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Abstract

In this paper we demonstrate how determinis-
tic annealing can be applied to different SVM
formulations of the multiple-instance learning
(MIL) problem. Our results show that we find
better local minima compared to the heuristic
methods those problems are usually solved with.
However this does not always translate into a bet-
ter test error suggesting an inadequacy of the ob-
jective function. Based on this finding we pro-
pose a new objective function which together
with the deterministic annealing algorithm finds
better local minima and achieves better perfor-
mance on a set of benchmark datasets. Further-
more the results also show how the structure of
MIL datasets influence the performance of MIL
algorithms and we discuss how future benchmark
datasets for the MIL problem should be designed.

1 Introduction

In the multiple-instance learning (MIL) scenario training
patterns are available only in bags for which a bag label
is known. The pattern labels remain ambiguous in that al-
though instances from the negative class are known, one
has to infer which patterns belong to the positive class. It
is only known thatat least one pattern of a positive labeled
bag belongs to the positive class. Since the MIL problem
was introduced in [Dietterich et al., 1997] for the task of
drug activity prediction, a number of different applications
emerged in the literature. Up to now the span of applica-
tions cover a variety of problems such as identification of
proteins [Tao et al., 2004], content based image retrieval
[Zhang et al., 2002], object detection [Viola et al., 2005]
and prediction of failures in hard drives [Murray et al.,
2005].

Several special purpose algorithms for MIL have already
been proposed. Those which try to infer the missing labels

(or parts thereof) share the problem of not being convex.
The pattern labels enter the objective functions as discrete
variables creating combinatorial problems which are typi-
cally hard to solve. Most authors provide heuristic learn-
ing schemes to cope with this problem. In this paper we
will apply deterministic annealing which is a standard tool
from non-convex optimization to MIL versions of support
vector machines (SVM). Our results show that this learn-
ing scheme finds better local minima which does not au-
tomatically translate into lower test error. This indicates
an inadequacy of the objective function and we propose a
refined version which overcomes its problems. This new
SVM version also sheds light on the structure of the cur-
rent benchmark datasets which might lead to the design of
more appropriate MIL benchmark datasets in the future.

2 Multiple Instance Learning

In the classical supervised classification problem one is
given a set of i.i.d. labeled patterns(xi, yi) ∈ R

d×{−1, 1}
on which one tries to build a classifierf : R

d → {−1, 1}.
The multiple-instance learning problem is a generaliza-
tion of this setting where training patterns are given as
bagsBi ⊂ R

d, i = 1, . . . , N with labels Yi provided
only for the bag. Each bag consists of possibly many
patternsBi = {x1

i , x
2

i , . . . , x
mi

i }. The bag label induces
constraints on pattern labels in an asymmetric way. We
want to emphasize that one has to distinguish between
bag and pattern label and bear in mind that they have a
different meaning (examples will be given in Section 2.3).
A negative labeled bag contains only patterns to which
a negative label can be assigned to. On the other hand
a positive bag label only enforces that the bag contains
at least one pattern in the bag which can be assigned
to the positive class. We will refer to this pattern as the
witness of the bag. There is no information about the other
points, they might not even belong to either the positive or
negative class. In the remainder a pattern label forxj

i will
be denoted byyj

i .

One can roughly divide the different approaches that



have been proposed for MIL in three different categories.
The first category consists of methods which ignore the
MIL setting and treat the problem as a supervised one,
but on the bag-level. Prominent members of this category
are set kernel for SVMs [Tao et al., 2004, Gärtner et al.,
2002, Chen et al., 2006] or extensions of the nearest
neighbor algorithm using Hausdorff distances [Wang
and Zucker, 2000]. In this paper we will consider only
methods from the remaining two categories described in
following two sections. We will review the proposed SVM
formulations for the MIL problem and subsequently show
how a deterministic annealing procedure can be used to
solve them.

2.1 Identifying all labels

Models from the second category try to impute all the miss-
ing labels of the patterns in the positive labeled bags and
subsequently treat the problem as a supervised one. These
models implicitly assume that each ambiguous point can
indeed be assigned to either the positive or negative (pat-
tern) class, an assumption which clearly depends on the
nature of the dataset. This approach motivated the con-
struction ofmi-SVM in [Andrews et al., 2002] which intro-
duced SVMs to the MIL problem. Ambiguous labels enter
the objective function as discrete variables over which one
tries to optimize. Ignoring these additional variables the
objective function is the same as in the standard supervised
SVM case

L(w, b, ξi, {y
j
i }) =

1

2
‖w‖2

2
+ C‖ξ‖2, (1)

wherew ∈ R
d, b ∈ R are the weight vector and offset

of the SVM. The difference appears in the constraint set
which is modified to ensure label consistency with the bag
label

(mi-SVM)
yj

i (〈w, xj
i 〉 + b) ≥ 1 − ξj

i , ξ
j
i ≥ 0,

∀i : Yi = 1,

mi
∑

j=1

yj
i + 1

2
≥ 1, (2)

yj
i ∈ {−1, 1}

∀i : Yi = −1, yj
i = −1.

Due to the discrete variablesyj
i this problem is no longer

convex but a combinatorial one. To find the global min-
imum of L one would have to check all possible assign-
ments of the labels. Therefore Andrews et al. [2002] use a
heuristic method to optimize this objective function. Start-
ing by assigning all pattern labels from positive labeled
bags to be 1, the optimization for the parametersw, b and
the assignment fory based on the resulting classification
boundary is alternated. After each step the constraints (2)
are checked and if necessary enforced by setting the label
of the pattern whose function output is least negative to 1.

2.2 Identifying the witness

Finally the last category consists of methods which
aim to identify the witness in the positive labeled bags
which is responsible for the label. Successively a clas-
sifier is build on those witnesses only, while all other
points drop out of the problem. SVM formulations of
this versions are theMI-SVM by Andrews et al. [2002]
and the MICA algorithm by Mangasarian and Wild
[2005]. Both utilize the same objective function as in
Eq.(1) but equip it with a different set of constraints.

(MI-SVM) maxj(〈w, xj
i 〉 + b) ≥ 1 − ξi, ξi ≥ 0

(MICA)
∑

j νj
i 〈w, xj

i 〉 + b ≥ 1 − ξi,
∑

j νj
i = 1, νj

i , ξi ≥ 0.

Patterns from negative labeled bags are all used with slack
variablesξj

i as in mi-SVM. The MI-SVM directly selects
the “most positive” patterns from the bags and builds the
classifier with them. MICA is not directly identifying a
witness in the bag but a convex combination of all points
in a bag which acts as a witness. This removes the integer
representation involved in the MI-SVM at the expense of
adding bilinear constraints to the program. It is only for
positive bags with more than one pattern having an output
larger than one that the MICA and the MI-SVM will
differ in their choice of the witness. As discussed above
both methods avoid assigning a label to all patterns. Both
[Andrews et al., 2002] and [Mangasarian and Wild, 2005]
proposed an algorithm which alternates between updates
of the SVM parameters and identification of the witnesses.
The main difference in both formulations is that for MICA
l1 penalization of the weights is used whereas the objective
functions from [Andrews et al., 2002] usel2 penalization.
From a machine learning perspective it is a priori unclear
which norm is better suited for a given problem and
this is why we chose to usel2 penalization to unify the
presentation. All presented algorithms (and those which
follow) can be kernelized and are easily implemented by
extension of any SVM solver. In a kernelized version the
convex combination is taken in the associated RKHS.

The EM-DD algorithm [Zhang et al., 2002] employs
a probabilistic framework to find a witnesst or multiple
witnessesti of the positive class in feature space. Those
points ti should be close to at least one pattern from
every positive labeled bag and as far away as possible
from all points in the negative labeled bags. Again the
optimization of this problem iterates between updates of
t and assignments of the witnesses of the positive labeled
bags.

As most algorithms which are used for MIL mi-SVM,MI-
SVM,MICA and EM-DD share the problem of being
combinatorial problems of the instance labels. All of



them require the minimization of a non-convex objective
function and use heuristics to do so. In the remainder of
the paper we will describe how deterministic annealing
can be used to obtain better local minima of the objective
functions for MI-SVM, MICA and mi-SVM.

2.3 Imputing all labels versus identifying witnesses

Which of the methods described so far should be applied
to a given MIL problem? If one has the knowledge that
for a given dataset patterns in the positive labeled bag can
clearly be divided into a positive and a negative class, the
mi-SVM algorithm is the natural choice. If however all
of the patterns from positive labeled bags are believed
to belong to the positive class a standard SVM can be
employed where the label ambiguity is ignored altogether.
The popular benchmark dataset for MIL MUSK1 falls
under this category. A SVM decision function obtained by
ignoring the ambiguity of the pattern labels already gives
a classification performance of 85.6% which is already
better than the reported results for EM-DD,MI-SVM and
MICA. This finding is also reported in [Ray and Craven,
2005].

Consider on the other hand a face detection problem.
Some image containing a face is split into all possible
patches. The union of all patches forms a bag which
we label positive as one of the patches shows the face
completely and centered. However there is a continuum
of patterns in this bag. Some show the face only partially
others only parts like eyes. These patches should not
belong to either of the classes. It is sufficient to identify the
one patch with the complete face on it. On the other hand
all patches from an image without a face can be labeled
negative without any problem. In this case an algorithm
like the MI-SVM or MICA is the one of choice.

There are also other problems which in the literature
are considered to be MIL problems. Assume an image
depicting a car is represented as a collection of small
patches each single one not containing the entire car.
The label “car” for the image, tells us that there is at
least one car-part-patch amongst all those patches. But
this conclusion can not be reversed. The existence of
a car-patch in an image does not allow the conclusion
that there is a car shown in the image. In this case it is
clearly a combination of patches which matters. Thus in
this example bag labels and pattern labels have different
meanings. Nevertheless there are approaches which try to
solve this problem using the MIL framework. In the setting
presented in this paper the corresponding task would be to
classify car-part-patches against other patches.

3 Deterministic Annealing

Deterministic annealing (DA) is a special case of an homo-
topy method and may be applied in a more general con-
text than introduced here. Our outline mostly resembles
Sindhwani et al. [2006] who applies DA to semi-supervised
learning. For a more detailed review we refer to Rose
[1998]. Suppose one is given a non-convex optimization
problem of the formy∗ = arg miny∈{0,1}n F (y). DA finds
a local minimum of this function as follows. Firstly the dis-
crete variables are regarded as random binary variables de-
fined over a space of probability distributionsP . Instead of
solving the optimization problem directly one searches for
a distributionp ∈ P which minimizes the expected value of
F . By doing so, the optimization problem becomes contin-
uous but is not easier to solve. For this reason, an additional
convex term is added to the objective function: the entropy
S of the distribution

p∗ = argmin
p∈P

Ep(F (y)) − TS(p). (3)

The parameterT which controls the trade off between the
expectation and the entropy is called thetemperature of
the problem. As a first observation, note that forT = 0
andP including all point-mass distributions over{0, 1}n

the global minimizerp∗ of the problem above will put all
of its mass on the global minimizer ofF . Thus the new
formulation preserves the optimality of the original prob-
lem. If on the other handT ≫ 0 the entropy term in
Eq.(3) dominates the objective function and the problem
will be solved easily thanks to convexity. So we can find
a solution by solving a sequence of problems for values of
T0 > T1 > . . . > T∞ = 0 each of which is initialized at
the solution obtained by the previous one. This sequence of
temperatures is referred to as the annealing schedule. AsT
approaches zero the influence of the entropy term vanishes
and the distribution will become more concentrated on the
minimum of Ep[F ]. In this case we can identify the dis-
crete variablesy by p. Of course there is no guarantee for
global optimality because there might not be a path con-
necting the local minimizers for the chosen sequence ofT
to the global optimum ofF .

4 DA applied to Multiple instance learning

We will now derive deterministic annealing algorithms for
the formulations of the support vector machines described
in Section 2. Recall that the objective function Eq.(1) is
defined on both discrete and continuous variables. There-
fore for a given temperatureT we have to optimizep and
the SVM parametersw andb. This can be done with an
alternating scheme in a coordinate descent fashion which
is guaranteed to decrease the objective function. Note that
each alternating step itself is an easy to solve convex prob-
lem.



4.1 Deterministic Annealing for SVM inferring all
patterns

The goal of the mi-SVM is to impute all missing labels of
the instances in the positive labeled bags. Following the
DA principle we will regard the labelyj

i of a pattern from
a positive labeled bagxj

i ∈ Bi, Yi = 1 as an independent
binary random variable. In principle our space of distribu-
tionsP consists of all possible distributions overpj

i . How-
ever since we know that there are no terms in the objec-
tive function which couple the pattern labelsyj

i we know
that the optimal distribution has to factorize. Therefore we
can restrict our search spaceP to the factorial distributions.
The distribution foryj

i is defined byP (yj
i = 1) = pj

i which
impliesP (yj

i = −1) = 1 − pj
i . One can think of the value

of pj
i as the belief that the instancexj

i belongs to the pos-
itive class. To simplify the notation we will fixpj

i = 0
for all patterns from negative labeled bags. The constraint
on the pattern labels from mi-SVM directly translates to
∑

j pj
i ≥ 1, namely the expectation of positive labeled pat-

terns in a positive labeled bag is larger than one. Applying
Equation (3) to the objective function from Eq.(1) we ar-
rive at the following minimization problem which we now
write as a unconstrained one with a loss function

LT (w, b, p) = ‖w‖2

2
+ C

N
∑

i=1

mj
∑

j=1

[pj
i l(〈w, xj

i 〉 + b)

+(1 − pj
i )l(−〈w, xj

i 〉 − b)]

+T

N,mj
∑

i,j=1

(pj
i log pj

i +

(1 − pj
i ) log(1 − pj

i )). (4)

The constraint set to this objective is

(AL-SVM)
0 ≤ pj

i ≤ 1, ∀i, j (5)
mi
∑

j=1

pj
i ≥ 1 ∀i : Yi = 1. (6)

One possibility to solve this problem is to alternate be-
tween updating{w∗, b∗} = arg minw,b LT (w, b, p∗) and
p∗ = argminp LT (w∗, b∗, p) until we converged to a new
(local) minimum. For a fixedp the SVM parameters can
be found using any quadratic program solver. For exam-
ple one can simply duplicate the patterns from the positive
labeled bags (one with a positive label and one with a neg-
ative) and use two different costs for each pattern, namely
Cpj

i andC(1−pj
i ). To find the optimal value ofp we write

the dual function of the program

L′
T (p, λ) = LT (w, b, p)−

N
∑

i=1

λi(

mi
∑

j=1

pj
i −1), s.t. λi ≥ 0.

(7)

Taking the derivative w.r.t.p and equating to zero yields
the following expression for the optimalp while fulfilling
the constraints

pj
i (λi) = σ

(

−Cdj
i + λi

T

)

, (8)

where dj
i is the difference of positive and negative

loss, i.e. dj
i = l(〈w, xj

i 〉 + b) − l(−〈w, xj
i 〉 − b) and

σ(t) = (1 + exp(−t))−1 denotes the sigmoid function.
The solution will always satisfy0 ≤ pj

i ≤ 1. The
Lagrange multiplierλi couples only variables within a
bag and therefore the optimization forpj

i can be done in
parallel for all the bags. To solve forpj

i one can check
if
∑

pj
i (0) ≥ 1 in which case the constraint is satisfied

and thusλi = 0. Otherwise we know that
∑

j pj
i (λi) = 1

which impliespj
i = σ

(

−Cd
j

i

T

)

/
∑

j σ
(

−Cd
j

i

T

)

. There-

fore the calculation of the new assignments forp can be
done very efficiently and does only incur marginal costs
compared to the quadratic programs one has to solve at
each iteration. The quadratic program can be initialized
with the solution from the previous iteration to speed up
convergence. In order to start with an easy convex program
we have to chooseT0 to ensure that we start with high
entropy distributions. We found that choosingT0 = 10C
is sufficient to ensurepj

i ≈ 0.5 in all experiments we
conducted. The resulting algorithm for AL-SVM is
summarized in Algorithm 1.

We would like to emphasize that we are minimizing
the same objective function with the same constraints as
the program mi-SVM. However the initialization of the
algorithm is different, and this fact influences the type of
local minima which are found. The optimization procedure
proposed in [Andrews et al., 2002] initializes pattern labels
to be identical to the bag label. We observed that for each
iteration of their algorithm only some labels are changed
and the whole algorithm is biased toward solutions with a
large number of positive labeled points. Their algorithm
is equivalent to the DA algorithm if the initialization
pj

i = (yi + 1)/2 is used and one starts withT0 ≈ 0. In the
experiments we useT0 = 10−8 to emulate this case.

4.2 Deterministic Annealing for SVMs identifying the
witness

The two other methods build classifiers on the believed wit-
nesses of the bags (the following derivation easily extends
to the case when it is known that more than one positive
instance resides in a bag). In the MI-SVM the most posi-
tive pattern is chosen to be this witness while in the MICA
this integer representation is replaced by a convex combi-
nation of the points. We use a distribution over the patterns
which leads to a convex combination of the costs. Each in-
stance has a belief of being the witness of the bag which



Algorithm 1 Deterministic Annealing for identifying all
Labels (AL-SVM)

1: Initialize pj
i = 1

2
if Yi = 1, 0 otherwise.

2: Initialize T = 10C (relatively high temperature)
3: while S(p) > ǫ do
4: repeat
5: computew, b using quadratic problem solver
6: setq = p
7: computep by Eq.(8) (and solve inλ, cf text)
8: until KL(p, q) < ǫ
9: setT = T/1.5

10: end while

is encoded inpj
i . To ensure that we have a probability

distribution over each bag we have to add the constraint
∑mi

j=1
pj

i = 1, ∀i : Yi = 1. The probability spaceP in-
cludes all distributions over the patterns in each bag. We
setpj

i = 1 for instances from negative labeled bags, effec-
tively treating them as bags with a single pattern, and keep
these values fixed (In fact we are sure that those patterns
are witnesses of their bag label). In this case DA translates
the objective function Eq.(1) into

LT (w, b, p) = ‖w‖2

2
+ C

N
∑

i=1

mi
∑

j=1

pj
i l(Yi(〈w, xj

i 〉 + b))

+T
N
∑

i=1

mi
∑

j=1

pj
i log pj

i (9)

(AW-SVM) s.t.
mj
∑

i=1

pj
i = 1 ∀i : Yi = 1. (10)

We iterate between updating the search for optimal param-
etersw andp at a temperatureT in the same way we did
for the AL-SVM. Each instance enters the objective func-
tion with an individual weightCpj

i . Again taking the dual
function to Eq.(9) and equating its derivative to zero we
obtain an analytic solution forp

pj
i = exp

(

−
Clji
T

)

/

mi
∑

k

exp

(

−
Clki
T

)

, (11)

where we abbreviatedlji = l(Yi(〈w, xj
i 〉 + b)). Thus

similar to the AL-SVM updates ofpj
i are of only marginal

computational cost. A high value ofT favors high entropy
distributions, in this casepj

i ≈ 1/mi. The lower the value
of T the more willpj

i be concentrated on patterns which
occur a low cost. In the extremeT → 0 only points with
lji = 0 will have apj

i > 0, or if all points in a bag have
a positive cost the one with minimum loss will be picked
as the witness of the bag label. The latter case is exactly
the same solution found by MI-SVM and MICA. Again
T0 = 10C was used as a starting value for the temperature.
The complete algorithm for annealing based on witnesses

is summarized in Algorithm 2.

The formulation we obtained here is a deterministic
annealing version of MICA. This is seen by takingT = 0
and identifyingνj

i with pj
i . We are optimizing the same

objective function using a more sophisticated algorithm
as originally proposed in [Mangasarian and Wild, 2005].
Additionally the entropy term determines the choice of
the convex combinations in cases when there are more
possibilities for the MICA. In contrast to the MI-SVM
and MICA the DA algorithm might lead to more than one
witness.

Algorithm 2 Deterministic Annealing for identifying the
Witness (AW-SVM)

1: Initialize pj
i = 1

|Xi|
,if Yi = 1 andpj

i = 1,if Yi = −1

2: Initialize T = 10C
3: while p changed in the inner loopdo
4: repeat
5: computew, b using quadratic problem solver
6: setq = p
7: Setp according to Eq.(11)
8: until KL(q, p) < ǫ
9: setT = T/1.5

10: end while
11: setyj

i = 1 for all pj
i > ǫ and updatew, b using this

assignment

5 Experiment: 2D Toy dataset

To compare the differences between the algorithm from
Andrews et al. [2002] and the annealing algorithm we
conducted an experiment using synthetic 2D data. This
way we can control the number of instances with a positive
label in the positive labeled bags and therefore test the
results for pattern and bag accuracy. We created ten
different type of datasets by varying the fraction of positive
labeled points per bag overf = 0.1, 0.2, . . . , 1. A bag
was generated in the following way. The labelYi and
the size mi are uniformly sampled from{−1, 1} and
{1, 2, . . . , 10}. For a negative labeled bag we sample
mi patterns uniformly from the black region (negative
class) in the leftmost picture in Figure 1. A positive
labeled bag consists of⌈fmi⌉ points sampled uniformly
from the white region (positive class) and the remaining
⌊(1 − f)mi⌋ points from the negative class. For each
fractionf we sampled 30 training and 100 test bags. The
hyperparameters were fixed toC = 100 andσ = 1 in the
radial basis function kernels. Using this data AL-SVM and
AW-SVM were trained withT = 10−8 andT = 10C. The
averaged results over 50 independent runs are shown in the
two plots on the right in Figure 1. Matlab code used for the
experiments is available online athttp://www.kyb.
mpg.de/bs/people/pgehler/mil/mil.html
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Figure 1: A 2D toy dataset. From left to right: Regions of positive (white) and negative (black) patterns (ground truth),
Bag classification error averaged over 50 runs. Pattern classification error averaged over 50 runs.

These simple experiments reveal an important prop-
erty of the algorithms. In the case of little ambiguity
the non-annealed versions of the AL-SVM which are
equivalent to the mi-SVM formulation give low error rates
in pattern label accuracy (right). On the other side if only
few points per positive labeled bag are of the positive class
the error rates are very high. This result stands in contrast
to the annealed versions where the reversed behavior is
observed. Using the DA algorithm withT = 10C the
classification rates on the bag label are better than their
non-annealed counterparts and also yield lower values of
the objective function. This behavior can be explained by
observing that the mi-SVM initializes all pattern labels to
be positive and therefore tends to local minima close to
this initialization. Hereby this algorithm overestimatesthe
number of positive labeled points in a bag. The annealed
version however has a problem as well, it underestimates
this number.

The results for the annealed and non-annealed AW-
SVM do not differ in this toy example. For this data set
both methods seem not so prone to local minima and it is
more or less irrelevant which patterns are identified as the
witness.

6 A new objective function - ALP-SVM

The findings in the previous section raises the question of
whether the objective function Eq.(1) is suited for the MIL
problem. The alternating algorithm from Andrews et al.
[2002] overestimates the number of positive labeled points
in a bag which is a result of the initialization and the al-
gorithm it is solved with. The annealing on the other hand
is not biased towards a low or a high number of positive
points. However the previous experiments show that it suf-
fers from the problem of underestimation which is an in-

dication that it is the objective function which is inade-
quate. This motivates the following extension of the ob-
jective function. We replace Eq.(1) by

L′(w, b, ξi, {y
j
i }) = L(w, b, ξi, {y

j
i }) (12)

(ALP-SVM) +C2

∑

i





mi
∑

j

yj
i − 1

2
− mip

∗
i





2

,

with the constraint set of (mi-SVM). The new hyperparam-
eterp∗i can be used to control the expected number of pos-
itive labeled points per bag. Assignments{y1

i , . . . , y
mi

i }
which deviate from this fraction are penalized. For bags
with a negative bag label we setp∗i = 0 because we
do not expect any positive labeled points in these bags.
This way an over- and underestimation of the fraction of
positive labeled points per bag can be avoided, similar
to a balancing constraint in semi-supervised learning. A
balancing constraint ensures that the fraction of positiveto
negative labeled points estimated on the unlabeled point
set is the same as that from the labeled training examples.
This quantity can therefore be estimated from the training
set where in the MIL setting there is ambiguity of the
data and therefore no obvious way of how to choose this
value. The value forp∗i can either be prefixed due to prior
knowledge or be left open as a hyperparameter estimated
via cross validation. As the number of parameters to be
estimated scales with the number of positive bags we will
simplify by settingp∗i = p∗j ∀i, j : Yi = Yj .

The objective function Eq.(12) can easily be opti-
mized using deterministic annealing. Replacing the integer
valuesyj

i by introducing probabilities for their assignment
the new term in the objective function of ALP-SVM
translates to

C2

∑

i





mi
∑

j

pj
i − mip

∗
i





2

(13)



The only difference to the DA algorithm for AL-SVM is
the update of the probabilitiesp. Again the parameters can
be optimized for each bag independently. For a fixed set
of SVM parametersα, b we solve Eq.(12) including an en-
tropy term forpi using conjugate gradient ignoring the con-
straint

∑

j pj
i ≥ 1 (Eq.(6)). If a solution does not satisfy

Eq.(6), i.e. is outside the feasible region of ALP-SVM we
know that a solution of the constraint problem will lie on
the simplex

∑

j pj
i = 1. In this case Eq.(13) is simply a

constant and thus the solution is the same as for the AL-
SVM.

7 Experiment: Benchmark datasets

For a comparison of the proposed algorithms to those pub-
lished in the literature and especially the SVM programs
described above we ran experiments on some benchmark
datasets for the MIL problem. We used the MUSK and the
COREL datasets (Tiger,Elephant,Fox) used in [Andrews
et al., 2002]1.

Again a first set of experiments was run to compare
deterministic annealing to the alternating heuristic algo-
rithm. As already noted the AL-SVM is equivalent to
the mi-SVM if the temperature is set to a very low value.
We used againT0 = 10−8 and initialized all pattern
labels to be the same as the bag label to obtain the results
for this optimization technique. Note that the published
results of the mi-SVM and MI-SVM are obtained usingl2
penalization and the hinge loss function. For MICA thel1
norm of the weights was used as a regularizer together with
the hinge loss and therefore those published results can
not be compared if one wants to judge the quality of the
algorithm. To unify the presentation we ran all experiments
using quadratic loss function andl2 penalization of the
weights.

We used an RBF kernel and set the bandwidth to the the
median of the pairwise pattern distances denoted byσemp.
The remaining hyperparameters were optimized using
10 fold cross validation where we searched over the grid
C ∈ {1, 10}, C2 ∈ {1, 10} andp∗ ∈ {0.1, .0.2, . . . , 1}.
The results are shown in Table 1. In addition to the cross
validation error we also report the average fraction of
estimated positive instances in a positive bagp̂.

On all dataset except Fox we observe the same behavior
as in the 2D toy example, that settingT = 0 leads to high
values ofp̂ while settingT = 10C yields a low value of̂p.
The ALP-SVM penalizes deviation from the prespecified
fraction p∗ and therefore overcomes this problem by
finding solutions which lie “in between”. Using the new
objective function we obtain better results on the COREL

1www.cs.columbia.edu/∼andrews/mil/
datasets.html

T=0 T=10C T=10C,p∗

err p̂ err p̂ err p̂
Tiger 25.0 79% 30.5 19% 14 60%
Fox 43.5 60% 38.5 16% 35 72%
Elephant 24.0 91% 30.5 14% 16.5 58%
Musk1 14.3 100% 20.6 38% 14.3 99%

Table 1: Results on several benchmark datasets. Standard
deviation of the 10x fold cross validation error is usually
around 3.5%

datasets. For the MUSK1 dataset there was no better
solution found than setting all pattern labels positive, a
solution also found by the ALP-SVM.

A final set of experiments was done on all the datasets
described above as well as on MUSK2. We used the same
grid of hyperparameters as in the initial experiments but
now also varied the width of the kernel bandwidth in the
interval σ ∈ {σemp, 2σemp, 0.5σemp}. However best
performance was almost always obtained using using the
initial bandwidthσemp. The final results together with
those reported in Zhang et al. [2002], Mangasarian and
Wild [2005], Andrews et al. [2002] are shown in Table
2. Note that the results obtained using MICA,MI-SVM
and AW-SVM on the one and mi-SVM and AL-SVM on
the other hand despite their similarity vary quite a bit.
We therefore suspect that the datasets are very sensitive
to model selection. The fractions of positive points per
positive labeled bag for the best solution of the ALP-SVM
for all datasets are also shown in Table 2.

The experiments show that DA does not help for the
formulations identifying the witness and for the MUSK
datasets even worsen performance. However we have to
emphasize that using DA one always achieves a lower
value of the objective function (numbers not reported
here). There are two possible explanations to this phe-
nomenon. Either the objective function is not suited for
these particular datasets or it is more or less irrelevant
which witnesses are identified. The objective functions
could be easier to optimize in this case.

The results of the ALP-SVM are promising. Using
this formulation the under/overestimation ofp̂ is overcome
and a better local minima of the objective function directly
translates into better classification performance. In the
direct comparison with an annealed and non-annealed
AL-SVM the cross validation error is lower on all datasets.
As the results using the ALP-SVM are better than those
from AW-SVM,MI-SVM and MICA (except MUSK2) it
seems that the latter methods waste information by using
only one point per bag for building the decision function.
They could in principle benefit if they are able to identify
witnesses in a positive labeled bag more reliably.



EMDD MI-SVM MICA AW-SVM mi-SVM AL-SVM ALP-SVM
MUSK1 15.2 22.1 15.6 14.3 20.6 12.6 14.3 20.6 13.7 p̂ = 1
MUSK2 15.1 15.7 9.5 16.2 20.8 16.4 17.4 13.8 13.8 p̂ = 0.28
Tiger 27.9 16 18 17 17 21.6 21.5 28 14 p̂ = 0.6
Elephant 21.7 18.6 17.5 18 19 17.8 20.5 29 16.5 p̂ = 0.58
Fox 43.9 42.2 38 36.5 37 41.8 36.5 37 34 p̂ = 0.71

Table 2: Results on several benchmark datasets. Left columnin AW-SVM and AL-SVM are results obtained withT0 =
10−8 ≈ 0, whereas the right column states the result forT = 10C. The standard deviation of the 10x fold error is usually
around 3.5% for our experiments.

8 Discussion and Conclusion

We presented the deterministic annealing algorithm for
SVM formulations of the MIL problem. This method
consistently finds better local minima of the objective
functions. Furthermore we reported results which led to
the conclusion that the algorithm of the mi-SVM as pre-
sented in [Andrews et al., 2002] is heavily biased towards
problems with very little ambiguity. The deterministic
annealing algorithm can solve this problem but comes with
the problem of underestimating the number of positive
points. This behavior renders both algorithms inapplicable
for a general class of datasets.

We proposed the ALP-SVM, an extension of the mi-
SVM objective function which opens up the possibility to
encode prior knowledge about the dataset in a principled
way. The deterministic annealing algorithm allows to
optimize the new objective function at about the same
computational cost as the AL-SVM. For the COREL
datasets we obtain the best results reported so far in the
literature. It is our belief that a new set of benchmark
datasets are needed to compare all proposed MIL algo-
rithms thoroughly. These dataset should have different
levels of ambiguity in order to identify algorithms which
are too sensible to this property.

The AW-SVM can be extended to the case of more
witnesses per positive labeled bag. This can be helpful in
object recognition when multiple instances of an object
are present in an image. In this case the heuristic learning
method for MI-SVM and MICA might be more prone to
local minima than the deterministic annealing scheme. For
the latter it is also straightforward to derive a formulation
which penalizes deviation from some prespecified number
of witnesses, similar to the ALP-SVM.
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