3.2 Drawing Connexel Edges in 3D Space 

With a prepared set of pairs of connection endpoints, everything is properly set up to 
draw edges between those points in 3D space. In order to draw an edge, Paraview 
expects a number of 3D coordinates to draw line segments between. The idea is to 
generate a set of 3D coordinates approximating a curve by a set of segments 
connecting the two endpoints of each connexel at a constant radius, thus generating a 
connective strand for each relevant connection. The number of intermittent segments 
determines the apparent smoothness or resolution of each edge. To draw the lines at a 
constant radius, two approaches were tested.  

The first attempt was to convert both endpoint coordinates   (origin and 
destination) of a connexel from a cartesian coordinate representation to a spherical 
one, then generate a number of points   along the curve by linear interpolation 
between the two points'   and   angles, while leaving the radius   untouched. 
Projecting both origin and destination coordinates would enable the definition of a 
constant radius, allowing a very simple interpolation scheme, with   being a 
set of   3D coordinates between the two connexel endpoints 

  

  

This approach however presented itself as problematic, because of the domain of the 
polar angle   inside the spherical coordinate system.   has a domain of  , so 
intermittent points tended to interpolate predominantly on the azimuthal angle   
when   angles of the endpoints were particularly close. This resulted in an unexpected 
path of the curve on the sphere Fig.3.1. 
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Fig.3.1: Interpolated edges in in polar coordinates, approach one, linear 
interpolation between angles in spherical coordinate space (red) with the undesired 

interpolation. Intuitively, the shortest path (green) would be expected.
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The interpolation of polar coordinates does not link the two points on the sphere 
surface  and  , using the shortest path. One way to ensure that the shortest path is 
always taken is to remain on the plane defined by  . This can be achieved using 
the Rodrigues Rotation formula. This formula rotates a vector   around an axis   
(given by the normal of the plane  ) by an angle  . 

  

where   is the vector, rotated around the axis   by the angle  . 
This solves the previous issue and yields 3D edges as expected. A few additional 
methods were required to successfully implement the Rodrigues formula. First,   had 
to be defined, around which the origin vector, the first of the two endpoints of the 
connexel, could be rotated. This could be achieved using the cross product of the two 
endpoints (origin and destination), thereby finding a perpendicular unit vector   to 
the plane in which both vectors are included. 

  

In the case of the origin and the destination vector being collinear, taking the cross 
product of either one and any random vector, that is not a multiple of either, would 
return a perpendicular vector. This auxiliary method has been implemented 
recursively to ensure the generation of a non-collinear cross vector. 

The second important auxiliary method aims to find the angle   between the two 
points' unit vector representations, again assuming the plane  . 

  

This angle delta can be divided into any number of chunks, granting control over the 
edge resolution once again Fig.3.2. 

Any number of connexels can easily be represented by an edge in 3D space employing 
the methods above. Projecting edges with constant radius will essentially be create on 
a sphere, exclusively holding all edge vertices. In order to connect each edge to its two 
endpoints inside the brain volume it is sufficient to simply add them to the array 
holding the intermittent vertices. The result is accurate, in that it connects two 
regions of activation visually without obscuring their original location. However any 
edge holding coordinates at constant radius as well as the two original voxel 
coordinates will have a pronounced right angle, due to the outward projection Fig.
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3.3. 
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Fig.3.3: connective edges projected at constant radius. The stilt-like line 
segments connecting the original endpoints to the projected vertices are identifiable by 

the right angles.
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Fig.3.2: Rodrigues Rotation a unit vector u towards a unit vector v. 
Intermittent vectors {u1, ..., un-1} can be projected to any radius by simple 

multiplication.
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3.3 Spherical Representation and Matrix Projection  

The previous section discusses in detail how 3D edges at constant radius are created 
for each connexel in a dataset of functional connectivity. The goal however is, to draw 
those edges at a close-to-constant distance from the brain mesh surface in order to 
relate their orientation to possible pathways more closely. 

During the line drawing step all edges were generated on a sphere, the shape of the 
brain mesh however is closer to an ellipsoid. While still an approximation to the mesh 
surface, projecting the connective edges from a spherical representation to an 
ellipsoidal one, resembling an upscaled version of the brain mesh, will allow for a 
better approximation of a constant distance to the brain surface. The process of 
projecting points into a spherical representation will be termed "forward-transform" 
or "forward-projection" and the process of projecting from a spherical representation 
to an ellipsoidal one "back-transform" or "back-projection". 
The forward transformation can be easily achieved through shrinking along the 
ellipsoid's axes. The back transformation will be achieved by multiplying along the 
same axes by a factor inverse to the forward transform. Information on both the axes 
and the factors can be determined by computing the covariance matrix of the 
coordinates forming the ellipsoid in question. In this case the covariance matrix will 
be computed using the vertex coordinates of the brain mesh.  

 
Let   be a single vertex coordinate defined as  

 
  

The covariance will be computed using either combination of the coordinate sets  ,   
and  , herein represented by placeholders  . The covariance matrix   of the entire 
set of centred vertex coordinates   will then include the covariance of all possible 
combinations of coordinate sets, with regards to the sequence.  

  

  

pi

pi = (xi, yi, zi)

x y
z a, b ΣP

M̄p

cov(a, b) =
∑n

i=0 (ai − ā)(bi − b̄)
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The forward-projection can be applied to both, mesh vertex coordinates and connexel 
endpoint coordinates held in the volume representation. This transformation has the 
advantage of making the data isotropic, such that no particular axis/direction is 
pronounced. The volume information was transformed, prior to clustering due to the 
expected improvement of clustering results. Instead, this adds falsehoods to the 
results, because during the clustering step the data is abstracted from its actual, 
physical dimensions obscuring distances and therefore cluster layouts. This should be 
avoided in further application of the software. 

Fig.3.4: side by side of volume information represented by a point cloud 
and brain mesh surface. The volume information needs to be understood as a 
tightly-knit three dimensional matrix of points. It holds about six times as many 

vertices as the mesh surface. 

The matrix   is real positive definite and hence can be diagonalised, and written in 
the following way: 

  

where matrix   is a rotation matrix and the matrix   is diagonal.   
contains the eigenvectors of  . The   define the axes of the spread of 
points in the brain mesh, and the set of eigenvalues   the associated variance of the 
spread. The eigenvector with the highest eigenvalue therefore defines the axis with 
the most spread. The intention is, to now rotate the centred volume information   of 
the brain to align it with the spread of the mesh points, using the transpose of the 
  matrix of eigenvectors  . The result will be the same set of points, projected 
onto a new coordinate system basis   Fig.3.5 left. 
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The coordinates now need to be scaled by yet another matrix. For scaling we use   
multiplied by a constant factor  , such that the scale of the original brain mesh 
is preserved Fig.3.5 right. After execution of this forward transformation, the 
connective edges can be drawn for any set of connexels as seen in section 3.2. such 
that,  

  

 

Fig.3.5: left: volume information rotated by transposed matrix of 
eigenvectors, right: previously rotated volume information scaled by 

inverted and normalised diagonal matrix of eigenvalues. 

The volume data represented in this way, all intermittent edge coordinates can be 
created and added to the transformed set of the original coordinates. 
With all vertices, including the intermittent edge coordinates, represented in the same 
space, a back projection of the entire set is possible in one go. This can be understood 
as the inverse of the process described above and the same covariance matrix of the 
brain mesh is required.  
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M = np.sqrt(np.diag(max(eig)/

eig)).dot(M)
M = eig_vectors.T.dot(M)
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The point coordinates in   have been projected into spherical space, resulting in a 
spherical representation of the entire set  . Let   be a copy of   with the newly 
generated edge coordinates.  To project them into the ellipsoidal representation of the 
brain mesh they need to first be scaled. To achieve this, the inverse of the diagonal 
matrix originally used to scale the set of connexel coordinates is required. In this case, 
this is rather unintuitive, because the matrix would be the inverse of an inverse 
diagonal matrix of eigenvalues. The result will be a version of  , rotated to the 
original rotation. 

A set of random edges has been created in a spherical representation of the brain 
volume and consequently been projected to match the brain surface in the following 
example Fig.3.6. 

The Python implementation for both the forward projection matrix and the back 
projection matrix uses Numpy to compute the eigenvalues of a covariance matrix, 
passed as an arguement. It is therefore: 

 

P̄
P̄s ·Ps P̄s

·Ps
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Fig.3.6: progress of drawing and projecting generated lines as well as 
volume information. Even at a small subset of n=128 connections ( <0.2% of the 

whole dataset), the visual output is densely cluttered.
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Note, that this implementation does not use the exact reciprocal of the   in 
its eigen_matrix variable. This is to maintain the general scale of the point matrix as 
seen in Fig.3.5. Taking the reciprocal instead would significantly down-size the entire 
matrix. While not problematic after back projection and to the visualisation in 
general, this might impair debugging during development. 

3.4 Conclusion 

In conclusion, using the above methods, edges can be projected into an ellipsoidal 
representation, such that they have a close to constant distance to the brain surface. 
The method is efficient as it is a simple matrix multiplication, that can be performed 
with accelerated routines (Blas, Numpy). Performing this method on large numbers of 
edges at once is not an issue.  

Combined with the method of edge drawing at constant radius, explained in the 
beginning of this chapter, the pipeline for drawing lines is kept computationally 
minimal, while still being visually accurate. 
 
Of course, an ellipsoid is only a very rough approximation of an actual brain's 
surface, since it does not take the highly folded structure of the brain into account. 
The folds of the brain also add significant variance to the brain mesh coordinates, 
which might impact the ellipsoidal approximation. 

While many edges can be processed in this way, only the next section will introduce a 
method of displaying them without extensively cluttering the screen-space. 

eigenvalues
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def forward_projection_matrix(cov_mat): 
    eigen_values, eigen_vectors = np.linalg.eigh(cov_mat) 

    eigen_matrix = np.sqrt(np.diag(max(eigen_values) * eigen_values**-1)) 

    m = eigen_vectors.dot(eigen_matrix).T 

    return m 

def origin_projection_matrix(cov_mat): 
    eigen_values, eigen_vectors = np.linalg.eigh(cov_mat) 

    eigen_matrix = np.sqrt(np.diag(max(eigen_values) * eigen_values**-1)) 

    m = np.linalg.inv(eigen_matrix).dot(eigen_vectors.T).T 

    return m 



4. Clustering Connective Curves 

The previous section focuses on the display of connective edges, however it does not 
address the issue of scalability. Drawing a set of only 128 edges can result in a 
cluttered visualisation and the entire dataset holds more than a thousand times that 
many edges. This section will introduce a method of clustering, that will be the 
foundation of the visual summary of the data. Clustering is a method of identifying a 
set of objects, that share a higher similarity amongst each other, than to objects of a 
different set. In this case, edge clusters will be defined by the relative closeness of 
their endpoints. 

4.1 K-Means Algorithm 

K-Means is a clustering method, that aims to partition a set of    -dimensional 
datapoints into   clusters, such that the in-cluster variance is minimised. In the 
analysis of 2D- or 3D-points for example this would mean, that K-Means seeks to 
deploy its cluster centroids (elements, that share the dimensionality of the dataset, 
also termed 'mean') in such a way, that aggregated, squared distance between 
datapoints and their assigned cluster centroid is at a minimum. 

General steps of the K-Means algorithm are as follows: 

1. Initially, the   cluster centroids are provided to the algorithm. A common 
approach is to sample these randomly from the dataset, that K-Means is 
performed on, however there are more elaborate methods of initialisation which 
seek to improve the overall computation time and quality of the clustering. 

The following two steps are repeated until some condition occurs. In most 
implementations this is the convergence of the cluster centroids, to a point where 
there is no more or insignificant change between iterations. 

2. Each datapoint in the set is assigned to its 'closest' (attribute-wise) cluster 
centroid. 
Given a set of   cluster centroids   the assignment step would be 
 
  
 
where   is a set of datapoints associated with cluster   at iteration   and   is a 
single datapoint.   is a distance function. So each cluster is a set of elements, 
that share a higher likeness to their centroid, than any other cluster centroid. 

3. Each cluster is composed of a subset of the original data. To conclude a single 
step in the iteration, each clusters centroid is updated with the aggregated values 
of its particular subset. 

n d
k

k

k ci, …, ck

S(t)
i = {p : dist(p − c(t)

i ) ≤ dist(p − c(t)
j ) ∀j ∈ {0, …, k}}
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where for every cluster centroid   the updated version   will be the centre of 
mass of the subset  . 

4.2 Adapting K-Means to Connexel data 

K-Means generally uses the euclidean distance between the datapoints it is performed 
on. 
Each connexel datapoint can be encoded in a six-dimensional vector containing two 
3D-coordinates. The arising problem is, that the order of the coordinates becomes a 
factor in the eventual result of the cluster analysis when it should not. An example in 
two-dimensional space will illustrate the problem: 

The two major functions of K-Means, namely the distance function and the 
barycentre function, have to be modified to accommodate the nature of the present 
dataset. 

4.2.1 Distance Function 

The example makes it immediately obvious, that edges AB and CD should belong to 
the same cluster. Due to the application of a euclidian distance function, coordinates 
A and C as well as B and D have been compared resulting in much higher squared 
distance between endpoints than expected. 

This highlights, that the distance of two edges is defined by the distance   between 
their two respective endpoints, so there are always two possible comparisons for any 
given edge in euclidian space. 

c(t+1)
i = barycentre(S(t)

i )

c(t)
i c(t+1)

i
S(t)

i

d
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Fig.4.1: faulty clustering of a set of edges. n=3, k=2
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where the set   is a single six-dimensional datapoint consisting of two 3D 
coordinates, compared against a centroid   of the same dimensionality. So for every 
datapoint the distance to each centroid has to be computed for a flipped version   as 
well. 

  

One of two heuristics can now be selected for the assignment step, either compare all 
minimum distances between edges and centroids to determine the set affiliated with a 
specific cluster or compare all maximum distances. While the former one is more 
intuitive, it is important to note, that the choice of which distances to compare does 
not have an effect on the outcome; the important part is the consistency across all 
comparisons. This effectively makes the assignment step of the algorithm agnostic to 
the orientation of its datapoints, resulting in the expected outcome. 

4.2.2 Barycentre Function 

The orientation of the lines would also have an effect on the update step of the 
cluster centroids, if not explicitly handled otherwise. It is therefore necessary to 
preserve the information of which version (flipped or original) of a specific edge the 
mean centroid has been compared against, when the edge was assigned to its cluster. 
The edges will have to be aligned accordingly, before recomputing the centroid Fig.
4.2.  

The desired computation for the cluster centroid of   should therefore 
look like this 

  

as opposed to 

  

This is achieved by storing a flip-map in the form of a boolean array during distance 
computations. Before cluster centroids are updated, this array is used to switch the 
first three elements in a datapoint with the last three, or leave it unchanged as 
required. 

d = ∥ {x1, y1, z1, x2, y2, z2} − c(t)
i ∥ or ∥ {x2, y2, z2, x1, y1, z1} − c(t)

i ∥

{x1, …, z2}
c(t)

i
p f

S(t)
i = {p : (∥p − c(t)

i ∥2 ∧ ∥ p f − c(t)
i ∥2) ≤ (∥p − c(t)

j ∥2 ∧ ∥ p f − c(t)
j ∥2) ∀j ∈ {0, …, k}}
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4.2.3 Results 
 
Results indicate the success of the methods described above. The within-cluster sum 
of squared distances is decreased significantly when compared to the approach using 
euclidian distance computation. In one hundred sample computations of   and 
 , for a shuffled dataset, the average sum of squared distances was ~27998mm 
for the adapted and ~34668mm for the euclidian approach. This divergence grows as 
  gets larger. 

Generally the adapted method reduces the amount of outliers in any given cluster, 
essentially creating more representative cluster centroids Fig.4.3. 

Fig.4.3: cluster centroid (superimposed in red) of a single cluster. Left the 
basic, euclidean distance function includes a set of outliers (mid left). Right direction-
independent, adaptive approach assigns outliers to different clusters. The centroid is a 

more accurate representation of the clusters centre of mass. 

k = 16
n = 1024

k
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Fig.4.2: barycentre calculation. Left faulty recomputation without prior 
alignment of edges. Right expected computation of cluster centroid, averaging 
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4.3 Hierarchical Scheme 

K-Means is successful in summarising large datasets in the form of a predefined 
number of clusters. The requirement for the a-priori definition of a number of clusters 
however is one of the algorithm's major limitations. Especially when processing large 
datasets with significant processing times, converging on a representative number of 
clusters can be time-consuming and inefficient. 

A way to make the exploration of even large datasets a more interactive experience is, 
to apply K-Means hierarchically. A hierarchical scheme will consist of several 
applications of K-Means, where only the first considers the original dataset of 
connexels. Subsequent applications will be performed on the converged centroid edges 
of the previous pass, while also reducing the number of clusters  . Each pass is stored 
and can be traced back along the hierarchy to the original dataset Fig.4.4. 

Not only does this enable the exploration of many different K-Means results at 
different numbers of clusters, but it also bears potential to identify clusters more 
consistently. Especially when examining a dataset one cluster at a time and moving 
up and down the hierarchy, there is a high probability of identifying a highly effective 
cluster layout, meaning number and distribution of clusters, for a particular 
subsection of the data. 

The design of this hierarchical application scheme is simple. It iterates entire K-
Means applications using the proposed implementation, with the number of clusters 
given by  

  

k

k(t+1) = n
xt+1
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h=2;k=4;k2

Fig.4.4: example of a hierarchy and cluster selection. Assuming hierarchy level 2 
and cluster two are selected, the edges on the bottom of the highlighted path will be 

displayed as a single cluster.
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where   is the current iteration step in the hierarchy,   the number of edges in the 
original set and   a user defined value marking the divisor in between iterations. For 
  for example, the benchmark set of 186266 connections would take 16 iterations 
to reach  , allowing for many hierarchy levels to be created and inspected. 

As mentioned, only the first pass considers the original dataset, so every subsequent 
set is defined by the set of centroids produced in the previous pass; 

  

where  is a set of edges given by a set of centroids with each centroid  given as 
described above (reference formula step 2 from K-Means). 

These centroids are a summation of the clusters they represent, which depending on 
the hierarchy level, consist only of previous centroids. The eventual goal is to relate 
every hierarchy levels cluster layout to the original dataset, therefore every cluster 
needs to be followed along the hierarchy, to aggregate all connective edges represented 
by the leaves of the hierarchy graph Fig.4.4. 

Without taking all edges into account during each pass this method runs the danger 
of steering centroids away from actual cluster centres of the original data. So when 
relating upper hierarchy levels to the original dataset, outliers and higher aggregated 
squared distances are to be expected. Additionally, since the hierarchical process 
forces K-Means to be executed on progressively smaller datasets and lower numbers 
of clusters, relatively independent clusters may be summarised in a single cluster of a 
higher order. 

t n
x

x = 2
k = 2

A(t+1) = {c : barycentre(S(t)
i )}

At+1 c
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Fig.4.5: three hierarchy levels dividing the same cluster. The hierarchical clustering 
scheme has been applied to the same dataset as above. The cluster has been chosen, due to 
its similarity to the cluster in the last section. From left to right, cluster hierarchy moves 

from toplevel (6) to bottom level (0)
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Fig.4.5 shows a single cluster in three different hierarchical stages. Comparing this 
outcome with the one shown in the previous section, it is easy to tell that this cluster 
contains a larger number of outliers. Indeed, the aggregated squared distance in the 
example of   and   is across a number of 100 trials about 1.3 times as 
high as in the single pass clustering. 
This rate is relatively consistent between different size datasets and different numbers 
of clusters and numbers of hierarchical passes. This concludes, that hierarchical K-
Means does not achieve better clustering layouts on higher hierarchical levels. 
However, with access to the hierarchy attribute inside the user interface, operators 
can skim through a dataset at different cluster layouts with next to no delay. 

4.4 Colours 

The clustering results will not only enable methods of edge bundling, but will allow 
the colouring of the connexel edges for improved distinction between clusters. In the 
field of functional connectivity research, colours are generally used to encode further 
information of the datasets. Some prominent features like connection strength, 
dominant orientation of the connection or general connectedness are common colour 
scales. The only predictor of colours in this example will be the index of each edges 
associated cluster. 

In the application of the hierarchical scheme, the integration of colour as a cluster 
property is especially effective in analysing network tendencies Fig.6. 

k = 16 n = 1024
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Fig.4.6: colour as a cluster property at different hierarchical levels. The K-
Means results used in this visualisation are equal to the ones in the previous 

example. Left cluster at top hierarchy level, single colour. Right cluster at hierarchy 
level 3, the same level as the mid example in Fig.x



Chapter 4 Clustering Connective Curves

4.5 Performance 

K-Means as well as Hierarchical K-Means have been implemented with little regard to 
efficiency. The major goal was to create an easily readable implementation, that could 
compute a result for a dataset of any size in linear time.  

In some cases this lead to the inability of using more advanced methods of 
computation as provided by Numpy. Numpy would allow the computation of squared 
distances between an entire set of edges and an entire set of centroids at once, so the 
first approach was the following: 

--- 

distances = ((edges - centroids)**2).sum(axis=1) 

--- 

However, the large number of connective edges in the benchmark set would lead to an 
immense size of the distances matrix.  
With  for example, there would of course be 16 centroids, so 186266*16 
distances, times two because of the computation of both the original and the flipped 
version. A single distance is stored as a 64bit floating point number. For a single step 
of K-Means, this computation would occupy upwards of 23 Gigabytes of RAM. A 
single pass distance calculation was therefore out of the question. Instead distances 
were then calculated per edge, slowing down general performance but allowing for the 
computation of a set of any size on machines with much less RAM. This 
implementation will allow a Single K-Means computation of the entire set to be 
completed in linear time. 

Random initialisation of centroids leads to relatively high variance when it comes to 
processing times and number of K-Means steps required in generating a result. The 
variance is reduced relative to the number  of clusters. Generally, using a higher 
number of clusters will increase the duration of every K-Means pass but decrease the 
number of passes required. Despite this, the main predictor of processing times is the 
size of the dataset . 

Other more methods of initialisation would likely reduce the variance of results and 
more efficient implementations could reduce processing times by a large margin. 

k = 16

k

n
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4.6 Conclusion 

The K-Means algorithm has been successfully implemented and customised to meet 
the requirements of a six-dimensional dataset in the form of functional connectivity 
data. While there were no exact metrics for the accuracy of the clustering, except for 
squared distance aggregation between approaches, visual confirmation suggests, that 
clusters are computed as expected - with a high priority for similarly oriented 
connexel edges. 

Both K-Means and hierarchical K-Means have been identified as valuable 
preprocessing methods. While the single pass variant delivers results with more 
efficient cluster layouts, the hierarchical scheme contributes in that it provides 
explorable datasets, which can inform decisions about relevant data subsets or 
clustering layouts for future computations. 

While the results can be made explorable in Paraview's user interface, they do not 
provide realtime visualisations and require, depending on the size of the source data, 
several minutes of preprocessing. 

The results are nevertheless foundational in their importance for the eventual 
visualisation of whole-scale connectivity data. Computing a single pass K-Means and 
displaying only the resulting centroids is already a method of reducing the density of 
a high field dataset with a strong approximation of a lossless summary. Another 
method of exposing major network tendencies is the introduction of colour to the 
edge visualisation. Basing each edges colour on the index of the associated cluster can 
allow a large variety and enhance the visualisation in many ways. 

The main purpose of the clustering however, is the visual summary of all connexel 
curves and not just a subset. The following section will examine bundling methods, to 
create a concise and informative visualisation. 
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5. Edge Bundling 

The cluster analysis described in the previous section is the foundation of the visual 
summary of the dataset. In functional connectivity research datasets can reach sizes 
of upwards of 100.000 connections for a whole-scale functional network. The 
experimental dataset, used as a benchmark in this thesis has an even higher 
resolution. Where previous attempts at visualising functional connectivity have 
generally taken only subsets into account, this visualisation aims to prototype a 
method of displaying a full dataset, paying special attention to the preservation of 
valuable details like the origin and destination locations of each connexel. The 
proposed method of visual summary is a bundling method, which 'ties' edges, 
associated with a specific cluster, together in order to de-clutter the visualisation and 
incorporate hundreds of thousands of connexels in a single view. 

5.1 Bundling Heuristics 

After the generation of edges in 3D space and the computation of K-Means, the 
results can be incorporated into the visualisation in order to be able to display high 
resolution functional connectivity data. 
The bundling is achieved by interpolating each connective edge towards its associated 
cluster centroid. Again, the prime directive is to leave the endpoints of each edge 
untouched, such as to not manipulate the actual experiment data. Additionally this 
will ensure, that despite visual summary around the centre of each edge, the high 
resolution of the origin and destination neighbourhood is preserved and visualised 
accurately. 

After back projection to brain mesh space, the following can be applied for every 
edge. 

  

where   describes an edge, affiliated with cluster   in the form of a set of 3D 
coordinates. Every edge is interpolated vertex-wise towards  , the cluster's centroid 
edge, by a coefficient in the open unit interval contained in the set  . All sets 
introduced hold the same number of elements. Making   a function of time will allow 
the implementation of different, more elaborate interpolation functions. 

ec = {[0,1] → IR3

t ↦ αe(t) + (1 − α)c(t)

ec cj
c
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5.2 Interpolation Functions 

  can be initialised with numerous functions, so long as they satisfy the following 
properties: 

  

  has to retain the constraint, that  , such that the interpolation of 
both connexel endpoints equals zero; leaving them entirely unchanged. This is 
necessary to not  
manipulate the original dataset. Another requirement of   is its symmetry. In order 
to have a symmetric interpolation, the zenith of   should be at its centre with each 
value before or after being lower. 

Depending on current visualisation requirements clusters can be converged quickly or 
in a more gradual manner using a variety of functions Fig.5.1. 

The function in the visualisation on the left for example lets edges converge slowly 
and is given by 

  

where   is given by   and   is a number corresponding to the total 
number of vertices held in any given edge/centroid.  

α

α : {α(0) = α(n) = 0
α(t) ∈ [0,1]

α α(0) = α(n) = 0

α
α

α = {x : sin(x ⋅ π
|s |

)}

s s = {0, …, n − 1} n
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Fig.5.1: examples of bundling applied to a single cluster. Function graphs 
are given below. 
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The function on the right converges more quickly and is given by 

  

In addition to the steepness of the interpolation function, simply multiplying the 
resulting set of coefficients by a value in the interval   will offer some 
control over the level of compression around the centre of the bundle. Any value lower 
than 1.0 will prevent a full convergence of connective edges and centroid edge, 
allowing a loser bundle visualisation that preserves information on origin and 
destination of a single connection. This information will be forfeited when the bundle 
converges on a specific point around its centre. 

α = {x : 1 −
(x − n − 1

2 )4

n log(− n − 1
2 )3

}

(0,1) ∈ ℝ+
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Fig.5.2: gradually converging alpha function for the unit example of n=1. 
This function corresponds to the visualisation on the left.

Fig.5.3: quickly converging alpha function for a concrete example of n = 
10. This function corresponds to the visualisation on the right.
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5.3 Bundling Refinement 

Simply interpolating edges in their current state is a fast method of visually 
summarising the connectivity data. While not without merits, improving on this 
method will be necessary to attempt to satisfy the requirements laid out in the 
introduction of the visualisation, namely creating a visualisation without clutter, 
which allows the display of any number of connexel curves without obscuring each 
connexels endpoints. 

Interpolating edges towards centroids makes cluster orientation and spread of 
endpoints obvious, but exact endpoint locations can be obscured by the 'stilts' 
connecting the endpoints to the first points of the connective edge laying on the 
ellipsoid Fig.5.4 left. Despite these drawbacks this type of visualisation could hold 
some value. For example when approximating an ideal number of clusters, as variance 
among endpoint neighbourhoods is easily visible in this approach. 

A way to reduce the 'stilt' effect, is to drastically minimise the projected radius of the 
edges, while keeping a high radius on the centroids. This will reduce the magnitude of 
the curves 'stilt', effectively turning it into a much less significant segment of the 
curve. Post-interpolation, the edge will now approximate a more continuous curve 
Fig.5.4 right. Especially in combination with a quickly converging interpolation 
function, this reduces the screen space each cluster inhibits significantly. 
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Fig.5.4: two bundling archetypes. Left: Simple interpolation of connective edges 
towards a mean edge with a similar radius . Right: interpolation of connective edges 

with a radius  towards a mean edge with significantly higher radius . 
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A more solid and intuitive solution is the implementation of a function, that 
gradually increases, then decreases the radius of a given line during its course. This 
function delivers an array of radii, reaching their zenith at the central coordinates of 
any edge - similar to the interpolation set   introduced above. The resulting edges 
behave more smoothly and also reduce line spread as the edge bundle approaches 
either endpoint neighbourhood Fig.5.5. 

This would turn the radius into a function of time, such that 

  

where   denotes a single edge, whose vertices have been projected using a continuous 
radius function  . This function interpolates the radius between the inherent radii 
of the connexel endpoints   over a user-defined zenith or maximum radius. The 
continuous radius function is therefore given by the following 

  

where   are the radii at the origin and destination point of a connexel curve,   is 
the number of vertices and   could be given by any version of   or a similar 
function. 

The general goal is to externalise connexel curves, so a radius, larger than the 
maximum extent of the brain mesh on any axis should be chosen for the user-defined 
zenith. The maximum extent of the brain would be half its length, with the length 
being the axes of the highest spread of vertex coordinates. Because of the original 1:1 

α
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Fig.5.5: continuous radius. Improved reduction of spread at endpoint 
neighbourhoods, mean edges now blend in with connective edges. 
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scale of the dataset, in this example the zenith should be defined as at least 75mm. 
The visualisation in Fig.5.5 uses a zenith of 120mm. 

An interesting side-effect of the continuous radius function is, that choosing a small 
zenith of only 1mm will still result in an accurate visualisation, preserving the 
endpoint coordinates. The bundled edges are displayed on the insight of the brain, 
similar to the visualisation proposed by Boettger et al. [Böttger2014] Fig.5.6. 

5.4 Conclusion 

It has been established, that even simple interpolation of edges, projected at close-to-
constant radius will achieve visual clutter reduction. This method furthermore 
indicates the spread of endpoints at a clusters neighbourhood, suggesting that, while 
not quite desirable for whole-scale visualisations, it might have value in identifying a 
more adequate number of clusters for a given set. 

The method has been improved upon in two steps, first, edge vertices have been 
created at a low radius, while the centroid edges, towards which they were 
interpolated, kept a relatively high radius. This reduced the angular effect of the 
curve and turned a perceived 'stilt' into a less significant element of the entire curve. 
Because of the requirement of a specific relation between connexel and centroid edge 
radii another method was prototyped.  
Instead of two constant radii to interpolate between a continuous radius function was 
developed, that smoothed out the curve approximation. This approach was even more 
successful at reducing clutter around endpoint neighbourhoods and improved the 
interpolation. 
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Fig.5.6: internalised connective curves. Effect of continuous radius in 
combination with a low zenith.  



6. Software Package 

6.1 Package Contents 

The final software package contains a number of scripts written in Python as well as 
a testing suite for the provided functionalities. This will ensure stability in future 
developments and extensions of the package. 

The following paragraph will describe the package layout and its most relevant 
member files in a general fashion. Closer examination of each files functions will take 
place in the following subsections. 

 readme.md 

 requirements.txt 

 filter/filter.py 

 filter/filter_xmlable.py 

 filter/plugin.xml 

 cli_tools/naive_k_means.py 

 cli_tools/hierarchical_k_means.py 

 tools/plot_ops.py 

 tools/file_ops.py 

 tools/nifti_alignment.py 

 tests/test_suite.py 

 tests/context.py 

naive_k_means.py 
This Python file includes the naive K-Means implementation and all necessary 
auxiliary functionalities. The most essential being distance function for six 
dimensional datapoints, method of initialisation and a method of saving the processed 
result. 
This file can be run in the command line or via regular import inside a Python shell 
or file. 

hierarchical_k_means.py 
This works in a similar fashion as the naive_k_means in that it can be run from the 
command line, as well as any Python environment. 

plot_ops.py 
Provides a vast range of supporting functions, necessary for drawing the actual 
visualisation inside Paraview. This is the main module used by the programmable 
filter as well as its XML counterpart. It consists of a set of functions for preparatory 
calculations enabling the visualisation and another set to handle all VTK-related 
operations like drawing points, lines and organising output data for the Paraview 
pipeline. 
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file_ops.py 
This module provides a set of auxiliary functions necessary to handle the input files 
holding connection information. The assemble_edges method creates a Numpy array 
holding the 3D-coordinates for every connexel (set of two voxel coordinates) by 
combining information of the volume information and the connection data as 
described in the following section. The Numpy array should be saved and can easily 
be loaded inside the Paraview filter or during precalculation. 
This module requires the Python packages Nibabel and CSV to handle the 
corresponding file formats. 

nifti_alignment.py 
In the rare and very avoidable case that volume information and mesh are not 
aligned, this script can serve as a helper to match a set of volume coordinates with a 
mesh of the brain. 

filter.py 
A version of the Paraview filter, that has to be added to a “programmable filter” 
instance’s script property in the Paraview hierarchy. Every attribute of the script has 
to be manipulated in code, most importantly paths to load data will need to be 
changed. 

filter_xmlable.py 
This filter is functionally the same as the one above, but it has been prepared for the 
automatic generation of an xml variant, using the script provided by Paraview 
developers. 

plugin.xml 
This is a version of the filter, that can be loaded using Paraviews plugin manager. It 
comes with a user interface and is the central piece of software this thesis revolves 
around. The Python source integrated here can be found in this file: 
filter_xmlable.py 
Due to format reduction in this XML file, readability of the Python source is 
impaired so for any review purposes the Python file should be referred to. 

6.2 Application and Workflow 

Using the the tools listed above users are able to perform each of the following steps 
in order to create a visualisation using Paraview. Note that some additional steps 
involving software not included in this package are necessary. 

General setup: 
The following instructions will set up a Paraview environment, which allows the live 
calculation and visualisation of a clustered set of connectivity data in 3D-space. Note 
that live calculations tend to get slow depending on the system in use. The main 
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purpose of the software package remains the loading of preprocessed, i.e. clustered 
connectivity data. This particular workflow will be described in the section following 
this one. 

These steps require external software sources. 

1. Install Paraview from https://www.paraview.org/download. Version 5.4 has been 
used during development, but any version above 4.6 should be a viable option to 
use the software package. 

2. Install dependencies using pip, the Python package management tool. On both 
macOS and Linux one simple terminal command should suffice: 
 
 # cd path/to/_brain_viz  
 pip install -r requirements.txt  
 
This will install the packages Numpy, CSV, NiBabel and Python-VTK as 
required. 

The following steps build entirely upon the software package's contents. 

3. Prepare the Connection Data using the file_ops module. The simplest way to 
do this is by importing the module inside a Python shell and saving the edge 
information to an .npy file. The module itself loads Numpy, allowing users to save 
the assembled edge information from inside it as seen in the last command of the 
following shell input example. 
 
 >>> from _tools import file_ops as f  
 >>> edges = f.assemble_edges('path/to/.nii', 'path/to/.csv') 
 >>> f.np.save('path/to/edges', edges) 

4. Setup Paraview by launching the binary inside the downloaded .zip file. Load 
the brain mesh you want to work with by dragging the file to the Pipeline 
Browser inside Paraview Fig.6.1. Some unnecessary display options will be 
enabled by default and should be disabled for an optimal working experience. 
Fig.x, Paraview window. The Pipeline Browser can be seen on the top left.  

5. Load the XML plugin using Paraviews plugin manager under 
Tools > Manage Plugins... > Load New... 
The plugin should now appear in the alphabetical list of filters. 

6. Setting up the filter will require a few extra steps. Most exposed UI attributes 
have a default value, that can be changed around as desired - however it is 
absolutely necessary for a user to specify the two fields bdv path and edges path 
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according to their personal setup. This is only possible after the filter has been 
applied to the previously loaded mesh inside the Paraview hierarchy. As the name 
suggests the edges path attribute should be set to the path of the previously 
created, congregated edge information from step 3. bdv path on the other hand 
should point to the software packages root directory, since it will be used for 
several imports in the filter source Fig.6.2. 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Fig.6.2: Properties Panel of the programmable filter. The gear symbol 
indicates that the advanced view is enabled. This exposes the 'bdv path' 

property, a path pointing to the root of the software package.  

Fig.6.1: Paraview window. The pipeline browser can be seen on the top left.



7. Conclusion 

7.1 Discussion of Results 

The exploratory work done during this thesis was generally successful in the goals it 
set out to achieve. The first of these goals was the display of curves in 3D-space. A 
method was introduced, prototyped, abandoned and replaced with a different 
approach, the Rodrigues Rotation formula, that eventually yielded the expected 
results. Connexels, consisting of two spatially segregated 3D-coordinates could be 
visualised by a set of rotated vectors using the VTK pipeline. This was only a setup 
to the visualisation of whole-scale functional connectivity networks. 

In the next step K-Means was introduced as a method of clustering the large number 
of edges for later, visual summary. A naive K-Means implementation was successfully 
adapted to be able to perform clustering on a set of six-dimensional connexel 
datapoints. For this purpose, a distance function was developed, that performed 
distance computations for a set of edges, each defined by two points in three-
dimensional space, without regard to the orientation of said edges. The distance 
function was only one of the major parts of this specific K-Means implementation. 
The second one, a barycentre function, was a recomputation of K-Means centroids, 
which was customised using the same orientation agnostic methods. Continuous tests 
and benchmarks were applied and proved the functions improvements over regular 
euclidian distance computations in the context of connexel datasets. 

The processing times for large datasets were relatively high, leading to the 
introduction of a hierarchical implementation of K-Means. This method would create 
a number of computations of varying numbers of clusters, essentially generating 
several cluster layouts for the same dataset. The hierarchical scheme would perform 
K-Means computations consecutively on the centroids, generated by a previous K-
Means pass. While not as successful in generating a cluster layout with low 
aggregated squared distances, this method allowed the exploration of a dataset along 
the hierarchy offering the possibility of identifying highly expressive cluster 
distributions for subsets of the data. 

The final step towards the visualisation was the integration of the results delivered by 
the clustering algorithms into the visualisation. The clustering layouts were used to 
converge edges in 3D-space, creating not only a logical clustering but also a visual 
bundling of connexel curves with similar properties. The bundling method was 
implemented in a highly readable manner to expose several attributes of interest to 
the operator, like the level of compression of bundled edges, as well as the overall 
convergence of edges with their respective cluster centroid. 
Section 5.3 introduced a set of consecutive steps to improve the cluster visualisation 
by manipulating the exposed features and in that identified two promising methods of 
visualisation, which hold exclusive values. First was the interpolation of edges, 
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projected at close-to-constant radius, a visualisation that clearly displayed cluster 
variance at endpoint neighbourhoods and already reduced screen-space clutter at 
cluster centres. Second was a method, using varying radii, which yielded a much more 
condensed visualisation without obscuring endpoint locations, achieving most of the 
previously stated goals of the visualisation. 

At the conclusion of the practical phase, the software package is a solid foundation for 
visualising functional connectivity data in a number of different ways, that motivate 
further exploration. K-Means has been successfully implemented to divide any 
number of connexel edges into any number of clusters and the result is automatically 
displayed as a set of bundled curves of varying colours (associated with the clusters 
index). 
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Fig.7.1: externalised connexel curves. n=10.000, k=11
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7.2 Outlook 

In its current state, the software is able to generate visualisations of functional 
connectivity data with only a small set of user inputs. Visualisations created for 
datasets, containing up to 10.000 connexels achieve overall clear visualisations using 
the default parameters. Larger datasets however, the visualisation of which is the 
ultimate goal in a project such as this, require more extensive customisations. These 
customisations are not yet implemented in an accessible enough way, such that only 
developers with further knowledge of the software will know about them. 

Another factor, that can be improved upon is the efficiency of the implemented 
algorithms. It has been mentioned, that K-Means has been implemented with little 
regard to efficiency, meaning, that it should eventually be replaced by an 
implementation with better performance, as well as improved consistency with regard 
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Fig.7.2: internalised connexel curves. n=10.000, k=11
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to cluster results. Additionally, the edge bundling method is not performing well and 
in fact takes even more processing time than the K-Means computation. This can no 
doubt be fixed in further iterations. 

Finally, due to time constraints, the software has not yet been presented to the group 
of Dr. Johannes Stelzer. Because of the prototypical nature, the discussion should be 
driven forward by the requirements presented by the functional connectivity 
researchers, who requested this software. The implemented features will need to be 
tested by them. 
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