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Abstract—We propose to fuse two currently separate research
lines on novel therapies for stroke rehabilitation: brain-computer
interface (BCI) training and transcranial electrical stimulation
(TES). Specifically, we show that BCI technology can be used
to learn personalized decoding models that relate the global
configuration of brain rhythms in individual subjects (as mea-
sured by EEG) to their motor performance during 3D reaching
movements. We demonstrate that our models capture substantial
across-subject heterogeneity, and argue that this heterogeneity
is a likely cause of limited effect sizes observed in TES for
enhancing motor performance. We conclude by discussing how
our personalized models can be used to derive optimal TES
parameters, e.g., stimulation site and frequency, for individual
patients.

I. INTRODUCTION

Motor deficits are one of the most common outcomes of
stroke. According to the World Health Organization, 15 million
people worldwide suffer a stroke each year. Of these, five
million are permanently disabled. For this third, upper limb
weakness and loss of hand function are among the most
devastating types of disabilities, which affect the quality of their
daily life [1]. Despite a wide range of rehabilitation therapies,
including medication treatment [2], conventional physiotherapy
[3], and robot physiotherapy [4], only approximately 20% of
patients achieve some form of functional recovery in the first
six months [5], [6].

Current research on novel therapies includes neurofeedback
training based on brain-computer interface (BCI) technology
and transcranial electrical stimulation (TES). The former ap-
proach attempts to support cortical reorganization by provid-
ing patients with real-time neurofeedback on their movement
attempts [7], e.g., via haptic feedback delivered by a robotic
exoskeleton [8]. The latter type of research aims to reorganize
cortical networks in a way that supports motor performance,
because post-stroke alterations of cortical networks have been
found to correlate with the severity of motor deficits [9], [10].
While initial evidence suggested that both approaches, BCI-
based training [11] and TES [12], have a positive impact, not
all studies have reported a significant improvement in motor
performance over conventional physiotherapy [13], [14], [15].

One potential explanation for these inconsistent results is the
heterogeneity of stroke patients. Different locations of stroke-

induced structural changes are likely to result in substantial
across-patient variance in the functional reorganization of cor-
tical networks. As a result, not all patients may benefit from the
same neurofeedback or stimulation protocol. We thus propose
to fuse these two research themes and use BCI technology
to learn personalized models that relate the configuration
of cortical networks to each patient’s motor deficits. These
personalized models may then be used to predict which TES
parameters, e.g., spatial location and frequency band, optimally
support rehabilitation in each individual patient.

In this study, we address the first step towards personal-
ized TES for stroke rehabilitation. Using a transfer learning
framework developed in our group [16], we show how to
create personalized decoding models that relate the EEG of
healthy subjects during a 3D reaching task to their motor per-
formance in individual trials. We further demonstrate that the
resulting decoding models capture substantial across-subject
heterogeneity, thereby providing empirical support for the need
to personalize models. We conclude by reviewing our findings
in the light of TES studies to improve motor performance in
healthy subjects, and discuss how personalized TES parameters
may be derived from our models.

II. METHODS

A. Subjects
Twenty-six healthy male subjects (mean age of 28.3 years

with a standard deviation of 7.6 years) participated in this
study, all of which were naive to the task and indicated that
they are right-handed. After a detailed explanation of the
experiment, each subject gave informed consent in agreement
with guidelines set by the ethics committee of the Max Planck
Society which approved this study.

B. Experimental Set-up
The experimental set-up of this study consists of the follow-

ing parts:
1) A motion capture system: We use the Impulse X2 Motion

Capture System (PhaseSpace, San Leandro, CA, U.S.) which
captures the x, y, z coordinates of the subject’s right arm
position at a rate of 960 Hz. For this, subjects are wearing
a sleeve on their right arm equipped with infrared LEDs and
the system’s four infrared cameras are placed around them.



2) Visual feedback screen: During the experiment, subjects
are seated approximately 1.5 meters in front of a feedback
screen. The arm position, as constantly tracked by the motion
capture system, is represented as a striped sphere on the screen.
The sphere is designed with a 3D stripe pattern and a visible
shadow in order to facilitate the adaptation of the subject to
the virtual 3D space on the screen.

3) An EEG system: We acquire the electroencephalogram
(EEG) using an active 121-channel cap and a BrainAmp DC
amplifier (BrainProducts, Gilching, Germany). The sampling
frequency is 500 Hz and the electrodes are positioned according
to the 10-5 system for high-resolution EEG [17]. The reference
electrode is placed at the TPP9h location.

C. Experimental Paradigm
The experimental paradigm is implemented using

BCPY2000, an extended Python version of BCI2000
[18]. The experimental phases are described subsequently.

1) Calibration phase: At the beginning of each experiment,
the subjects are instructed to place their arm in a comfortable
position next to the leg. This position is defined as the “starting
position” of the sphere on the screen. Afterwards, the subjects
are instructed to move the arm around in the space while always
remaining seated and focusing on a fixation cross on the screen,
in order to explore the area of comfortable movements for
every subject. During this “exploration” period, possible targets
inside the limits of the subject’s reaching area are computed.

2) Resting phase: There are five minutes of baseline record-
ing, during which the participant is asked to focus on a fixation
cross shown on the screen without moving.

3) Trial phase: The trial phase consists of two blocks of 50
trials where each block is followed by a five minute resting
state recording. In the following we describe the trial sequence
which is also depicted in Fig. 1. Each trial begins with a “task
baseline” of 5 seconds, during which subjects are asked to rest
and no sphere is shown on the screen. During the following
“planning” phase (duration uniformly chosen between 2.5–4
seconds) one white and one yellow patterned sphere is shown
on the screen, the former reflecting the subject’s arm position,
the latter showing the randomly chosen target position for the
next reaching movement. Subjects are asked to plan the next
reaching movement but not yet move. Once the target sphere
turns green, the “go” phase begins and this is the signal for the
subject to move the arm and try to reach the target position.
A trial is considered “failed”, and a black screen with red
bar is shown, if subjects move more than 4 cm during the
“planning” phase or if the target is not reached (overlapping of
the end-effector sphere and the target not reduced below 3.5
cm) within the 10 second “go” phase. Otherwise, the trial is
considered successful and subjects receive feedback about their
motor performance score (cf. Section II-D). Afterwards, the
“return” phase starts, during which the subjects return, without
time constrains, to the “starting position” which is now depicted
as a green (target) sphere; once the white sphere representing
her arm position overlaps 1 cm with the green sphere, the trial
is considered completed.

D. Index of Motor Performance

In this study, we use the normalized averaged rectified jerk
(NARJ) [19] as an index of motor performance. It reflects the
smoothness of a movement and was shown to correlate with
the Fugl-Meyer Assessment of Motor Recovery after Stroke
(FMA) [20].

We compute the NARJ for each movement from the jerk
values Jerk·,t, the second derivative of the velocity, at each
time step t in each of the three dimensions x, y, z tracked by
the motion capture system as follows

NARJ = T 3 1

T

∑
t

√
Jerk2x,t +Jerk2y,t +Jerk2z,t

where T is the duration of the reaching movement. What we
show subjects as feedback on the screen is the inverted NARJ
fitted in a range between 0 and 100, so that a higher score can
be interpreted by subjects as reflecting a “better” movement.

E. EEG Analysis

1) Preprocessing: Removing the “failed” trials results in
89–98 trials per subject. We restrict our analysis to the 118
EEG channels that were consistently recorded with high quality
for all subjects and removed the ones that were noisy in at
least one of the recordings. These were then re-referenced to
common average reference. We keep the EEG data in the time
window 7.5–17.5 seconds of each trial, where 7.5 corresponds
to the earliest possible start of the “go” and 10 seconds is its
maximum duration. In order to attenuate non-cortical artifacts,
we perform an independent component analysis (ICA) and
only reproject those independent components that, by visual
inspection of the topographies and source frequency spectra,
correspond to cortical sources (cf. Section 2.3 of [21] for a
description of this procedure).

2) Feature computation: For each trial and channel we
compute the log-bandpower in the following five frequency
bands: delta (δ, 1–4 Hz), theta (θ, 4–8 Hz), alpha (α, 8–13
Hz), beta (β, 13–30 Hz) and high gamma (γ, 60–90 Hz) (the
30–60 Hz band is excluded due to the 50 Hz power line noise).
This results in a feature array for each subject of the form 118
channels × 5 logarithmic bandpowers × number of trials.

3) Transfer learning regression: We want to predict, for
each trial individually, the logarithmic NARJ value from the
log-bandpower features of the “go” phase of that trial. We
adapt the transfer learning algorithm presented in [16] in order
to perform linear regression. This enables us to leverage the
data of 25 subjects when training a model for the 26th subject.
In particular, for every subject s we train a predictive model
with features from all the trials of the remaining 25 subjects.
This is the prior model of subject s. We then update the prior
model’s weights with the data from the first 20 trials of subject
s. We call this model the updated or personalized model for
subject s. This personalized model is then used to predict the
remaining trials of this subject. We use leave-one-subject-out
cross validation in order to evaluate our model.



Fig. 1. Trial sequence of the visuo-motor reaching task.

F. Statistical Tests

In order to evaluate the predictive power of our models, we
first assess their ability to correctly predict the average NARJ
value in the final 50 trials of each subject. For this, we compute
the across-subject correlation coefficient between the predicted
average NARJ values and the observed ones. To estimate the p-
value under the null-hypothesis that the predicted and observed
average NARJ values are uncorrelated, we permute the subject-
order of the predicted average NARJ values 104 times and
compute the instances in which the modulus of the resulting
correlation coefficient exceeds the modulus of the correlation
coefficient with the subject-order intact.

In a second step, we quantify the ability to predict the NARJ
value of individual trials over the course of the experiment by
the magnitude square coherence between the predicted and the
observed NARJ values for each subject. Coherence measures
frequency-dependent similarities between two signals, i.e., it
allows us to quantify how well our models predict the dynamics
of motor performance. In order to quantify the probability,
on a group level, of observing a magnitude square coherence,
averaged across frequencies and subjects, at least as high as in
the case of no temporal structure, we perform the following
statistical test. We randomly permute, within each subject,
the trial-order of the predicted NARJ values 104 times and
compute the resulting frequency-averaged magnitude square
coherence. We then compute the mean over all subjects for each
of the 104 permutations. That yields a p-value for the grand-
average magnitude square coherence under the null-hypothesis
of no temporal structure. To check whether one of the two
models performs significantly better than the other one in terms
of predicting dynamics, we finally compare the frequency-
averaged magnitude square coherences of the 26 subjects for
the prior and the updated model with a paired t-test.

III. RESULTS

A. Adaptation of Motor Performance over Time

The left column of Fig.2 displays the mean and standard
deviation of the logarithmic NARJ values across subjects for
the first 89 trials (minimum number of trials available across
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Fig. 2. Left: Motor performance over time (mean ± one standard deviation).
Right: Histogram of performance in the end of the experiment (averaged over
last 50 trials).

subjects). There is a strong adaptation period during the first
20 trials. After roughly 50 trials, the mean NARJ values have
almost converged to their final value. The distribution of final
movement smoothness across subjects is shown in the right
column of Fig. 2 (averaged over last 50 trials), exhibiting a
substantial heterogeneity of subjects’ final performance.

B. Model Validation

1) Prediction of subjects’ final mean motor performances:
Figure 3 shows, for each subject, the observed versus the
predicted average NARJ values in the final 50 trials both
for the personalized (left column) and prior model (right
column). Only the updated model exhibits a significant cor-
relation between model predictions and observed true values
(ρ = 0.52, p = 0.008) while for the predictions of the
prior model there is not sufficient evidence to reject the null-
hypothesis of chance-level performance (ρ = 0.31, p = 0.139).

2) Prediction of motor performance in individual trials:
The ability of our models to predict movement smoothness for
individual trials is assessed by the magnitude square coherence
(cf. Section II-F), shown in Fig. 4 for each subject and model
type (updated and prior). Both models achieve significant
predictions of frequency-averaged coherence across subjects
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Fig. 3. Predicted and observed average logarithmic NARJ of the last 50 trials
for the 26 subjects with (left) and without (right) the use of transfer learning.

(0.36 with a p-value of 0.0083 for the updated model and
0.37 with p-value of 0.0074 for the prior model). In addition,
the paired t-test to compare the two models did not reject the
null hypothesis of equal prediction performance (p = 0.3573).
The above statistical results show that both models capture
the dynamics of movement smoothness across trials. Figure 5
shows observed and predicted NARJ values across trials for five
representative subjects for the updated model (top row) and the
prior model (bottom row). We see that although the dynamics
of the performance curves are well predicted by both models,
their mean offset and amplitude is only captured by the updated
model.

C. Model Interpretation

To gain a better understanding of the cortical processes
used for prediction, we compute the correlation coefficients
between the personalized models’ predictions and the individ-
ual electrode bandpower features. That is, we quantify how
much each channels’ bandpower contributes to the prediction,
i. e. we essentially obtain an encoding model from our de-
coding model [23]. The resulting encoding topographies (5
representative subjects) are shown in Figure 6. The last row
shows the mean across subjects’ encoding models for the prior
model. Red/blue colors indicate a positive/negative correlation
between electrode bandpower and the logarithmic NARJ, i. e.,
increased bandpower at blue colored electrodes is associated
with smoother movements. We note, first, that there is a qualita-
tive difference between the average model and the personalized
encoding models, and, second, that the personalized models
exhibit substantial heterogeneity. Strongest correlations—but
with inconsistent signs—are observed in the alpha, beta and
high gamma range, while correlations in the delta and theta
range are comparably small across subjects.

IV. DISCUSSION

A. Transfer Learning for Personalized Models

We have shown in this work that there is substantial hetero-
geneity in the neural correlates of motor performance across

Fig. 4. Magnitude-squared coherence between observed and predicted NARJ
values for each subject.

subjects. While the dynamics of motor performance can be cap-
tured by subject-independent models, only personalized models
also correctly predict the mean performance. A crucial feature
of our approach is to employ a transfer learning framework.
Because of the high dimensionality (590-D) of our feature
space, building personalized models based on subject-specific
training data would require several hundreds of training trials,
resulting in a calibration time of several hours. Using the trans-
fer learning framework enabled us to learn each personalized
model from only 20 trials of that very subject. This enables
us to cope with the heterogeneity of motor performance across
subjects as well as extend previous work [24] to the harder task
of single-trial prediction [25]. Because our long-term goal is to
make personalized predictions on optimal TES parameters for
stroke rehabilitation, it is essential that the calibration of our
models is fast enough to be applied in a clinical setting.

B. TES and Model Heterogeneity

While most TES motor studies consistently focus on the
contralateral motor cortex M1, their individual findings are
inconsistent with one another inasmuch as they evidence effects
of contradicting quality for the different frequency bands: Some
studies report an inhibiting effect of transcranial alternating
current stimulation (tACS) at 20 Hz over the contralateral
motor cortex on motor performance, but no significant effect
of stimulation in the gamma frequency range [26]–[28]; others,
seemingly contradicting, describe significant effects in the
gamma range and do not find significant evidence for inhibiting
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Fig. 5. Observed (blue) and predicted (red) NARJ values across trials for five representative subjects. Top row: personalized model. Bottom row: prior model.

Fig. 6. Personalized encoding models, i. e. feature correlation with predicted
NARJ values, for five representative subjects (first five rows) across the five
frequency bands (five columns). The last row shows the mean prior encoding
model averaged over all subjects.

effects of stimulation in the beta range [29]. In frontoparietal
areas, gamma oscillations were found to be correlated with
reaction times in a motor task [30], in contrast to stimulation
studies that found improvements in implicit motor learning only
after applying 10 Hz AC but for neither 1, 15, 30 or 45 Hz
[31].

In general, the heterogeneity in the organization of subjects’
cortical networks may explain such inconsistent results. Our
findings further support this line of argument by evidencing
a substantial heterogeneity amongst subjects: The activity in
the alpha, beta, and gamma range turns out to be sometimes
negatively and sometimes positively correlated with motor per-
formance. That is, when using one stimulus protocol (location
and frequency) for all subjects instead of personalized stimu-
lation protocols, the differences between subjects may lead to
inconsistent group-level results. In line with previous findings,
our models reveal the alpha, beta and (high) gamma frequency
ranges as decisive for motor performance. In several subjects,
global gamma bandpower shows strong correlations with motor
performance. While global correlations in the gamma range
are often a sign of contamination by muscular sources, we
note that we employed ICA to attenuate non-cortical artifacts.
We cannot exclude, however, that results in the gamma range
are confounded by residual muscular activity. In any case,
our results indicate that a one-for-all stimulation approach is
unlikely to consistently improve motor performances.

C. Predicting Optimal TES Parameters

Decoding models as the ones trained in this study do not
immediately reflect causal relationships and as such do not
allow to directly read off optimal stimulation parameters for
each subject [23], [32] (see specifically interpretation rules
R3 and R4 in [32]). While encoding models allow us to rule
out EEG features that are not causal for motor performance
(cf. interpretation rule R2), they cannot be used to identify
the causes of a behavioral response (cf. interpretation rule
R1). In light of recent work that has demonstrated that the
combination of both encoding and decoding models enables
richer causal interpretations than any model alone [32]–[34],
we argue that future research on stroke rehabilitation should



leverage this approach and fuse TES and BCI approaches: by
comparing feature relevance in both encoding and decoding
models the search space over stimulation parameters for TES
may be reduced. In particular, we can safely restrict our search
on the features that are both important in the encoding and
decoding as we are guaranteed to expect causes of motor
performance, if at all, only amongst these (cf. interpretation
rules R5-R8). Thus, we argue that a decoding model that is able
to sufficiently well predict single-trial motor performance is a
necessary prerequisite for personalized stimulation protocols
and thus view our work as the first step towards personalized
BCI-TES based stroke rehabilitation.
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